Mar
8
La Biología en la Tierra ¡Qué maravilla!
por Emilio Silvera ~
Clasificado en Biologia ~
Comments (0)

Hablamos de Agujeros de Susano y otros temas similares, o, de Universos paralelos, siempre pensando en que el nuestro, nuestro Universo y primero nuestro mundo, llegará a su fin. Es necesario que los científicos piensen en estas cosas para solucionar los problemas del futuro y cuándo llegue el momento, salir de las encrucijadas a las que, irremediablemente, estamos destinados.
La gente corriente no piensa en estas cuestiones; su preocupación es más cercana y cotidiana, la hipoteca del piso o los estudios de los niños y, en la mayoría de los casos, lo “importante es el fútbol” para evadirse dicen algunos. Es una lástima, pero así son las cosas. No se paran ni a pensar cómo se forma una estrella, de qué está hecha y por qué brilla. Nuestro Sol, por ejemplo, es una estrella mediana, amarilla, del Grupo G-2, ordinaria, que básicamente consume hidrógeno y como en el Big Bang original, lo fusiona en helio. Sin embargo, puesto que los protones en el hidrógeno pesan más que en el helio, existe un exceso de masa que se transforma en energía mediante la fórmula de Einstein E = mc2. Esta energía es la que mantiene unidos los núcleos. Esta es también la energía liberada cuando el hidrógeno se fusiona para crear helio. Esta, al fin, es la razón de que brille el Sol.

Se denominan autótrofos por que generan su propio alimentos, atraves de sustancias inorganicas para su metabolismo. Los organismos autótrofos producen su masa celular y materia orgánica, a partir del dióxido de carbono, que es inorgánico, como única fuente de carbono, usando la luz o sustancias químicas como fuente de energía. Las plantas y otros organismos que usan la fotosíntesis son fotolitoautótrofos; las bacterias que utilizan la oxidación de compuestos inorgánicos como el anhídrido sulfuroso o compuestos ferrosos como producción de energía se llaman quimiolitotróficos.
Los órganos autótrofos son los que producen el alimento de esos seres. Los seres autótrofos son una parte esencial en la cadena alimenticia, ya que absorben la energía solar o fuentes inorgánicas como el dióxido de carbono y las convierten en moléculas orgánicas que son utilizadas para desarrollar funciones biológicas como su propio crecimiento celular y la de otros seres vivos llamados heterótrofos que los utilizan como alimento. Los seres heterótrofos como los animales, los hongos, y la mayoría de bacterias y protozoos, dependen de los autótrofos ya que aprovechan su energía y la de la materia que contienen para fabricar moléculas orgánicas complejas. Los heterótrofos obtienen la energía rompiendo las moléculas de los seres autótrofos que han comido. Incluso los animales carnívoros dependen de los seres autótrofos la energía y su composición orgánica obtenida de sus presas procede en última instancia de los seres autótrofos que comieron sus presas. también se pueden clasificar en: fotosintéticos y quimiosintéticos.

Los seres autótrofos siguen dos vías diferentes para transformar la biomasa que ingieren en los compuestos complejos de los que se componen sus tejidos. Esta transformación puede ser mediante fermentación anaeróbica o a través de respiración aeróbica. La primera vía se restringe a las células procariotas simples, como las fermentadoras, las bacterias metanogénicas y los hongos Ascomycota responsables de la fermentación del etanol (alcohol etílico). La segunda vía se hizo posible a partir del momento en que la cantidad de oxígeno atmosférico, generado por los vegetales, alcanzó un nivel suficientemente alto como para que algunos seres procariotes pudieran utilizar la respiración aeróbica para generar trifosfato de adenosina más eficientemente que por fermentación. Desde un punto de vista energético, la oxidación es claramente ventajosa. Así, por cada mol de glucosa se liberan 197 KJ por fermentación en ácido láctico, 232 KJ por fermentación alcohólica y 2’87 MJ por la oxidación completa, lo que representa para esta última una ganancia que está comprendida entre 12 y 14 veces.

Reino Monera (Bactérias, Cianobactérias)

Está formado por bacterias y cianobacterias (algas azules). Pueden vivir en diversos lugares, tales como agua o aire y en el interior de los animales y plantas como parásitos. La mayoría de sus representantes son heterótrofas (no pueden producir su propio alimento), pero también hay algunas autótrofas (producen sin alimentos, por ejemplo a través de la fotosíntesis). Existen también bacterias aerobias es decir, que necesitan oxígeno para vivir, el requisito de anaerobios, que no pueden vivir en presencia de oxígeno, y anaerobios facultativos, que pueden vivir tanto en ambientes oxigenados como en ambientes no oxigenados. La forma física de las bacterias pueden ser de cuatro tipos: cocos, bacilos, vibriones y espirilos. Los cocos pueden unirse y formar colonias. Grupos de dos cocos forman diplococos, alineados forman estreptococos y en grupos forman una infección de estafilococos.
Por ser los seres vivientes más primitivos en la Tierra, son también los que están en mayor número. Por ejemplo, en un gramo de tierra fértil pueden haber cerca de 2,5 mil millones de bacterias, en hongos 400.000 y en algas y protozoos entre 30.000 y 50.000.
Con un microscopio electrónico podremos llegar muy lejos en el universo de lo muy pequeño.
La importancia de las bacterias
Las bacterias también tienen su importancia en el medio ambiente, así como cualquier ser vivo. Describamos algunos papeles fundamentales.
- Descomposición: Actúan en el reciclaje de la materia, devolviendo al ambiente moléculas y elementos químicos para ser re-utilizados por otros seres vivos.
- Fermentación: algunas bacterias se utilizan en las industrias para producir yogurt, queso, etc (lácteos).
- Industria farmacéutica: para la fabricación de antibióticos y vitaminas.
- Industria química: para la producción de alcoholes como el metanol, etanol, etc.
- Genética: mediante la alteración de su ADN, podemos hacer productos de interés para los seres humanos, como la insulina.
- Determinación de nitrógeno: permite eliminar el nitrógeno del aire y tirado en el suelo, que sirve como alimento para las plantas.

Todo eso es posible como consecuencia de que en el núcleo de un átomo existen fuerzas (fuerzas nucleares) que mantienen los protones y neutrones ligados. Estas fuerzas deben ser suficientemente grandes para contrabalancear las repulsiones eléctricas resultantes de la carga positiva de los protones. La Simetría que está presente en los átomos hace que, la evolución bioquímica hiciera posible la presencia de estos ininitesimales seres que, evolucionaron hasta lo que hoy podemos ver a nuestro alrededor.
Los nutrientes necesarios para el metabolismo de tipo heterótrofo proceden de la digestión de los tejidos vegetales o de otros heterótrofos. En el metabolismo heterótrofo hay notables regularidades orgánicas. Entre ellas destaca claramente el hecho de que al representar en un gráfico logarítmico la tasa metabólica basal (TMB), – metabolismo mínimo cuando el animal se encuentra en reposo absoluto – frente al peso, los resultados relativos a los animales comprendidos entre el ratón y el elefante se dispongan a lo largo de una línea recta.
Representación de Kleiber del metabolismo basal de los mamíferos desde el ratón al elefante.

