jueves, 21 de agosto del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Siempre buscaremos nuevas teorías de la Física y del Universo.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Se cumplen 30 años del renacimiento de ISOLDE | CPAN - Centro Nacional de  Física de Partículas, Astropartículas y Nuclear

“El 26 de mayo de 1992 se celebró una ceremonia para festejar el traslado de ISOLDE desde el Sincrociclotrón (SC) del CERN al PSB, donde sigue actualmente conectado.”

El Experimento ISOLDE es una instalación del CERN dedicada a la investigación en física nuclear , especialmente con isotopos exóticos. ISOLDE utiliza un acelerador de partículas para producir haces de estos isótopos, que luego se utilizan para realizar experimentos que estudian la estructura del núcleo atómico, la formación de elementos en las estrellas y otros fenómenos en física atómica, de materiales y biofísica. 

Una nueva clase de reacción de fisión nuclear observada en el CERN ha mostrado importantes puntos débiles en nuestro entendimiento actual del núcleo atómico. La fisión del mercurio-180 se suponía una reacción “simétrica” que daría lugar a dos fragmentos iguales, pero en lugar de ello ha producido dos núcleos con masas bastante diferentes, una reacción “asimétrica” que plantea un serio desafío a los teóricos.

  • La fisión del mercurio180 se esperaba que fuera simétrica.
  • La fisión del mercurio– 180 resultó ser asimétrica.
  • La fisión asimétrica produjo dos núcleos con masas diferentes. 
  • La fisión nuclear simétrica produce fragmentos de masa similar. contradice la expectativa de una fisión simétrica, desafiando el entendimiento actual del núcleo atómico.

 

Photograph taken inside the ISOLDE experimental hall at CERN

 

La Ciencia no duerme. En todo el mundo (ahora también fuera de él -en el Espacio), son muchos los Científicos que trabajan de manera tenaz para buscar nuevas formas de alcanzar lo ahora inalcanzable y, para ello, se emplean las más sofisticadas estructuras técnicas de avanzados sistemas tecnológicos que hacen posible llegar allí donde nunca nadie había llegado.

 

Deducción de las ecuaciones de Einstein para la Relatividad General |  Relatividad

 

Las ecuaciones de campo de la Teoría General de la Relatividad, formuladas por Albert Einstein, nos dicen como la materia y la energía curvan el Espacio-Tiempo, y como esta curvatura afecta al movimiento de la materia. En esencia, estas ecuaciones establecen que la geometría del espacio-tiempo (su curvatura) está directamente relacionada con la distribución de la materia y la energía. 

 

LA ECUACION DE SCHRÖDINGER

La ecuación de Schrödinger es una ecuación fundamental en la mecánica cuántica que describe como cambia el estado físico de un sistema cuántico con el tiempo. Es una ecuación de onda que predice la probabilidad de encontrar una partícula en un lugar determinado y, por lo tanto, es crucial para entender la física a nivel atómico y subatómico. 

Estas como otras muchas asombrosas ecuaciones son prodigios de la Mente Humana que ha sabido utilizar las matemáticas para explicar lo que las palabras no podían.

Entre los teóricos, el casamiento de la Relatividad General y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “súper-simetría”, “supercuerdas” ·Teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

 

Vista hemisférica de Venus. (Cortesía de NASA)

 

El segundo planeta a partir  del Sol. Tiene la órbita más circular de todos los planetas. Su albedo geométrico medio, 0,65, es el mayor de todos los planetas, como resultado de su cubierta de nubes blancas sin fracturas. En su máximo alcanza magnitud -4,7, mucho más brillante que cualquier otro planeta. Su eje de rotación está inclinado casi 180º con respecto a la vertical, de manera que su rotación es retrógrada. Rota alrededor de su eje cada 243 días, y, por tanto, muestra siempre la misma cara hacia la Tierra cuando los dos planetas se encuentran en su máxima aproximación.

 

6,8 mil resultados de imágenes, fotos de stock e ilustraciones libres de  regalías para Atmósfera de venus | Shutterstock

 

La atmósfera de Venus es en un 96,5% de dióxido de carbono y un 3,5 de nitrógeno, con trazas de dióxido de azufre, vapor de agua, argón, hidrógeno y monóxido de carbono. La presión en la superficie es de 92 bares (es decir, 92 veces la presión a nivel del mar en la Tierra). La temperatura superficial promedio es de 460 ºC debido al “efecto invernadero” en la atmósfera del planeta. Los rayos son muy frecuentes. Existe una densa capa de nubes a una altitud de unos 45/65 Km. compuesta de ácido sulfúrico y gotitas de agua.

 

 

 

 

Mundos inimaginables que tendrán, como en el nuestro, formas de vida de una rica diversidad que ni podemos imaginar. Simplemente en una galaxia, por ejemplo la nuestra, existen cientos de miles de millones de planetas de los más diversos pelajes, y, no pocos, serán muy parecidos a nuestra Tierra y estarán situados en la zona adecuada para que, la vida, pudiera surgir en ellos como lo hizo aquí, toda vez que, tanto aquellos planetas como el nuestro, están sometidos a las mismas fuerzas, a las mismas constantes, y, en consecuencia, a situaciones iguales, ¡iguales resultados!

Nuestros sueños de visitar mundos remotos, y, en ellos, encontrar otras clases de vida, otras inteligencias, es un sueño largamente acariciado por nuestras mentes que, se resisten a estar sólas en un vasto Universo que, poseyendo cientos de miles de millones de mundos, también debe estar abarrotados de una diversidad Biológica inimaginable. No creo que estemos solos en tan vasto universo.

Siempre buscaremos nuevas teorías de la Física del Universo : Blog de  Emilio Silvera V.

Hace algún tiempo que los medios publicaron la noticias:

“Físicos británicos creen que el bosón de Higgs y su relación con la gravedad puede ser la clave para crear una ecuación única que explique el Universo entero.”

 

 

Imagen de Archivo donde Einstein escribe una ecuación sobre la densidad de la Vía Láctea en el Instituto Carnegie en Pasadena (California)

“La teoría del todo, también conocida como teoría unificada, fue el sueño que Einstein nunca pudo cumplir. Consiste en una teoría definitiva, una ecuación única que explique todos los fenómenos físicos conocidos y dé respuesta a las preguntas fundamentales del Universo. Esa teoría unificaría la mecánica cuántica y la relatividad general, dos conocimientos aceptados pero que describen el Cosmos de forma muy diferente. Albert Einstein no consiguió formularla. Tampoco nadie después de él, pero sigue siendo la ambición de muchos científicos. En este empeño, físicos de la británica Universidad de Sussex han dado un nuevo paso para probar que solo hay una fuerza fundamental en la naturaleza. Creen haber observado como el campo de Higgs interactúa con la Gravedad.”