Esta dependencia lineal en un gráfico logarítmico fue descubierta por Kleiber en 1.932, y muestra que, si representamos las TMB en vatios y el peso, p, en kilogramos, la dependencia funcional entre ambas magnitudes es 3’52 p0’74. Si en vez del peso, se representa la TMB frente a la superficie corporal de los animales, el exponente de Kleiber es 0’67, que es el valor que se había supuesto anteriormente. Las medidas posteriores de la TMB en cientos de especies han confirmado la primera dependencia funcional que ha sido redondeada en 1.961 por el propio Kleiber, en 3’4 p0’75 (en W).
Aunque aún no se ha encontrado una explicación definitiva de la razón de esta ley de potencia con exponente ¾, el análisis de los requerimientos mecánicos de los cuerpos animales dan una buena pista. Con criterios elásticos se deduce que el cubo de la longitud crítica de rotura de los huesos varía linealmente con el cuadrado del diámetro (d) de la sección de los mismos, que a su vez, es proporcional a p3/8. La potencia muscular es proporcional al área de su sección transversal (esto es, proporcional a d2), y por tanto, la forma funcional de la potencia máxima se expresa como (p3/8)2, o lo que es lo mismo, p0’75.

Una explicación aún más fundamental se basa en la geometría y en la física de la red vascular necesaria para distribuir los nutrientes y eliminar los materiales de desecho del cuerpo de los animales. Estas redes que llenan el espacio, son fractales que determinan las propiedades estructurales y funcionales de los sistemas cardiovasculares y respiratorios, y de sus propiedades se deduce que el metabolismo total de los organismos escala con su masa elevada a la potencia ¾
El sistema respiratorio de los Vertebrados, al igual que el circulatorio, está muy perfeccionado y adaptado para aportar la energía necesaria a los tejidos de los animales homeotermos, de forma que les permita resistir en condiciones desfavorables
El exponente de Kleiber tiene una consecuencia importante para los organismos con TMB específica (la TMB dividida por el peso corporal) decrecientes. Esta relación limita el tamaño mínimo de los animales homeotermos y facilita que las grandes criaturas puedan sobrevivir en condiciones ambientales adversas. La ingesta diaria de néctar de un pequeño colibrí es equivalente a la mitad del peso de su cuerpo (para los seres humanos, la comida diaria representa alrededor del 3% del peso corporal), y los animales de sangre caliente, de tamaño menor que un colibrí, tendrían que estar comiendo continuamente para poder compensar las rápidas pérdidas de calor.

En el otro extremo, los grandes mamíferos pueden pasar varios días sin alimentarse, recurriendo a las reservas de grasa acumuladas para mantener su bajo metabolismo durante periodos de hibernación relativamente largos.
Los casos de separación de la tendencia general ilustran varios modos de adaptación al medio. Para regular térmicamente su cuerpo en agua fría, la TMB de las focas y las ballenas es el doble de las de otros animales de su tamaño. Los mamíferos del desierto, con sus bajas TMB, se han adaptado a los periodos de carencia de alimentos y a la escasez recurrente o crónica de agua.

En su colonización del medio terrestre, los cambios evolutivos de los primeros habitantes del medio acuático derivaron en extremidades locomotoras pentadáctilas con adaptaciones específicas, tales como las manos desgarradoras de los úrsidos, los felinos, etc.
Naturalmente, la TMB representa sólo una parte de las necesidades energéticas. La digestión eleva las tasas metabólicas de todos los animales y la reproducción requiere aumentos periódicos de energía (como también ocurre con el cambio de plumaje o pelaje en los pájaros y mamíferos). La búsqueda de comida es una actividad ineludible para todos los animales que no estén hibernando. Simplemente por estar de pie, la tasa metabólica en los pájaros es un 15 por ciento superior a la tasa de reposo; y en los mamíferos, exceptuando al caballo, esta diferencia llega al 30 por ciento. El límite metabólico, múltiplo de la TMB durante el máximo esfuerzo, es mucho mayor durante la carrera, natación o el vuelo.

Tendría que mencionar ahora la reproducción y sus distintas formas, que varían de modo continuo entre los casos extremos de la cría generalizada generada de golpe y los nacimientos espaciados de un único neonato. El primer caso maximiza la producción de individuos que maduran con rapidez, y estas especies son más oportunistas. La mayoría de las bacterias, así como muchas especies de insectos, pertenecen a este grupo de seres que se reproducen de forma oportunista e intensa. En condiciones adecuadas llegan a invertir una parte tan importante de su metabolismo en la reproducción que acaban convirtiéndose en plagas indeseables. En unos pocos días de verano, pequeños insectos como los áfidos, dedican el 80% de su metabolismo a reproducirse, en una estrategia que reduce de forma importante la vida de los progenitores y también las posibilidades de reproducción repetida. Los endoparásitos, sin embargo, son una desafortunada excepción a esta restricción: la tenia, debido al fácil suministro de energía que recibe, se reproduce copiosamente y puede sobrevivir más de quince años.

- Áfidos (pulgones)
- Causan al chupar fluidos
- Pequeños, color o amarillo
- Producen mielecilla (sustancia pegajosa)
- Trips
- Se alimentan de flores y hojas
- Daño causa pequeñas áreas descoloridas
- Ácaros (arañuelas)
- Dañan hojas
- Difícil detectar a simple
- Algunos producen seda y dejan telarañas
- Mosca blanca
- Causan deformaciones
- Producen mielecilla
- En el revés de hojas
En el otro extremo del rango reproductivo están las especies del tipo selección-k que se reproducen varias veces, espaciando los nacimientos y cada vez con crías poco numerosas, y que maduran lentamente. El resultado de esta forma de reproducción es una tasa de crecimiento y poca capacidad de colonización, que se compensa con la mayor longevidad, competitividad, adaptabilidad y frecuentemente por un comportamiento social altamente desarrollado.
Independientemente de su posición en el rango reproductivo, los rasgos comunes que presentan las transformaciones bioquímicas asociadas con la producción de los gametos y el crecimiento de los embriones permiten estimar la eficiencia de la reproducción heterótrofa. El máximo teórico de la eficiencia, para transformar los monómeros procedentes de la alimentación en los polímeros de la biomasa, está en torno a un impresionante 96%. Ineficiencias inevitables en la digestión de nutrientes y en la reproducción de recambio de tejidos reducen esta eficiencia, que siempre se mantiene por encima del 70%.

Los protozoos son organismos unicelulares, pero a diferencia de las bacterias, tienen membrana nuclear (cariomembrana, son eucariotas). Son organismos complejos, con un reproductivo, un aparato locomotor digestivo y la capacidad de producir energía por lo que durante muchos años han sido considerados “animales unicelulares”. Esta forma de vida todavía viven en colonias, ya sea de forma individual o como parásitos. Se encuentra en agua dulce, agua salada, en suelos húmedos o en otros seres como huéspedes. Pueden causar enfermedades a los seres humanos.
Los rendimientos se pueden medir fácilmente en los seres heterótrofos unicelulares que se reproducen rápidamente: los rendimientos más altos son los de las bacterias (50 – 65%) y se encuentra un medio en las levaduras y los protozoos. No es sorprendente que los poiquilotermos sedentarios sean, entre los heterótrofos superiores, los más eficientes en la transformación de nutrientes en zoomasa: sus tasas se aproximan frecuentemente al 70 – 80%, que es la máxima eficiencia posible.

La temperatura ambiental es determinante también para la reproducción y el desarrollo. Generalmente a mayor temperatura el desarrollo es más rápido, es decir, el tiempo requerido para una determinada etapa del desarrollo se acorta. La razón está en que a mayor temperatura se aceleran los procesos fisiológicos del organismo.La influencia de la temperatura sobre el proceso de reproducción y el de descendientes es determinante en muchos casos. Los animales de sangre caliente u homotermos pueden adaptarse a diferentes ambientes tanto fríos como cálidos, porque regulan su temperatura corporal.

Entre los vertebrados, los homeotermos presentan tasas de crecimiento fetal mucho más altas que las especies poiquilotermas. Los ornitólogos han los primeros en estudiar la energética de la reproducción debido a la importancia del huevo en la vida de las aves. La energía necesaria para el crecimiento testicular en los pájaros, durante el periodo de rápido desarrollo de las gónadas, está comprendido entre el 0’4 y el 2 por ciento del metabolismo basal. El crecimiento de las gónadas femeninas generalmente requiere aportes energéticos tres veces mayores que las masculinas pero, en cualquier caso, es una cantidad pequeña comparada con el coste energético de la producción e incubación de un huevo.
La cadena alimenticia, los herbívoros, los carnívoros, peces, natación, carreras y saltos, el vuelo, y tantos y tantos conceptos implicados me aconsejan reducir el presente trabajo que, en realidad, sólo quería limitarse a facilitar algunos conocimientos del planeta y que, por mi cuenta y riesgo, he unido a los seres que lo pueblan y cómo se mantienen y están relacionados. Pero no es eso lo que pretendía al , así que, volveremos al tema principal de este Blog: la Física, la Astronomía y los Pensamientos.
emilio silvera
Ene
21
Hito cientíco
por Emilio Silvera ~
Clasificado en Biologia ~
Comments (0)
Resucitan con éxito un oso de agua, la única criatura capaz de vivir en el espacio
Imagen microscópica en alta resolución de un oso de agua, ‘Tardigrada sobre musgo’, de Nicole Ottawa y Oliver Meckes, una de las mejores fotografías de 2013 para National Geographic y la NASA.Eye of Science/Science Source
Investigadores japoneses han revivido con éxito un oso de agua, la única criatura capaz de vivir por sus propios medios en el espacio exterior.
Investigadores del Instituto Nacional de Investigación Polar de Japón (NIPR, en sus siglas inglesas) han resucitado con éxito un oso de agua, un microanimal casi indestructible capaz de vivir en condiciones extremas y el único que ha sido capaz hasta ahora de vivir en el espacio exterior sin ayuda de un traje hermético e incluso reproducirse, según confirmó un experimento que realizó la NASA en 2007.
Los científicos han “revivido” al tardígrado después de haber estado congelado durante 30 años en la Antárdida, tras ser hallado en unas muestras de musgo obtenidas en noviembre de 1983 cerca de la base polar Showa que Japón tiene en la Antártida Oriental, informa Efe.
El proceso de descongelación del oso de agua comenzó en mayo de 2014, explica el NIPR. Hasta el momento se había logrado revivir a uno de estos microanimales tras un máximo de nueve años de congelación, por lo que este logro supondría un nuevo hito científico.
Un ser de ciencia ficción

Imagen microscópica de un ‘Tardigrada’.Sinclair Stammers/ UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
El tardígrado (Tardigrada), popularmente conocido como oso de agua, es el género de este invertebrado del que existen miles de especies, es el ser vivo más resistente conocido.
Su morfología es muy característica. Se parece a un diminuto topo o un oso perezoso, y es capaz de sobrevivir en ambientes inhóspitos con temperaturas de entre más de 100 grados centígrados o por debajo de los 200 bajo cero, bajo elevada presión o radiación atmosférica que hacen casi imposible la vida. Se le ha encontrado en los ecosistemas más extremos: desde las cumbres del Himalaya hasta aguas termales o profundos océanos antárticos.
Lo consiguen entrando en estado de criptobiosis, un proceso que les permite sobrevivir en condiciones no aptas para la vida, reduciendo sus procesos metabólicos a la mínima expresión. Para ello reducen el contenido de agua de su organismo, prescinden durante años de alimento y reparan constantemente su código genético.
Roba ADN a otros seres vivos
La secuenciación de su genoma el año pasado por parte de la Universidad de Carolina del Norte, en Chapel Hill, EEUU, reveló que poseen la mayor proporción de carga genómica externa conocida en cualquier otro ser viviente.
Es decir, que el oso de agua es capaz de “robar” el ADN de otros organismos (virus, bacterias, otros microorganismos) y encriptarlo en su propio código genético, lo que le confiere esa extraordinaria capacidad de adaptación a un medio ambiente adverso. Esta habilidad la tienen en mayor o menor medida el resto de seres vivos, pero el Tardigrada la emplea de forma inusitada.
Los investigadores del NIPR consideran que “la supervivencia de este espécimen tras haber permanecido en temperaturas inferiores a los 20 grados bajo cero durante más de tres décadas ayudará a conocer mejor los procesos criptobiónicos”.
Oct
4
¿Alquimia estelar? ¿Proplasma vivo? ¿De dónde venimos?
por Emilio Silvera ~
Clasificado en Biologia ~
Comments (0)


Estructuración del protoplasma-vivo como el plasma de la Vida con unas notables facultades para hacer cosas nuevas a partir de otras viejas. ¡Cuánto se habría excitado y cuán complacido habría estado Pasteur si hubiera conocido el famoso experimentio de Miller! Pese a ser el mismo un teísta, Pateur estaba convencido de que Dios creó la vida sobre la Tierra combinando precisamente fuerzas químicas y azar. Reconocía también, como sabemos, que los compuestos or´ganicos de los seres vivos son ópticamente activos, es decir, poseen una asimetría interna capaz de desviar planos de luz polarizada. Estaba impresionado, con el hecho de que, fuera de los tejidos vivos, los compuestos asimétricos se encuentran siempre en forma racémica: una mezcla de moléculas orientadas a la derecha, y otras, orientadas a la izquierda. Solamente en estos tejidos vivos, los compuestos orgánicos tienen una lateralidad bien definida.
En la imagen de arriba podemos ver la estructura de molécula de ciclosporina A en forma de corona, izquierda de la imagen (representación de bolas y varillas) y unida a su diana por la que ejerce su función farmacológica (representada como modelo de esferas). Se une a la ciclofilina (en blanco) y esta a su vez a la Calcineurina. Esta última es la encargada de permitir la respuesta inmune de los linfocitos por lo que ésta queda bloqueada. Siempre hemos querido saber sobre el origen de la vida y los secretos que la rodean y cómo apareció en nuestro mundo.