 

Diez preguntas que podrías tener sobre los agujeros negros - NASA CienciaEl misterio de la formación de un magnetar, ¿resuelto? | ESO España

 

Si hablamos de nuestra Galaxia, la Vía Láctea, lo hacemos de algo que tiene 100.000 millones de años-luz de diámetro y más de ciento cincuenta mil millones de estrellas, no digamos de mundos y otra infinidad de objetos de exótica estructura e increíbles conformaciones que, como los púlsares, los agujeros negros o los magnetar, no dejan de asombrarnos. Somos, una especie viviente que ha llegado a poder generar pensamientos y crear teorías encaminadas a descubrir la verdad de la Naturaleza, y, nuestra aparente “insignificante presencia”, podría ser un signo de que, el universo “ha permitido” observadores para que lo expliquen y se pueda comprender.

 

Sí, somos parte del Universo : Blog de Emilio Silvera V.

                     Tenemos el Universo dentro de nuestras mentes

El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que está planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas.  Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.

 

La teoría del todo: el tensor Alena unificaría el universo

Einstein pasó los últimos 30 años de su vida buscando la ecuaciones de la Teoría del Todo y murió sin encontrarlas. Recuerdo que esas ecuaciones que iba formulando eran expuestas en un escaparate de una lujosa tienda de Nueva York en la Quinta Avenida, la gente se agolpaba para verlas sin entender absolutamente nada de lo que significaban y sus mensajes.

Algunos dicen que para cuando tengamos una Teoría de Todo, el mundo habrá cambiado, habrá pasado tanto tiempo que, para entonces, la teoría habrá quedado vieja y se necesitará otra nueva teoría más avanzada. Eso significa, si es así, que nunca tendremos una explicación de todo y siempre quedarán cuestiones enigmáticas que tendremos que tesolver. ¡Menos mal!

La búsqueda de esa teoría final que nos diga cómo es el Universo, el Tiempo y el Espacio, la Materia y los elementos que la conforman, las Fuerzas fundamentales que interaccionan con ella, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que se han realizado durante las últimas décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado. Por otra parte, siempre andamos inventando ecuaciones para todo, que expliquen este o aquel enigma que deseamos conocer.

 

 

Lo cierto es que, no conocemos el futuro que le espera a la Humanidad pero, tal desconocimiento no incide en el hecho cierto de que siempre estemos tratando de saber el por qué de las cosas y, seguramente, si Einstein hubiera conocido la existencia de las cuatro fuerzas fundamentales, habría podido avanzar algo más, en su intento de lograr esa ecuación maravillosa que “todo” lo pudiera explicar.

Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.

 

Comprender de manera armoniosa cómo se juntan las dos mejores teorías de la física que tenemos actualmente, la cuántica y la relatividad general… ¡Sin que surjan infinitos!

La armoniosa combinación de la relatividad general y la mecánica cuántica será un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza. Allí, en sus ecuaciones,  aparece el esquivo gravitón implicando con ello que la teoría contiene Implícitamente una teoría cuántica de la Gravedad.

 

La materia oscura podría producir una antimateria capaz de atravesar la Vía  Láctea : Revista Pesquisa Fapesp

    Ahora, el LHC, tratarán de buscar partículas Partículas Super-simétricas y de la “materia oscura

Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la Naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.

 

¿Serán las cuerdas las que hacen de nuestro Universo el que es?

Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo. En nuestro Universo, aunque no pueda dar esa sensación a primera vista, cuando se profundiza, podemos observar que, de alguna manera, todo está conectado, de la misma manera, nuestras mentes son parte del universo y, en ellas, están todas las respuestas.

Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impide ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar, a través de esa fisura parece que se escapa la luz de la comprensión que, en su momento, se podría alcanzar.

 

          Muchos sueñan con encontrar esa Teoría del Todo

Mientras que la soñada teoría llega, nosotros estaremos tratando de construir ingenios que como el GEO600, el más sensible detector de ondas gravitacionales que existe ( capaz de detectar ínfimas ondulaciones en la estructura del espacio-tiempo ), nos pueda hablar de otra clase de universo. Hasta el momento el universo conocido es el que nos muestran las ondas electromagnéticas de la luz pero, no sabemos que podríamos contemplar si pudiéramos ver ese otro universo que nos hablan de la colisión de agujeros negros…por ejemplo.

 

Simplified optical layout of the GEO 600 detector. GEO 600 is a... |  Download Scientific Diagram

                                                                         GEO 600

La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble “belleza” y de logros y avances tecnológicos que ahora ni podemos imaginar.

 

 

Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.

Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.

 

 

 

Ellos nos legaron parte de las teorías que hoy manejamos en el mundo para tratar de conocer el Universo pero, sigue siendo insuficientes… ¡Necesitamos Nuevas Teorías! que nos lleven al conocimientos más profundos de la realidad en que se mueve la Naturaleza, sólo de esa manera, podremos seguir avanzando.

El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino al comprobar que las ecuaciones topológicas complejas de la nueva teoría nos habla de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.

Publican animaciones de lapsos temporales que muestran el ...

 

La expansión del universo se ha estudiado de varias maneras diferentes, pero la misión WMAP completada en 2003, representa un paso importante en la precisión y los resultados presentados hasta el momento con mayor precisión para saber, en qué clase de Universo estamos, cómo pudo comenzar y, cuál podría ser su posible final. Todo ello, es un apartado más de ese todo que tratamos de buscar para saber, en qué Universo estamos, cómo funcionan las cosas y por qué lo hacen de esa determinada manera y no de otra diferente.

 

La Relatividad General: La teoría que curvó nuestra visión del universo  Imagina que el espacio y el tiempo son una tela flexible. Si colocas una  estrella sobre ella, la tela se deforma

         La relatividad general nos dijo cómo es la geometría del Universo

El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch.

Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.

 

 

                   Pero… ¿somos en verdad tan insignificantes?

Los logros alcanzados hasta el momento parecen desmentir tal afirmación, el camino recorrido por la humanidad no ha sido nada fácil, los inconvenientes y dificultades vencidas, las luchas, la supervivencia, el aprendizaje por la experiencia primero y por el estudio después, el proceso de humanización (aún no finalizado), todo eso y más nos dice que a lo mejor, es posible, pudiera ser que finalmente, esta especie nuestra pudiera tener un papel importante en el conjunto del universo. De momento y por lo pronto ya es un gran triunfo el que estemos buscando respuestas escondidas en lo más profundo de las entrañas del cosmos.