El protoplasma-vivo para mantener su forma debe renovar sus moléculas de materia. El recambio de sustancias es lo que se conoce globalmente como metabolismo. Corresponde a reacciones sencillas de oxidación, reducción, hidrólisis, condensación, etc. Estas reacciones se van modificando y perfeccionando, en los casos más optimistas, hasta llegar a diferenciarse procesos idénticos en alguna o algunas reacciones, A. Baj y Palladin estudiaron la respiración, con todas sus reacciones y catalizadas por su fermento específico. S. Kostichev, A. Liebedev estudiaron la química de la fermentación.
Michurin estudió la relación del organismo y el medio. Los fermentos de las estructuras protoplasmáticas determinaban sus reacciones por la velocidad y la dirección, estableciendo una relación con el medio. Se establecía un círculo de fenómenos relacionados y ordenados regularmente. Se producían asimilaciones y desasimilaciones de sustancias orgánicas con el fin de autoconservación y autorenovación del protoplasma.
En la base de la organización de todo individuo está la célula, y en la célula el protoplasma vivo, en cuya compleja estructura morfológica y química reside el principio de todas las funciones vitales. Inicialmente la organización morfológica de la célula sólo se conocía a través de los medios ópticos. Dentro de los límites de su poder resolutivo; con la introducción del microscopio electrónico amplió notablemente los conocimientos sobre la estructura celular, al conseguirse aumentos hasta 200 veces superior a los obtenidos por los medios ópticos.
Muchas son las veces que aquí, en este lugar dedicado a distintas disciplinas de la Ciencia, hemos hablado de la Vida. Sin embargo, nunca nos hemos parado a explicar la cuestión del proceso del origen de la vida, conociendo antes, aunque sea de manera sencilla y sin profundidad, aquellos principios básicos de la estructura del protoplasma vivo, ese sustrato material que será la base de todos los seres vivos, sin excepción.
A finales del siglo XIX y principios del XX, había científicos que creían que los organismos sólo eran “máquinas vivientes” especiales, de estructuras muy complejas y, aseguraban que la estructura del protoplasma vivo era algo así como una máquina, construido conforme a un determinado plan y que estaba formado por “vigas” y “tirantes” como si de un puente se tratara y que, de manera similar a éste, los lazos de unión tenían unida toda la estructura que, de esta manera, se mantenía firme, y, esa estructura de tan estricto orden en la colocación recíproca de las distintas partes del protoplasma vivo, era precisamente, según ellos, la causa específica de la vida. Y, a todo ello, sin olvidarse del Carbono, la base de todo signo de vida que conocemos.

Pero el estudio concreto del protoplasma vivo desmintió esta teoría mecanicista. Fue probado que no existía ninguna estructura parecida a una máquina ni siquiera a las de máxima precisión, en el interior del protoplasma vivo.
Es bien conocido que la masa básica del protoplasma vivo es líquida; nos hallamos ante un coacervado complejo, constituido por una gran cantidad de sustancias orgánicas de un peso molecular considerable, entre estas destacan las proteínas y los lipoides. Por esta razón, se encuentran flotando a su libre albedrío en esa sustancia coacervática fundamental, partículas filamentosas coloides, quizás enormes moléculas proteínicas sueltas, y muy probablemente, auténticos enjambres de esas moléculas. El tamaño de las partículas es tan diminuto que no se distinguen ni a través de los microscopios actuales más sofisticados. Pero encontramos otros elementos visibles en el interior del protoplasma vivo. Cuando las moléculas proteínicas y de otras sustancias se unen formando conglomerados, destacan en la masa protoplasmática en forma de pequeñas gotas, captadas a través del microscopio, o en forma de coágulos, con una determina estructura denominados elementos morfológicos. El núcleo, las plastídulas, las mitocondrias, etcétera.

Estos elementos protoplasmáticos, observables a través del microscopio, son, esencialmente, una manifestación aparente y externa de determinadas relaciones de solubilidad, enormemente complejas, de las distintas sustancias que conforman el protoplasma vivo y que se ha podido comprobar que tiene, un papel determinante, en el curso del proceso de la vida, que no se puede comparar de ningún modo con el papel que desempeña una máquina en su trabajo específico. Esto queda totalmente justificado por la sencilla razón de que una máquina y el protoplasma vivo son dos sistemas distintos y contrarios.
Sin duda, lo que caracteriza la función de una máquina es el desplazamiento mecánico de sus diferentes partes en el espacio. Por esa razón hay que insistir que el elemento más importante de la estructura de una máquina es, precisamente, la colocación de sus piezas; mientras que el proceso vital tiene un carácter totalmente distinto. Se manifiesta esencialmente con el recambio de sustancias, o sea, con la interacción química de las diferentes partes que conforman el protoplasma vivo. Por esto deducimos que el elemento primordial en toda la estructuración del protoplasma vivo es el orden concreto que siguen los procesos químicos en el tiempo, la forma tan armónica en que se combinan, siempre con tendencia a conservar en su conjunto el sistema vital.
Es de vital importancia para la formación del protoplasma vivo que exista una estructura interna determinada. Pero otro factor no menos decisivo es la organización en el tiempo, o sea, que los procesos que se dan en el protoplasma vivo lo hagan en armonía. Cualquier organismo, tanto animal, planta o microbio, vive únicamente mientras pasen por él, de forma continuada y constante, nuevas partículas de sustancias, cargadas de energía. Distintos cuerpos químicos pasan del medio ambiente al organismo; y cuando están dentro, sufren unos determinados y esenciales trastornos, mediante los cuales acaban convirtiéndose en sustancias del propio organismo invadido y serán iguales que aquellos cuerpos químicos que antes formaban parte del ser vivo. Este proceso se conoce con el nombre de asimilación. Sin embargo, de forma paralela a este proceso se da la desasimilación, que se trata precisamente del proceso contrario, es decir, las distintas sustancias que forman la parte del organismo vivo son sensibles a los cambios del propio organismo, se desintegran a menor o mayor velocidad, y son sustituidas por los cuerpos asimilados. De esta forma, los productos de la desintegración se echan al medio envolvente.
Por otra parte, en todo esto debemos tener en cuenta un gente que, siendo ineludible para la vida, está siempre presente en todo lo que a ella concierne. El Agua.


El agua pura es un líquido inodoro e insípido. Tiene un matiz azul, que sólo puede detectarse en capas de gran profundidad. A la presión atmosférica (760 mm de mercurio), el punto de congelación del agua es de 0 °C y su punto de ebullición de 100 °C. El agua alcanza su densidad máxima a una temperatura de 4 °C y se expande al congelarse. Como muchos otros líquidos, el agua puede existir en estado sobreenfriado, es decir, que puede permanecer en estado líquido aunque su temperatura esté por debajo de su punto de congelación.
Es muy cierto que la sustancia del organismo vivo siempre se encuentra en movimiento, desintegrándose y volviendo a formarse de manera continua en virtud de la gran cantidad de reacciones de desintegración y síntesis, que se dan guardando una fuerte relación entre ellas. Ya Heráclito, aquel gran dialéctico de la antigua Grecia, nos decía: “nuestros cuerpos fluyen como un arroyo, y de la misma manera que el agua de éste, la materia se renueva en ellos.” Está claro que una corriente o un chorro de agua pueden mantener su forma, su aspecto externo, durante un tiempo, pero su aspecto sólo es la manifestación exterior de ese proceso continuo y constante del movimiento de las partículas del agua. Incluso la misma existencia de este sistema depende, naturalmente, de que las renovadas moléculas de materia pasen constantemente, y a una velocidad determinada por el chorro de agua. Pero si interrumpimos este proceso, el chorro dejará de existir como tal. Lo mismo sucede en todos los sistemas conocidos como dinámicos, los cuales tienen un proceso concreto.

Es un hecho concreto e innegable que los seres vivos también son sistemas dinámicos. Igual que el chorro de agua al que antes hacíamos referencia, su forma y su estructura sólo forman parte de la expresión externa y aparente de un equilibrio, muy competente, formado por procesos que se dan en el ser vivo en sucesión permanente a lo largo de toda su vida. Sin embargo, el carácter de estos procesos es totalmente diferente a los que ocurre en los sistemas dinámicos de la naturaleza orgánica.
Las moléculas de agua llegan al chorro, ya como moléculas de agua, y lo atraviesan sin que se produzca ningún cambio. Pues el organismo toma del medio ambiente sustancias ajenas y desconocidas para él, pero a continuación, mediante procesos químicos muy complejos, son convertidos en sustancias del propio organismo, muy parecidas a los materiales que forman su cuerpo.
Precisamente esto es lo que hace posible las condiciones que mantienen constantemente la composición y estructura del organismo, ignorando este proceso continuo e ininterrumpido de desasimilación que se da en todos los organismos vivos.
Así pues, desde una perspectiva puramente química, el recambio de sustancias, también llamado metabolismo, es un conjunto enorme de reacciones más o menos sencillas, de oxidación, reducción, hidrólisis, condensación, etcétera. Lo que lo hace diferente del protoplasma vivo, es que en el metabolismo, estas reacciones se encuentran organizadas en el tiempo de de cierto modo, las cuales se combinan para poder crear un sistema integral. Dichas reacciones no surgen por casualidad, y de forma caótica, sino que se dan en estricta sucesión, y en un orden armónico concreto.

El ácido pirúvico (ver otros nombres en la tabla) es un ácido alfa-ceto que tiene un papel importante en los procesos bioquímicos. El anión carboxilato del ácido pirúvico se conoce como piruvato. El ácido pirúvico es un compuesto orgánico clave en el metabolismo. Es el producto final de la glucolisis, una ruta metabólica universal en la que la glucosa se escinde en dos moléculas de piruvato y se origina energía (2 moléculas de ATP).
Ese orden será la base de todos los fenómenos vitales conocidos. En la fermentación alcohólica, por ejemplo, el azúcar proveniente del líquido, que es fermentable, penetra en la célula de la levadura, sufriendo determinados trastornos químicos. O sea, primero se le incorpora el ácido fosfórico y luego se divide en dos partes.
Una de las cuales experimentará un proceso de reducción, mientras que la otra se oxidará, quedando convertida, finalmente, en ácido pirúvico, que más tarde se descompondrá en anhídrido carbónico y acetaldehído. Este último se reducirá, quedando transformado después en alcohol etílico. Como resultado, podemos observar que el azúcar queda convertido en alcohol y anhídrido carbónico.

Esto nos demuestra que en la célula de la levadura, lo que determina la producción de estas sustancias es el extraordinario rigor con que se dan todas estas reacciones, las cuales se suceden de forma muy ordenada. Sólo con que sustituyésemos en esta cadena de transmutaciones un único eslabón o si alterásemos en lo más mínimo el orden de dichas transmutaciones ya no tendríamos como resultado alcohol etílico, sino cualquier otra sustancia. En efecto, en las bacterias de la fermentación de la leche, el azúcar, al principio sufría los mismos cambios en la levadura, pero cuando se llega a la fermentación del ácido pirúvico, éste ya no se descompone, todo lo contrario, se reduce al instante. Esto explica que en las bacterias de la fermentación láctica el azúcar no se transforme en alcohol etílico, sino en ácido láctico.
Las encimas
La enzimología, al igual que las disciplinas experimentales que han surgido como ramas del tronco común que es la biología, tiene una historia propia construida a través de observaciones, experiencias, pruebas y teorías.
Se inició con el estudio de los procesos de fermentación y de putrefacción y Antoine-Laurente Lavoisier fue el primero en plantear sobre bases cuantitativas el proceso de la fermentación alcohólica, al observar una relación entre cantidad de azúcar presente y productos formados durante el proceso.
Un estudio de la síntesis de distintas sustancias en el protoplasma vivo demuestra que éstas no se crean de repente, y no provienen de un acto químico especial, sino que son el resultado de una cadena larguísima de trastornos químicos.
No puede constituirse un cuerpo químico complejo, propio de un ser vivo en concreto, sin que se produzcan centenares o miles de reacciones en un orden regular, constante, y ya previsto con rigurosidad, lo cual constituirá la base de la existencia del protoplasma vivo.

La Biología Físico-Química
La bioquímica, es la rama de la Química y de la Biología que tiene por objetivo principal el conocimiento de la estructura y comportamiento de las moléculas biológicas, que son compuestos de Carbono que forman las diversas partes de la célula y llevan a cabo las reacciones químicas las que le permiten crecer, alimentarse, reproducirse y usar y almacenar energía.
Porque cuanto más compleja es la sustancia, más reacciones intervienen en su formación dentro del protoplasma vivo y estas reacciones deben coordinarse entre sí con mayor rigor y exactitud. En efecto, investigaciones bastante recientes han demostrado que en la síntesis de las proteínas a partir de los aminoácidos toman parte gran cantidad de reacciones que se producen en una sucesión muy ordenada. Únicamente como consecuencia de esta rigurosa armonía, de esta sucesión ordenada de las reacciones, se da en el protoplasma vivo ese ritmo estructural, esa regularidad en la sucesión de los distintos aminoácidos que también podemos apreciar en las proteínas actuales.
Por consiguiente, las moléculas proteínicas, así originadas y con una estructura determinada se agrupan entre sí, y ciertas leyes las hacen tender a la formación de auténticos conglomerados moleculares que se acaban separando de la masa protoplasmática y se distinguen como elementos morfológicos, visibles a través del microscopio, como formas protoplasmáticas características por su gran movilidad. De esta manera, la composición química propia del protoplasma vivo, como su estructura, son la manifestación del orden en que se producen estos procesos químicos que se dan de forma continua y permanente en la materia viva.
Hidrógeno

Todos sabemos de su importanica para la vida
En el siglo XVI se observó que cuando el ácido sulfúrico actuaba sobre el hierro se desprendía un gas combustible. En 1766 Henry Cavendish demostró que dicho gas era una sustancia distinta a otros gases también combustibles, confundiendo el gas obtenido, al que llamo <<aire inflamable>>. Provenía del hierro y no del ácido sulfúrico, también demostró que el gas en el aire y en el oxígeno se formaba Agua