Tengo la sensación muy particular, una vez dentro de mi cabeza, un mensaje que no sé de dónde pero que llega a mi mente que me dice de manera persistente y clara que no conseguiremos descubrir plenamente esa ansiada teoría del todo, hasta tanto no consigamos dominar la energía de Planck que hoy por hoy, es inalcanzable y sólo un sueño.

Sus buenas aportaciones a la Física fueron bien recompensadas de muchas maneras.

 

En mecánica cuántica es corriente trabajar con la constante de Planck racionalizada,  (ħ = h/2p = 1’054589×10-34 Julios/segundo), con su ley de radiación (Iv = 2hc-2v3, con la longitud de Planck , con la masa de Planck, y otras muchas ecuaciones fundamentales para llegar a lugares recónditos que, de otra manera, nunca podríamos alcanzar.

Todo lo anterior son herramientas de la mecánica cuántica que en su conjunto son conocidas como unidades de Planck, que como su mismo nombre indica son un conjunto de unidades, usadas principalmente en teorías cuánticas de la gravedad, en que longitud, masa y tiempo son expresadas en múltiplos de la longitud, masa y tiempo de Planck, respectivamente. Esto es equivalente a fijar la constante gravitacional (G), como la velocidad de la luz (c), y la constante de Planck racionalizada (ħ) iguales todas a la unidad.  Todas las cantidades que tienen dimensiones de longitud, masa y tiempo se vuelven adimensionales en unidades de Planck. Debido a que en el contexto donde las unidades de Planck son usadas es normal emplear unidades gaussianas o unidades de Heaviside-Lorentz para las cantidades electromagnéticas, éstas también se vuelven adimensionales, lo que por otra parte ocurre con todas las unidades naturales. Un ejemplo de esta curiosidad de adimensionalidad está presente en la constante de estructura fina (2πe2/hc) de valor 137 (número adimensional) y cuyo símbolo es la letra griega α (alfa).

 

 

= 1.616255(18)×10−35 m.

= 2.176434(24)×10−8 kg

= 5.391247(60)×10−44 s.

= 1.416784(16)×1032 K.

 

Estas unidades de Planck nos llevan a la cosmología del nacimiento del universo y nos proporciona un marco elegante, coherente y manejable mediante cálculos para conocer el universo remontándonos a los primeros momentos más breves posteriores a la explosión o Big Bang. El tiempo de Planck por ejemplo, expresado por , tiene un valor del orden de 10-43 segundos, o lo que es lo mismo, el tiempo que pasó desde la explosión hasta el tiempo de Planck fue de: 0,000.000.000.000.000.000.000.000.000.000.000.000.000.001 de 1 segundo. En la fórmula, G es la constante universal de Newton, ħ es la constante de Planck racionalizada y c es la velocidad de la luz.

Es una unidad de tiempo infinitesimal, como lo es el límite de Planck que se refiere al espacio recorrido por un fotón (que viaja a la velocidad de la luz) durante una fracción de tiempo de ínfima duración y que es de 0,000.000.000.000.000.000.000.000.000.000.001 de cm.

 

 

Hasta tal punto llegan los físicos en sus cálculos para tratar de adecuar los conocimientos a la realidad por medio del experimento. Buscamos incansables…¡las respuestas! Hasta que no podamos tocar con nuestras propias manos esa partícula final…

Sin embargo, cuando hablamos de estas unidades tan pequeñas, no debemos engañarnos. Precisamente, para tratar de llegar hasta esos límites tan profundos se necesitan máquinas que desarrollan inmensas energías: los aceleradores de partículas, que como el Fermilab o el LHC en el CERN, han facilitado a los físicos experimentadores entrar en las entrañas de la materia y descubrir muchos de los secretos antes tan bien guardados. Ahora, disponiendo de 14 TeV, tratan de buscar partículas super-simétricas y el origen de la “materia oscura”.

 

Fermilab - Wikipedia, la enciclopedia libreFermilab | About FermilabLos muones que pueden revolucionar la física

 

Haber fabricado acelerados tan potentes como para poder detectar la partícula de Higgs, esa partícula responsable de proporcionar masa a todas las demás partículas, en tiempos pasados era un sueño que pudimos hacer realidad y, de la misma manera, soñamos ahora con tener un Acelerador tan Potente como para poder encontrar las cuerdas o las partículas simétricas de las que se cree están conformadas. Y, por supuesto, más lejos queda la posibilidad de que podamos construir un acelerador que pudiera alcanzar la energía de Planck, del orden de 1019 eV (1 eV = 10-19 julios) = 1’60210×10-19. Hoy por hoy, ni nuestra tecnología ni todos los recursos que tenemos disponibles si empleáramos todo el presupuesto bruto de todos los países del globo unidos, ni así digo, podríamos alcanzar esta energía necesaria para comprobar experimentalmente la existencia de “cuerdas” vibrantes que confirmen la teoría de Todo.

Claro que, pudiera ser que, todo se pudiera alcanzar de manera mucho más simple y que, teniéndolo a la vista, no hemos sabido ver. Habrá que agudizar el ingenio para resolver estas y otras cuestiones que, como la de la Velocidad de la Luz, nos tienen atados y bien atados a este granito de arena inmerso en un vasto universo y que, nosotros, llamamos mundo.

Emilio Silvera V.

¡Las estrellas! ¿Qué haríamos sin ellas?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

File:Ngc2392.jpg

 

la-historia-de-la-vidaÁrbol de familia Fuente Imagen: Leonard Eisenberg 

 

Descubiertas dos supertierras alrededor de la enana roja más brillante del vecindario solar

 

Las estrellas enanas rojas son las más abundantes en el Universo y, desde luego, las que tienen la vida más larga. Algunas son casi tan viejas como el universo mismo, el poco material de fusión que consumen las llevan hasta esas edades matusalénicas de miles de millones de años, más de diez mil millones tienen algunas que, nos podrían contar muchas, muchas cosas de las que fueron testigos. Otras como nuestro Sol, estrellas GV2 enana amarilla es también del tipo más abundante. Luego están una pléyade de estrellas de mayor envergadura y grandes masas que van desde las 10 hasta las casi 150 masas solares.

 

Según se estima, las estrellas cuando tienen unas 120 masas solares han llegado a un límite en el que, su propia radiación las puede destruir. Sin embargo, se han descubierto estrellas que llegan hasta las 150 masas solares. ¿Por qué se mantienen “vivas” y no explotan. Bueno, todos los indicios apuntan al hecho de que, para desahogar y esquivar los efectos de la inmensa radiación que produce la fusión nuclear, eyectan de manera periódica, material al espacio interestelar y se tranquiliza. Ahí tenemos el ejemplo de Eta Carinae.

 

Resultado de imagen de Eta CarinaeLa imagen con más resolución de Eta Carinae | ESO España

 

Eta Carinae tiene que expulsar materia al Espacio Interestelar para rebajar la tensión y que su propia radiación no la destruya.

Existen estrellas hiper-gigantes que son las que sobrepasan las 100/150 masas solares, así fueron denominadas cuando se observaron los objetos más brillantes en las Nubes de Magallanes, aunque en realidad, lo que vieron eran cúmulos de estrellas y no estrellas individuales. Sin embargo de estrellas supermasivas existen múltiples ejemplos y, hemos podido comprobar que, la enorme cantidad de material de fusión que consumen las lleva a una vida corta. Las estrellas supermasivas sólo viven unos pocos millones de años, mientras que estrellas como el Sol, llegan a los diez mil millones de años de vida.

 

 

Hay muchas clases de estrellas: Estrellas capullos envueltas en una nube de gas y polvo, estrellas de baja o de alta velocidad, con envoltura, con exceso de ultravioleta, de baja luminosidad, de baja masa, de Bario, de manganeso, de Carbono, de Litio, de Bariones, de campo, de Circonio, de estroncio, estrellas de Helio, de la rama gigante asintótica, de manganeso-mercurio, de metales pesados, de neutrones, (¿de Quarks?), estrellas de referencia, de Silicio, de Tecnecio, de tipo tardío, de tipo temprano, estrella del Polo, estrella doble, estrella enana, estrella estándar, evolucionada, estrella Flash, estrella fulgurante, magnética, estrella guía, hipergigante, estrella invitada, múltiple, peculiar, pobre en metales, estrella reloj, simbiótica, rica en metales, supermasiva, fijas, gigantes…, cada una de ellas tiene su propia personalidad, su propio color y temperatura y también, una media de vida que depende de manera directa de su masa.

 

Resultado de imagen de La estrella más grande descubiertaResultado de imagen de La estrella más grande descubierta

 

“NML Cygni es una hiper-gigante roja, el siguiente nivel a supergigante, que es a su vez el siguiente nivel a gigante. Las hiper-gigantes rojas son estrellas con una masa 40 veces superior a la del Sol, pero su volumen es mucho mayor que el de 40 soles, porque conforme aumenta el peso de una estrella disminuye su densidad. En el caso de NML Cygni, su radio es 1605 veces mayor que el del Sol, o lo que es lo mismo, si NML Cygni estuviera situada donde lo está el Sol, el borde de la estrella cubriría la órbita de Saturno.”

 

 

Los elementos químicos se fraguan dentro de ellas, y, también al final de sus vidas, en las explosiones Supernovas, se crean los materiales más complejos de la Tabla Periódica. Estos materiales, van formar parte de las grandes Nebulosas de las que vuelven a surgir nuevas estrellas y nuevos mundos que estarán hechos de todos esos elementos creados en las estrellas y, como nosotros mismos provenimos de ahí, es fácil oir la expresión: “Somos polvo de estrellas”.

 

 

Las estrellas no son ninguna excepción y como todo en nuestro Universo, con el paso del tiempo evolucionan y, a medida que van consumiendo su combustibles nuclear de fusión, van acortando sus vidas que, en función de la masa, será más corta o más duradera y también, sus finales serán distintos por la misma causa: Estrellas como el Sol = Enanas Blancas. Estrellas de varias masas soles = Estrella de Neutrones. Estrellas masivas y supermasivas = Agujeros Negros.

 

Enana blanca - Wikipedia, la enciclopedia libre

Esas transmutaciones que se producen durante un largo período de tiempo, conllevan fenómenos que se producen de distintas maneras en cada una de esas estrellas. En unas, se alcanza la estabilidad al degenerarse los electrones (que son fermiones), que siguen la Ley de Pauli del Principio de exclusión. Ahí aparecen las enanas blancas.  De la misma manera sucede en estrellas más masivas que el Sol pero, al tener más masa, no es suficiente que los electrones se degeneren y, entonces, electrones y protones se fusionan para convertirse en Neutrones que son (al ser fermiones), los que se degeneran y estabiliza a la estrella como de Neutrones. Cuando ya la masa es muy grande, nada puede frenar a mla Gravedad y lo que nos queda es un Agujero Negro.

 

 

Es cierto que en las inmensas masas de gas y polvo que conforman las grandes Nebulosas, han sido halladas moléculas y ácidos necesarios para que, en los mundos apropiados, germine la vida. Esos remanentes de materiales y elementos contienen todo lo necesario que, cuando interacciona con un entorno adecuado, se reúne para producir la transición de fase que recorre el largo camino que va, desde la “materia inerte hasta los pensamientos”. Es decir, el surgir de la vida.

 

Lo cierto es que, la química de las estrellas está presente en los mundos para que pueda surgir la Vida

Decir eso de que los elementos estelares llegaron a la Tierra y pudo surgir la Vida, no es, en realidad, contar gran cosa de lo que pudo pasar para que nosotros ahora, podamos estar aquí contando sobre ello. Los actuales descubrimientos de la Paleontología, la más tradicional de las científicas, se entrelazan con nuevas ideas nacida de la biología molecular y la geoquímica.

 

Dónde ver los huesos de los dinosaurios más grandes del mundo

 

Los huesos de los dinosaurios son grandes y espectaculares y nos llevan al asombro. Pero, aparte del tamaño de sus habitantes, el Mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutiles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hasta el mundo que conocemos hoy.

 

Hallados los fósiles más antiguos de nuestra especie en Europa | Ciencia | EL PAÍS

Anadoluvius turkae, el fósil que pone en jaque a la teoría del origen de los homínidos | WIRED

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro.  Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua.  En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la  radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

 

 

Nada surge de manera espontánea, todo se fragua durante un tiempo que tiene marcado por la Naturaleza y, nosotros, hemos tardada (como humanos verdaderos), más de 13.000 millones de años en poder llegar hasta aquí. El tiempo necesario para que las estrellas fabricaran la materia prima y después, el mundo pusiera su granito de arena para que ésta pudiera evolucionar, con la ayuda de la radiación del Sol, el agua corriente, una adecuada atmósfera, la presencia de océanos, las placas tectónicas que reciclan periódicamente el planeta… ¡No, no es nada fácil que la vida surja en un Mundo!