La Atmósfera
Es la capa de gas que rodea a un cuerpo celeste que tenga la suficiente masa como para atraer ese gas. Los gases son atraídos por la gravedad del cuerpo, y se mantienen en ella si la gravedad es suficiente y la temperatura de la atmósfera es baja. Algunos planetas están formados principalmente por gases, con lo que tienen atmósferas muy profundas. Si no se dan ciertos parámetros, el protoplasma vivo de la vida, nunca habría hecho acto de presencia.
– Nitrógeno (78%) y
– Oxígeno (21%)
– El 1% restante lo forman el argón (0,9%), el dióxido de Carbono (0,03%), y distintas proporciones de vapor de agua, y trazas de hidrógeno, ozono, metano, monóxido de Carbono, helio, neón, kriptón y xenón.
Ozonosfera y sodiosfera
Desde 15 hasta 60 kilómetros de altitud, el ozono, que en las zonas próximas al suelo se encuentra sólo en pequeñas cantidades, aparece en porcentajes más sensibles y forma la ozonosfera. Este ozono absorbe la radiación ultravioleta procedente del Sol, haciendo posible de es modo la existencia de vida en la Tierra.
Pues bien, debemos preguntarnos de qué depende ese orden, propio de la organización del protoplasma vivo, y cuáles son sus causas inmediatas. Un estudio minucioso sobre esta cuestión dejará demostrado que el orden indicado no es simplemente algo externo, que queda al margen de la materia viva, teoría defendida por los idealistas; en cambio, hoy día, sabemos perfectamente que la velocidad, la dirección y el encadenamiento de las diferentes reacciones, todo lo que forma el orden que estamos viendo, depende totalmente de las relaciones físicas y químicas que se establecen en el protoplasma vivo.

Las propiedades químicas de las sustancias integradoras del protoplasma vivo, en primer lugar, y también las de las sustancias orgánicas que intervienen son las que constituyen la base de todo ello. Dichas sustancias orgánicas poseen enormes posibilidades químicas y pueden generar gran variedad de reacciones. Pero, aprovechan estas posibilidades con mucha “pereza”, lentamente, a veces a una velocidad ínfima. En muchas ocasiones, se necesitan meses e incluso años, para que llegue a producirse alguna de las reacciones efectuadas entre las mismas sustancias orgánicas. Por esto, los químicos, para acelerar el proceso de las reacciones entre las sustancias orgánicas, usan a menudo en su trabajo diferentes sustancias de acción enérgica-ácidos y álcalis fuertes, etcétera.
Para conseguir tal aceleramiento cada vez con más frecuencia, los químicos recurren a la utilización de los catalizadores. Hace ya mucho tiempo que habían notado que sólo con añadir una pequeña dosis de algún catalizador a la mezcla donde se estaba realizando una reacción, se producía un gran aceleramiento de ésta. Además, otra propiedad propia e los catalizadores es que no se destruyen durante el proceso de la reacción, y cuando esta finaliza, comprobamos que queda exactamente la misma cantidad de catalizador que añadimos a la mezcla al principio. Así que, cantidades insignificantes de catalizador son suficientes, muchas veces, pata provocar la rápida transmutación de masas considerables de diferentes sustancias. Esta cualidad, hoy día, es de gran utilidad para la industria química, que usa como catalizadores distintos metales, sus óxidos, sus sales y otros cuerpos orgánicos o inorgánicos. Las reacciones químicas dadas en animales y vegetales entre las distintas sustancias orgánicas se suceden a gran velocidad. De lo contrario, la Vida no pasaría tan rápida como en realidad pasa. Se sabe que la gran velocidad de las reacciones químicas producidas en el protoplasma vivo es debida a la presencia constante de catalizadores biológicos especiales llamados fermentos.

Hace tiempo que estos fermentos fueron descubiertos, y ya con anterioridad, los científicos se habían fijado en ellos. Pues resultó que los fenómenos se podían extraer del protoplasma vivo y así separarse en forma de solución acuosa o como polvo seco de fácil solubilidad. Esto me hace pensar en lo que ocurre en las Nebulosas. No hace mucho se consiguieron fermentos en forma cristalina y se resolvió su composición química. Estos resultaron ser proteínas, y muchas veces, en combinación con otras sustancias de distinta naturaleza. Estos fermentos, por el carácter de su acción, se asemejan a los catalizadores inorgánicos. Sin embargo, se diferencian de ellos por la increíble intensidad de sus efectos.
En este sentido, los fermentos superan a los catalizadores inorgánicos de acción en centenares de miles, y en ocasiones hasta en millones de veces. Así que en los fermentos de naturaleza proteínica se da un mecanismo increíblemente perfecto y racional que hace posible acelerar las reacciones químicas entre las distintas sustancias orgánicas. Los fermentos también se caracterizan por la excepcional especifidad de su acción.
La Teoría Celular

Llegados a este punto debemos profundizar un poco más en la constitución de los seres vivos. Para ello debemos saber la teoría celular, enunciada por Matthias Schleiden (1804-1881) y Theodor Schwann (1810-1882).
La teoría celular de Schleiden y Schwann señala un rasgo común para todos los seres vivos: todos están compuestos por células y por productos elaborados por ellas. Aunque la idea de que la célula es el “átomo” de la vida nos parezca evidente, su importancia y la dificultad de su descubrimiento son parejas a la dificultad del descubrimiento de la existencia de átomos en química, y marca un cambio de paradigma en la manera de concebir la vida.
La teoría celular se basó en los adelantos realizados mediante los aparatos de observación debidos inicialmente a Robert Hooke (1635-1703) y a Anton Van Leeuwenhoek (1632-1723). Hooke construyó cientos de microscopios. Los más avanzados estaban formados por dos lupas combinadas como ocular y objetivo (microscopio compuesto).


Aunque con ellos llegó a alcanzar 250 aumentos, eran preferibles los de una sola lente, como los que construyó van Leeuwenhoek, ya que presentaban menos aberración cromática. Con esos instrumentos consiguieron descubrir infusorios (aquellas células o microorganismos que tienen cilios u otras estructuras de motilidad para su locomoción en un medio líquido), bacterias, la existencia de capilares en la membrana interdigital de las ranas.
Ahora sabemos que tanto los paramecios como los organismos superiores están formados por una o más células, almacenan y transportan la energía, duplican su material genético y utilizan la información que ese material contiene para sintetizar proteínas siempre de la misma forma. Todos estos procesos, que están presentes en todas las células, son los que forman la maquinaria de la vida.
Sustancias orgánicas que nios dan las vitaminas
Por supuesto, esto es a causa de las particularidades del efecto catalítico de las proteínas; pues la sustancia orgánica (el sustrato) que sufre alteraciones en el transcurso del proceso metabólico, forma ya al principio, una unión bastante compleja aunque de corta duración, con la correspondiente proteína-fermento. Esta fusión tan completa, no es estable, pues sufre distintos trastornos con mucha rapidez: el sustrato sufre las transformaciones correspondientes y el fermento se regenera, para poder unirse de nuevo a otras porciones del sustrato.
Entonces, para que las sustancias integradoras del protoplasma vivo puedan participar realmente con el metabolismo, debe combinarse con una proteína y constituir con ella un enlace complejo. De no ser así, sus posibilidades químicas se producirán muy lentamente y entonces perderán toda su importancia en el impetuoso proceso vital. Por esta razón el cómo se modifique una sustancia orgánica en el transcurso del metabolismo, depende, además de la estructura molecular de esta sustancia, y de las posibilidades químicas de la misma, también de la acción de fermentación de las proteínas protoplasmáticas, las cuales se encargan de llevar esa sustancia al proceso metabólico general.