 

1.6: Procesos - LibreTexts Español

 

Pero en el Universo, son muchas las cosas que pueden pasar, muchos los objetos que están presentes, innumerables los fenómenos que de una u otra cuestión pueden estar pasando de manera continuada y que no siempre, sabemos comprender.

 

9 Objetos sorprendentes descubiertos en el espacio / Genial

               ¡NO! No es el gran Ojo que todo lo ve y nos mira desde las alturas

Simplemente se trata del fenómeno que conocemos como “Halo atmosférico”, un anillo o arco de luz que parece rodear al Sol (también a la Luna), resultado de la refracción y la reflexión de la luz solar o lunar por los cristales de hielo de los cirros. Los halos solares y lunares más comunes un diámetro angular de 46º. Por lo general, el borde del halo muestra un efecto prismático, estando la luz azul refractada hacia el borde exterior y la roja al interior. Como resultado de la refracción preferencial de la luz hacia el borde del halo , la zona del cielo interior a un halo es más oscura que la interior. Los halos lunares solo pueden ser vistos claramente cuando la Luna es brillante, típicamente en un intervalo de cinco días en torno a la Luna llena.

 

El halo galáctico es más irregular y complejo de lo esperado – David Galadí Enríquez

 

El Halo Galáctico está referido a cualquier material situado en una distribución aproximadamente esférica de una galaxia, y que se extiende hasta más allá de las regiones visibles. Puede referirse a la población de estrellas viejas (Población II), incluyendo a los cúmulos globulares, con poca o ninguna rotación alrededor del centro galáctico; o gas tenue, altamente ionizado y de alta temperatura que envuelve a toda la galaxia, incluso, muchas veces el halo galáctico está referido a una especie de neblina inconcreta que circunda toda la galaxia sin que termine de hacerse presente pero, ahí está.

 

File:Ngc604 hst.jpg

 

Alguna vez podemos contemplar una que nos parece más o menos atractiva pero, no sabemos discernir sobre lo que en realidad estamos contemplando. Por ejemplo, arriba tenemos la conocida como NGC 604,  una región H II gigante en la galaxia del Triángulo. Una región H II es una de gas y plasmabrillante que puede alcanzar un tamaño de cientos de años-luz y en la cual se forman estrellas masivas. Dichas estrellas emiten copiosas cantidades de luz ultravioleta extrema (con longitudes de onda inferiores a 912 Ångstroms) que ionizan la Nebulosa a su alrededor.

 

File:Ssc2005-02a.jpg

          Las regiones H II son muy abundantes en nuestra Galaxia

Cada átomo de hidrógeno ionizado contribuye con dos partículas al gas, es decir, con un protón y un electrón. Las Regiones H II son calientes con temperaturas típicas de 10 000 K, y son entre 10 y 100 000 veces más densas que las regiones H I. Se encuentran normalmente alrededor de las estrellas O y B jóvenes y masivas, siendo el gas ionizado por su intensa luz ultravioleta, haciendo que éste brille. La Nebulosa de Orión es una famosa Región H II. Las Regiones H II pueden ser detectadas en la Galaxia por sus intensas emisiones en e infrarrojo. La radio emisión es debida al bremsstrahlung del gas ionizado, y la radiación infrarroja a la emisión térmica del polvo.

 

http://bitacoradegalileo.files.wordpress.com/2010/12/m42_hallasnr.jpg

 

Las Regiones H II aquí muy presentes y dada su gran extensión. La nebulosa de Orión es uno de los objetos astronómicos más fotografiados, examinados, e investigados. De ella se ha obtenido información determinante acerca de la de estrellas y planetas y a partir de nubes de polvo y gas en colisión. Los astrónomos han observado en sus entrañas discos protoplanetarios, enanas marrones, fuertes turbulencias en el movimiento de partículas de gas y efectos foto-ionizantes cerca de estrellas muy masivas próximas a la nebulosa.

La Nebulosa Orión de emisión visible a simple vista, situada a unos 1.344 años luz de distancia y con un tamaño aproximado de 24 años luz. Es un gran laboratorio para la investigación científica, allí “nacen” moléculas esenciales para la vida, surgen nuevas estrellas y se forman proto-sistemas planetarios.

 

 

Una región H I es una nube formada por hidrógeno atómico frío, poco denso y no ionizado con temperaturas de alrededor de 100 K. Las regiones HI no emiten radiación en el rango visual, sólo en la región de radio. La notación H I se refiere al hecho de que los átomos de Hidrógeno no están ionizados como lo están en los que están presentes en la regiones H II (arriba). Cada átomo de Hidrógeno neutro contribuye al gas justo con una partícula. la Densidad de las regiones H I es demasiado sencilla como para que se formen moléculas de hidrógeno, y la luz estelar disociará cualquier molécula formada, de manera que el gas permanece en forma de átomo. El Hidrógeno neutro contribuye aproximadamente a la mitad de toda la materia interestelar en masa y en volumen,  con una densidad media de 1 Átomo/ cm3. Las regiones H I son frías.

Del asombroso universo son muchas las cosas que desconocemos, y, poco a poco, vamos pudiendo descubrir muchos de sus misterios que nos acercan cada vez más, a saber dónde estamos y lo que podemos o no podemos esperar de lo que hay en nuestro entorno.

 

20.6: Materia interestelar alrededor del Sol - LibreTexts Español

“El Sol de desplaza por el de una tenue nube de gas interestelar conocida como Local Fluff. Queremos concluir nuestra discusión sobre la materia interestelar preguntándonos cómo se organiza este material en nuestro vecindario inmediato. Como comentamos anteriormente, los observatorios orbitales de rayos X han demostrado que la Galaxia está llena de burbujas de gas caliente que emite rayos X. También revelaron un fondo difuso de rayos X que parece llenar todo el cielo desde nuestra perspectiva (Figura20.6.120.6.1). Si bien parte de esta emisión proviene de la interacción del viento solar con el medio interestelar, la mayoría proviene de más allá del sistema solar. La explicación natural de por qué hay gas emisor de rayos X a nuestro alrededor es que el Sol está dentro de una de las burbujas. Por lo tanto, llamamos a nuestro “vecindario” la Burbuja Caliente Local, o Burbuja Local para abreviar. La Burbuja Local es mucho menos densa —un promedio de aproximadamente 0.01 átomos por cm 3 — que la densidad interestelar promedio de aproximadamente 1 átomo por cm 3. Este gas local tiene una temperatura de alrededor de un millón de grados, al igual que el gas en las otras superburbujas que se extienden por toda nuestra Galaxia, pero debido a que hay tan poco material caliente, esta alta temperatura no afecta de ninguna manera a las estrellas ni a los planetas de la zona.”

Lo de que la Voyager 1 había dejado atrás la zona bajo influencia directa del viento solar y se encontraba ya surcando el inter-plantario se convirtió rápidamente en una de las grandes noticias astronómicas del año, en especial por toda la carga simbólica que representa que, por primera vez, un ingenio construido por la Humanidad había traspasado por primera vez esa frontera invisible que nos separa y aísla del océano estelar. Pero para los científicos de la misión la llegada a este nuevo reino con una sonda aún operativa y capaz de seguir enviado al menos hasta 2020 es un regalo del que esperan grandes resultados. Y es que más allá del límite solar se extiende una región tan amplia como desconocida, y mucho más compleja de lo que podamos imaginar.

 

 

El movimiento de esta estrella binaria fue un misterio durante más de 30 años, e incluso se presentó como un posible fracaso de la Relatividad General de Einstein. Ahora un encabezado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha resuelto el misterio. Se observan hechos que no siempre podemos explicar y, persistimos en la búsqueda de las respuestas hasta que las podemos encontrar.

En el efecto periastro se puede contemplar el brillo de una estrella binaria que tiene una órbita altamente excéntrica. Cuando la separación entre las componentes es mínima. Es de hecho, un aumento del efecto de reflexión en el instante del periastro, y surge por la misma causa: la irradiación de una estrella por la otra.

 

La nebulosa Cabeza de Caballo |

La Región Nebulosa de la Cabeza de Caballo y la Nebulosa de Orión ¡Qué maravilla!

Hemos llegado a saber de nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsaresagujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí están presentes todas las cosas que existen y las que tienen que existir… El espacio-tiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

 

Qué edad tiene el universo? 26.700 millones de años, según una nueva teoría

 

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

 

Resultado de imagen de La Tierra gira sobre su eje en 24 horas

Ésta es una situación en resulta especialmente apropiado utilizar las unidades “naturales” la , longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros , lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

 

 

Lo cierto es que, desde el comienzo del Tiempo, allá por los confines impenetrables de la lejanía del Big Bang (si es que fue así realmente como nació el Universo), se tuvieron que esperar algunos cientos de millones de años para que surgieran las primeras estrellas, pasar por las Eras de la Radiación, la Era Leptónica, la de la Materia, que se produjera la descongelación de los fotones para que el Universo se hiciera de luz… Después de miles de millones de años, el Universo tenía los elementos necesarios para que, la Vida, pudiera surgir en los mundos adecuados y… ¡Aquí estamos!

Aquí estamos tratando de saber lo mismo que quisieron saber nuestros ancestros filósofos: ¿De dónde venimos? ¿Qué hacemos aquí? ?Hacia Dónde vamos? ¿Tendremos algún destino predeterminado…

Y seguiremos, dentro de nuestra inmensa ignorancia, haciendo preguntas mientras estemos por aquí.

Emilio Silvera Vázquez

La asombrosa belleza del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Gracias a los grandes telescopios instalados en los lugares más estratégicos de la Tierra, y, los grandes Telescopios Espaciales, que cada vez son más completos y tienen más prestaciones para ofrecernos imágenes maravillosas, imágenes que reflejan la grandeza de la burbuja que llamamos Universo.

 

Nebulosas Moleculares Gigantes : Blog de Emilio Silvera V.

Aquí podemos disfrutar de inmensas Nebulosas moleculares, donde se crean estrellas, donde podemos encontrar moléculas esenciales para la vida, en el material de la Nebulosa se encuentran elementos creados en las estrellas, y, no hace mucho pudimos leer en publicaciones científicas:

 

ESA - Actualización sobre el telescopio espacial James Webb: revisión de la nueva ventana de lanzamiento

“El James Webb descubre hielo y moléculas orgánicas en una nube molecular.”

 

Hallan en el espacio interestelar una molécula que puede ser diestra o zurda

Una molécula encontrada en el Espacio que puede ser diestra o zurda

El hallazgo permite a los astrónomos examinar las moléculas que formarán parte de futuros exoplanetas, y abre una nueva ventana al estudio de las primeras moléculas imprescindibles para la vida.

Pequeños Glóbulos Moleculares En Torno A Estrellas Masivas Jóvenes: ¿qué Esconden? - Instituto De Física FundamentalBoletinesNube molecular Chamaeleon I |

 

Las nubes moleculares se componen, principalmente, de hidrógeno molecular, una pequeña fracción de polvo muy fino y restos de otras moléculas, como de monóxido de carbono y amoniaco.

Las nebulosas están hechas de polvo y gases—, principalmente hidrógeno y helio. El polvo y los gases en una nebulosa están muy dispersos, pero la gravedad puede comenzar a juntar grupos de polvo y gas. A medida que estos grupos se hacen más y más grandes, su fuerza gravitacional se hace más y más fuerte.

Las nubes moleculares son un tipo particular de nebulosa , que normalmente tiene entre 50 y 300 años luz de diámetro y contiene entre 10 5 y 10 7 masas solares de material. La composición química de las nebulosas ionizadas se determina generalmente a partir de las fuertes líneas prohibidas de diferentes iones de oxígeno, nitrógeno, azufre y cloro , que se comparan con las fuertes líneas de recombinación del hidrógeno.

 

What is a nebula? Beginner's guide to cosmic clouds and how ...

 

Las imágenes astronómicas revelan que muchas nebulosas tienen colores vivos: típicamente rojo en las nebulosas de emisión, formadas por átomos de hidrógeno ionizado, y tonos de estrellas azules en las nebulosas de reflexión. Pero la observación a través de binoculares o un telescopio será bastante diferente. Visualmente, las nebulosas aparecen en tonos de gris .

 

AGA - Asociación Guatemalteca de Astronomía - NGC 3372 también conocida como La nebulosa de Quilla o nebulosa de Carina, es una nebulosa de emisión, localizada en la constelación de Quilla a

Esta imagen muestra una región gigante de formación de estrellas en el cielo austral conocida como Nebulosa Carina (NGC3372), que combina la luz de tres filtros diferentes que rastrean la emisión de oxígeno (azul), hidrógeno (verde) y azufre (rojo).