Los fermentos, además de ser un poderoso acelerador de los procesos químicos sufridos por la materia viva; son también un mecanismo químico interno, el cual se encarga de que esos procesos sean conducidos por un cauce muy concreto. La gran especificidad de las proteínas-fermentos consigue que cada una de ellas forme enlaces complejos sólo con determinadas sustancias y catalice solamente algunas reacciones. Por esto, cuando se produce éste o el otro proceso vital, y con más motivo, cuando se verificas todo el proceso metabólico, actúan miles de proteínas-fermento de distintas clases. Cada una de estas proteínas puede catalizar de forma específica una sola reacción, y sólo el conjunto de acciones de todas ellas, en muy precisa combinación, hará posible ese orden regular de los fenómenos que entendemos como base del metabolismo.
Con el uso de los distintos fermentos específicos que se obtienen a partir del organismo vivo, en el laboratorio, pueden reproducirse de forma aislada cada una de las reacciones químicas, y todos los eslabones que forman el proceso metabólico. Así desenredamos el ovillo tan sumamente complicado de las transmutaciones químicas producidas durante el metabolismo, donde miles de reacciones individuales se mezclan. Por este mismo procedimiento se puede descomponer el proceso metabólico en sus diferentes etapas químicas, se puede analizar las sustancias integradora de la materia viva, y además los distintos procesos realizados en ella.

De esa manera se demostró que la respiración funciona a partir de una serie de reacciones como la oxidación o la reducción, dichas reacciones se dan con muchísimo rigor en un orden estricto y cada una de éstas es catalizada por un fermento específico (S.Kóstichev, A. Liédev y otros autores).
En 1878 el biólogo alemán Walter Fleming descubrió que se podían teñir unas estructuras existentes en el interior del núcleo y llamo cromatina a la materia que las formaban.
Como las células de la preparación morían al teñirse, y en una preparación existían células en muy diferentes etapas de crecimiento y división, Fleming pudo estudiar estas etapas y comprender cómo evolucionaba la vida de la célula.
Al comenzar el proceso de división celular la cromatina forma una especie de hilos que se denominan, con mucha lógica, cromosomas (cuerpos coloreados) y Fleming llamó al proceso de división celular mitosis, una palabra griega que significa hilo.
En 1887 el biólogo belga Edouart van Beneden contó el número de cromosomas de células de diferentes especies y llegó a la conclusión de que el número de cromosomas es una característica de la especie. Todas las células humanas tienen 46 cromosomas.
También descubrió que los espermatozoides y los óvulos tenían la mitad de los cromosomas de las células normales, y dedujo que al unirse conservaban todos sus cromosomas, con lo que recuperaban el número característico de la especie.

Tanto Fleming como van Beneden comprendieron que eran los cromosomas del huevo los que determinaban las características del animal que se iba a formar, pero no podían saber el mecanismo por el que lo hacían.
Por entonces se empezó a llamar citoplasma vivo al conjunto de protoplasma vivo y orgánulos que están comprendidos entre el núcleo y la pared o membrana celular, y se empezaron a estudiar estos orgánulos.
Así, en 1898 el biólogo alemán Carl Benda descubrió las mitocondrias, que en griego significa hilos de cartílago. Ahora sabemos que son los órganos que se encargan de la obtención de energía a partir de azúcar y oxígeno. Ese mismo año Golgi descubrió el complejo que lleva su nombre.

Aminoácidos y azúcares de la vida están ahí presentes
Hoy día, ya hemos dado el salto del análisis de los procesos vitales a su reproducción, a su síntesis. De esta forma, combinando de manera precisa en una solución acuosa de azúcar, una veintena de fermentos distintos, obtenidos a partir de seres vivos, pueden reproducirse los fenómenos propios de la fermentación alcohólica. En este líquido, donde gran cantidad de proteínas distintas se hallan disueltas, los trastornos que sufre el azúcar son verificados en el mismo orden regular que siguen en la levadura viva, aunque aquí no existe ninguna estructura celular.
Todos estos procesos son, en realidad, terriblemente complejos y están expuestos a que, cualquier alteración del medio incida de manera directa en su devenir. Pero, por otra parte y en las circunstancias adecuadas, no existe ningún factor físico o químico, ni sustancia orgánica o sal inorgánica que, de alguna manera, puedan alterar el curso de las reacciones fermentativas. Cualquier aumento o disminución de la temperatura, alguna modificación de la acidez del medio, del potencial oxidativo y de la composición salina o de la presión osmótica, alterará la correlación entre las velocidades de las distintas reacciones de fermentación, y de esta forma cambia su sucesión temporal. Es aquí donde se asientan todas las premisas de esa unidad entre el organismo y el medio, tan característica de la vida.

Esta organización tan especial de la sustancia viva influye en gran manera, en las células de los organismos actuales, en el orden y la dirección de las reacciones fermentativas, las cuales son la base del proceso metabólico. Cuando se agrupan las proteínas entre sí pueden quedar aisladas de la solución general y conseguir diferentes estructuras protoplasmáticas de muy ágil movimiento. Con total seguridad, sobre la superficie de estas estructuras se encuentran concentrados gran cantidad de fermentos.
Está claro que el orden característico de la organización del protoplasma está basado en las distintas propiedades químicas de las sustancias integradoras de la materia viva.

1.-Todos los seres vivos están formados por células y sus productos. Por tanto la célula es la unidad anatómica del organismo.
2.-Todas las células proceden de otras células preexistentes y éstas, a su vez, de otras células. Esto lo certificaron los viejos científicos con el axioma omnis cellula e cellula, latinajo que significa lo que todos ustedes suponen, que toda célula procede de otra célula.
3.-La célula es la unidad funcional del organismo.
4.-La célula es también la unidad genética del organismo.
Básicamente la célula está formada por tres elementos:
• Núcleo
• Membrana y
• Citoplasma
La membrana envuelve la célula confiriéndole su individualidad. Dicho de otra manera, la célula es una unidad separada de otras células por su membrana.
El citoplasma está formado por un líquido llamado citosol (solución celular) y gran cantidad de gránulos que reciben el nombre genérico de organelos y que más adelante describiremos. Adelantemos que en estos organelos hay una gran actividad ya que se encargan de funciones digestivas y respiratorias.
El núcleo está separado del resto del citoplasma por otra membrana, la membrana nuclear. En su interior se encuentra el material genético que crea los patrones para producir nuevas células con las características de nuestra especie. Una célula humana siempre producirá otra célula humana.
Hablar de nosotros mismos es demasiado complejo para que, científicamente podamos abarcar todo lo que somos ym sólo poco a poco podemos ir comprendiendo la grandeza que en nosaotros está representada como esa parte del universo que piensa, tiene ideas y sentimientos y, en definitiva, es la materia del Universo evolucionada hasta su más alto grado hasta el momento conocido.
emilio silvera
Mar
4
¡Esa “máquina” sorprendente!
por Emilio Silvera ~
Clasificado en Biologia ~
Comments (0)
Mono pensante
El tamaño (del cerebro) sí importa

Cerebro de embrión de ratón en el que se inyectó el gen humano que determina la expansion del cerebro. NATURE
“¿Qué nos hace humanos? ¿Qué es lo que me permite a mí expresar mis ideas a través del código simbólico que estoy tecleando ahora mismo, y lo que le permite a usted descifrar estas combinaciones de letras? Hoy sabemos que compartimos más del 95% del ADN con nuestros parientes más cercanos del reino animal, pero los grandes simios no pueden resolver ecuaciones matemáticas, ni escribir poesía, ni fabricar ordenadores, ni elaborar tratados de metafísica.