 

Una gran nube molecular en el centro de una galaxia. | Foto Premium

 

Estas Nebulosas gigantes de abundante contenido molecular, son muy importantes en la generación de nuevas estrellas que se produce cuando en una región de la Nebulosa se produce una anomalía gravitatoria. Allí se forma un enorme grumo del material nebuloso, el grumo da más y más vueltas y atrae más y más material, y, el centro de esa inmensa “bola”, se densifica y se produce allí una enorme temperatura, finalmente, se produce la fisión de los protones y se puede decir que surge una proto-estrellas y más tarde que ha nacido una estrella.

 

La nube molecular Orión A por VISTA

La Gran Nebulosa de Orión

Estas Nebulosas Moleculares son las estructuras galácticas conocidas de mayor tamaño, con masas de hasta 1 millón de veces la del Sol. Arriba tenemos esta espectacular nueva imagen es uno de los mosaicos más grandes en alta resolución en infrarrojo cercano de la nube molecular de Orión A, la fábrica de estrellas masivas conocida más cercana, a unos 1.350 años luz de la Tierra. Fue tomada con el telescopio de rastreo infrarrojo VISTA, instalado en el Observatorio Paranal de ESO, en el norte de Chile, y revela la presencia de numerosas estrellas jóvenes y de otros objetos que, de otra manera, permanecerían ocultos en las profundidades de las nubes de polvo.

 

undefined

Mesier 42

La nueva imagen representa un paso hacia un conocimiento completo de los procesos de formación de estrellas en Orión A, tanto para estrellas de baja masa como para estrellas masivas. El objeto más espectacular es la gloriosa nebulosa de Orión, también llamada Messier 42, hacia la izquierda de la imagen. Esta región forma parte de la espada de la famosa y brillante constelación de Orión.

 

Sistemas planetarios formándose en Orión |

 

El Telescopio Espacial Hubble ha tomado esta imagen en la que se detectan varios sistemas planetarios en formación. El telescopio James Webb vuelve a revolucionar la astronomía con un descubrimiento que con encaja en la definición habitual de planetas. Se trata de unos extraños objetos del tamaño de Júpiter que flotan libremente en el espacio, sin estar unidos a ninguna estrella. Webb los ha encontrado dentro de la nebulosa de Orión o M42, una de las nebulosas más brillantes que podemos observar a simple vista en nuestro cielo. Este vivero estelar se encuentra a 1.350 años luz de la Tierra, en el sur del cinturón de Orión.

Me quedé extasiado observando la Nebulosa,

Perdía la noción del tiempo pensando,

Que allí se crean las estrellas más hermosas,

También nuevos mundos, llenos de moléculas mutando.

Está claro que no soy poeta,

Pero me gusta jugar,

Esa nueva faceta, 

Me transmite tranquilidad.

¿Qué cosas!

Saludos amigos.

Emilio Silvera Vázquez

Fuerzas invisibles que inciden en nuestras vidas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

20150811 LHC2

El LHC nos lleva a las entrañas de la Materia

 

¡La Naturaleza! Que tenemos que descubrir

 

 

Tratamos de buscar el origen de la vida y sabemos que comenzó con base química y debido a una serie de parámetros que conforman parte de las llamadas constantes de la Naturaleza, el surgir de aquella primera célula replicante que inició la fascinante aventura de la vida, el evolucionar de la materia “inerte”… ¡Hasta los pensamientos! ¿La Consciencia de Ser?

d-brana

 

Es ampliamente sabido que el planeta Tierra actúa como un gran imán cuyas líneas de campo geomagnético surgen de un polo (el polo sur magnético) y convergen en el otro polo (polo norte magnético). El eje longitudinal de este imán tiene una desviación de aproximadamente 11^o con respecto al eje de rotación. Por ello, los polos del campo magnético generado no coinciden exactamente con los polos geográficos.

Este campo geomagnético es producido por la combinación de varios campos generados por diversas fuentes, pero en un 90% es generado por la exterior del núcleo de la Tierra (llamado Campo Principal o “Main Field”).

Por otra , la interacción de la ionosfera con el viento solar y las corrientes que fluyen por la corteza terrestre componen la mayor del 10% restante. Sin embargo, durante las tormentas solares (eventos de actividad solar exacerbada) pueden introducirse importantes variaciones en el campo magnético terrestre.

 

grandes-tormentas-solares-fuente-quantum-com-do

   Las grandes tormentas solares inciden sobre nosotros y nuestras obras

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

 

[stephan_quinteto_2009_hubble.jpg]

 

Muchas veces he comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

 

Qué es el campo gravitatorio: características y fórmulas

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

 

 

La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio da a entender, no hay carga eléctrica; es neutro.

 

Masa de las partículas subatómicas

 

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

 

Nucleón: qué es y tipos - Resumen

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 1015 metros, o lo que es lo mismo, 0’000000000000001 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo indica (glueen inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

 

http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpgQué es un fotón? Usos en la energía solar | Svea Solar

 

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

 

La radiación cósmica: Por qué no debería ser motivo de preocupación | OIEAUna lluvia imperceptible de rayos cósmicos

 

    Una de las fuentes productoras de rayos cósmicos es el Sol. Abundante e imperceptible, como una tormenta muda, a todas horas caen sobre nosotros millones de partículas elementales. No hay paraguas que frene el torrente de neutrinos solares que atraviesa cada centímetro cuadrado de nuestro planeta y nuestro cuerpo, como imágenes espectrales de sí mismos. Desde arriba, de día, y desde abajo, de noche. La energía que la mayoría de ellos transporta apenas alcanza la milésima parte de la masa de un protón.