… “descendemos de los monos” y “tenemos un antepasado común con los monos” no son contradictorios, ni siquiera uno es más correcto que el otro, …
Como dice Stephen Hawking, “sólo somos una especies avanzada de monos en un planeta menor de una estrella muy normal, pero podemos comprender el Universo y eso nos convierte en algo muy especial”. Pero, ¿cómo ha sido posible este salto evolutivo? ¿Dónde está la diferencia fundamental que nos ha permitido convertirnos en monos parlantes y pensantes, imaginativos e innovadores?
Cuando en una ocasión le hice esta pregunta al gran primatólogo Frans de Waal, su respuesta fue rotunda: “Nuestro cerebro es básicamente idéntico al de los simios, pero expandido. No hay nada nuevo salvo su tamaño, así que ahí debe residir la clave de lo que nos diferencia”. Según este científico, somos muy parecidos a los primates en nuestras emociones básicas y nuestras interacciones sociales, pero lo que nos distingue es sobre todo el lenguaje y todo lo que tiene que ver con nuestra capacidad para el pensamiento abstracto.
Hoy sabemos que la estructura cerebral de los primates humanos y no humanos es muy similar, pero también que el cerebro del ‘sapiens’ es tres veces mayor que el de los chimpancés y los bonobos. En este terreno, por lo tanto, está claro que el tamaño sí importa, y mucho.

Por eso mismo es tan importante un nuevo descubrimiento que se acaba de publicar en la última edición de la revista Science. Un equipo de investigadores alemanes del Instituto Max Planck de Biología Molecular ha logrado identificar un gen que poseemos los humanos, a diferencia de nuestros ‘primos’ simios, y que determina la expansión de nuestra corteza cerebral, la sede de nuestras capacidades lingüísticas e intelectuales. Al inyectar este gen en embriones de ratón, se comprobó que el tamaño de sus cerebros aumentaba de manera muy significativa e incluso adquiría los típicos pliegues de nuestra materia gris.
Probablemente éste no sea no sea el único ingrediente del ADN que explique algo tan complejo como la inteligencia del ‘sapiens’. Pero sin duda hoy estamos más cerca de descubrir el secreto de lo que nos hace humanos y comprender por qué -como ha escrito Oliver Sacks en su conmovedora despedida– podemos disfrutar del privilegio de ser “animales pensantes”.
Dic
3
La Cienca corre hacia el futuro
por Emilio Silvera ~
Clasificado en Biologia ~
Comments (0)
Artículo en la Prensa: El País
El secreto de las plantas para convertir la luz en combustible
Una nueva técnica de laser permite estudiar los mecanismos de la fotosíntesis de las plantas sin destruirlos.
Los árboles aprovechan algo más del 2% de la luz solar que reciben / Andrew E. Larsen
El aire que respiramos, lo que comemos o la gasolina que quemamos para viajar o calentarnos. Le debemos todo a las plantas y al resto de organismos fotosintéticos, pero si algo caracteriza a los humanos es el inconformismo. Desde hace tiempo, hay equipos de científicos que tratan de entender la capacidad de los vegetales para transformar la luz del sol en energía química. El objetivo es trucar el proceso responsable de esa proeza para lograr mejorar su eficiencia y poder emplearlo como una nueva fuente de energía.

REINO ANIMAL: Células eucariontes. Multicelulares, sin paredes celulares ni pigmentos fotosintéticos. Nutrición por ingestión, en algunos casos por absorción. El nivel de organización de las formas superiores es mayor que en otros.
La fotosíntesis se produce en las membranas de las células de las plantas. Allí, los fotones, las partículas que componen la luz del sol, rompen las moléculas de agua adquirida por las plantas liberando electrones y protones, otras partículas que a su vez provocan reacciones que producen ATP y NADPH2, dos moléculas que sirven para almacenar energía. Después, con el dióxido de carbono que las plantas absorben de la atmósfera, forman hidratos de carbono en los que queda almacenada la energía.

Los paneles solares aprovechan el 10% de la luz solar frente al 4% de plantas o algas
Para comprender a fondo el mecanismo de la fotosíntesis, que también desarrollan algas o bacterias, y poder manipularlo, se ha tratado de conocer la estructura de los complejos de proteínas que la llevan a cabo. Sin embargo, diferentes estudios con diferentes técnicas han tenido como resultado distintas estructuras. Las discrepancias se deben a que las técnicas de imagen por rayos X empleadas para indagar en estos complejos los estarían dañando. La semana pasada, tal y como explicaron en la revista Nature, investigadores de la Universidad de Okayama, en Japón, emplearon un láser de electrones libres que les permitió recoger la información sobre las estructuras de los complejos antes de destruirlos.
Estos datos ayudarán a los investigadores que trabajan para aprovechar la capacidad de las plantas para acumular la energía del sol. Hasta ahora, con una tecnología como la fotovoltaica se logra transformar alrededor de un 10% de la energía que perciben del sol. Las plantas o algunas algas pueden acumular en forma de carbohidratos hasta un 4% de la energía solar. Pese a su ineficiencia, cuentan también con algunas ventajas sobre los paneles solares, como la capacidad para almacenar la energía solar en sus propios tejidos, un sistema más barato que las baterías.

Algunas de las desventajas de las plantas frente a los paneles solares para aprovechar la energía proviene de que los primeros pueden asimilar radiación de un espectro más amplio y a las segundas solo les sirve la luz visible. Para mejorar esta capacidad de las plantas, los científicos se plantean sustituir uno de sus dos sistemas responsables de la fotosíntesis, que compiten por la misma parte del espectro de los rayos solares, por el sistema de bacterias fotosintéticas capaces de absorber una parte distinta del espectro solar.
Con mejoras como esta y la creación de cultivos específicos para la producción de energía, se aprovecharían además capacidades de las plantas que no poseen las células fotovoltaicas. Una de ellas es la posibilidad de absorber CO2 y convertirlo en combustible liberando en el camino oxígeno a la atmósfera.
En el camino para tratar de crear biocombustibles mejorados, también se podrían mejorar los cultivos empleados para la alimentación. En septiembre de este mismo año, un equipo de la Universidad Cornell publicó en Nature sus trabajos para incrementar la cantidad de alimento producido por las plantas. Su enfoque se centraba en la rubisco, la encima responsable de transformar el CO2 en azúcares. Para mejorar la baja eficiencia de esas proteínas en su trabajo, probaron a introducir una versión bacteriana en plantas de tabaco, que fueron capaces de producir azúcares más rápido.”
















Totales: 81.624.370
Conectados: 67
