 

 

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

Emilio Silvera Vázquez

¿Será igual el Universo en todas partes?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

13050204tiposestrellas
En todo el Universo suceden las mismas cosas. La evolución de una estrella como el Sol, siempre será la misma, no importa en qué lugar esté. Cuando agote su combustible nuclear de fusión, viajará hasta la Gigante Roja, formará una Nebulosa planetaria y, finalmente, quedará como enana blanca.
Pequeño pero voraz: así es el agujero negro que engulle parte de una  estrella cada vez que pasa cerca de ella
https://www.lasexta.com/tecnologia-tecnoxplora/ciencia/pequeno-pero-voraz-asi-agujero-negro-que-engulle-parte-estrella-cada-vez-que-pasa-cerca-ella_2023090864fae4227caa7b0001b292f8.html
Bueno, independientemente de las cosas que en una región particular pueda estar ocurriendo, en el contexto general, sí es igual el Universo en cualquier lugar que podamos mirar. Las mismas fuerzas y constantes, la misma materia, las mismas transiciones de fase y, seguramente también la misma vida, se repite una y otra vez a lo lo largo y a lo ancho de todo el Universo.
En lo referente a la vida, (creo) será diversa como aquí en la Tierra y, seguramente, independientemente de las formas que pueda adoptar, estará basada en el Carbono, parece lo más probable aunque nunca se sabe. Seres vivos de un planeta con tres veces la masa de la Tierra no pueden ser iguales que los de la Tierra, y, si la masa es la mitad de la terrestre, sus habitantes tampoco tendrán la misma característica física que nosotros.

Imagen relacionada

 

La vieron caer y corrieron hasta el lugar. La escena era la que se podía esperar después de la caída de una nave en plena montaña. Los pocos testigos que por el lugar estaban, llamaron a las autoridades que enviaron, de inmediato, a personal especializado en este tipo de investigaciones.¡

“Mira, un trazo de la nave caída, ¿de qué materiales estará hecha? Nunca he visto algo así! ¿De dónde vendrán estos seres, de qué estará conformado su mundo? Esto preguntaba uno de los investigadores al otro que con él recogía muestras de aquella extraña nave accidentada y que, según el seguimiento hecho en su acercamiento a la Tierra, venía de más allá de los confines del Sistema Solar y, quién sabe de dónde pudieron partir. Sin embargo, el material que recogían, debería ser el mismo que está repartido por todo el Universo.

Lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. Porque, en última instancia ¿es en verdad inerte la materia?

 

¿Cómo pudo la materia “inerte” evolucionar hasta los pensamientos

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.

 

⚗️ ¿Qué son los Elementos Transuránicos? ⚗️ [Fácil y Rápido] | QUÍMICA |

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.

 

Niveles de organización de la materia viva

            ¡Parece que la materia está viva! ¿Cómo se pudo organizar como lo hizo?

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico:  no se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora para poder construir conjuntos tan bellos como el que abajo podemos admirar.

 

La física como ciencia | Física 1

Pensemos en lo infinitesimal que son los electrones… ¡Sin ellos no habría átomos, moléculas, células ni materia!

 ¡No por pequeño, se es insignificante! De todas las maneras, las medidas dependen del contexto en el que se estén midiendo. El conjunto de la imagen de arriba nos parecerá grande pero, ¿Cómo de grande es si lo comparamos con la Galaxia?

Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.

Cómo calcular la energía de un fotón

 

      No pocas veces nos hemos preguntado: “¿Cómo puede tener energía los fotones si no tienen masa? Y si no tienen masa y solo energía, sabiendo que masa y energía son dos aspectos de la misma cosa (E=mc2), se puede comprender que un agujero negro con su enorme fuerza de gravedad, pueda incidir en la luz.

h = 6.626 × 10 -34 julios·s

c = 2.998 × 108 m/s

Al multiplicar estos dos se obtiene una expresión única, hc = 1.99 × 10-25 julios-m

La relación inversa anterior significa que la luz con  fotones de alta energía (como la luz “azul”) tiene una longitud de onda corta. La luz que consta de fotones de baja energía (como la luz “roja”) tiene una longitud de onda larga.

 

Una remota explosión de rayos gamma golpea la Tierra

 

“Es la partícula portadora de todas las formas de radiación electromagnética, incluyendo a los rayos gamma, los rayos X, la luz ultravioleta, la luz visible, la luz infrarroja, las microondas, y las ondas de radio. El fotón tiene masa cero y viaja en el vacío con una velocidad constante c.”

“El fotón tiene una masa cero, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.”

 

Resultado de imagen de Colapso gravitatorio de dos estrellas de neutrones

 

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

 

 

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es o, su carga es o, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.

 

 

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler,  es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropíade un agujero negro.

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e in-eliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

 

Por qué las ondas gravitacionales son el futuro de la astronomía – KW Foundation

       Andamos a la caza del vacío, del gravitón, de las ondas gravitatorias…

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.

De ese “vacío” nos queda muchísimo por aprender. Al parecer, todos los indicios nos dicen que está abarrotado de cosas, y, si es así, no es lo que podemos llamar con propiedad vacío, ese extraño lugar es otra cosa, pero, ¿qué cosa es?

Antes se denominaba éter fluminígero (creo) a toda esa inmensa región. Más tarde, nuevas teorías vinieron  a desechar su existencia. Pasó el tiempo y llegaron nuevas ideas y nuevos modelos, y, se llegó a la conclusión de que el Universo entero estaba permeado por “algo” que algunos llamaron los océanos de Higgs. Ahí, se tiene la esperanza de encontrar al esquivo Bosón (que dicen haber hallado pero que yo, no estoy muy seguro de que así sea) que le da la masa a las demás partículas, y, el LHC del CERN, es el encargado de la búsqueda para que el Modelo Estándar de la Física de Partículas se afiance más.

 

Todos somos ignorantes | Campo de Gibraltar Siglo XXI

 

Andamos un poco a ciega, la niebla de nuestra ignorancia nos hace caminar alargando la mano para evitar darnos un mamporro. Pero a pesar de todo, seguimos adelante y, es más la fuerza que nos empuja, la curiosidad que nos aliente que, los posibles peligros que tales aventuras puedan conllevar.

Está claro que, dentro del Universo, existen “rincones” en los que no podemos sospechar las maravillas que esconden, ni nuestra avezada imaginación, puede hacerse una idea firme de lo que allí pueda existir. Incansables seguimos la búsqueda, a cada nuevo descubrimiento nuestro corazón se acelera, nuestra curiosidad aumenta, nuestras ganas de seguir avanzando van creciendo y, no pocas veces, el físico que, apasionado está inmerso en uno de esos trabajos de búsqueda e investigación, pasa las horas sin sentir el paso del tiempo, ni como ni duerme y su mente, sólo tiene puesto los sentidos en ese final soñado en el que, al fín, aparece el tesoro perseguido que, en la mayor parte de las veces, es una nueva partícula, un parámetro hasta ahora desconocido en los comportamientos de la materia, un nuevo principio, o, en definitiva, un nuevo descubrimiento que nos llevará un poco más lejos.

Encontrar nuevas respuestas no dará la opción de plantear nuevas preguntas.

Emilio Silvera Vázquez