Un equipo de científicos ha realizado un hallazgo sorprendente en la corteza terrestre de las profundidades marinas del Pacífico Oriental, a más de 2.500 metros de profundidad, cerca de la dorsal del Pacífico. Utilizando un submarino controlado remotamente llamado SuB-astian, las biólogas Monika Bright y Sabine Gollner, junto con su equipo, han descubierto un ecosistema oculto bajo el lecho marino. Éste nuevo descubrimiento revela la existencia de gusanos gigantes, caracoles y bacterias quimiosintéticas que habitan en las cavidades del fondo marino, alimentándose de los fluidos calientes de los respiraderos hidrotermales. Uno de los hallazgos más impresionantes fue la presencia del gusano tubícola gigante Riftia pachyptila, que puede alcanzar el medio metro de longitud y formar grandes colonias.
Dic
11
La Vida se abre paso
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Hallazgo inaudito: levantan la corteza terrestre y lo que encuentran cambia todo lo que se sabía
Este hallazgo revela la existencia de gusanos gigantes, caracoles y bacterias quimiosintéticas
Nuevas evidencias sobre la relación entre el sueño y la salud cardiovascular
Asombroso hallazgo: acaban de descubrir el mayor yacimiento de oro del mundo, valorado en 80.000 millones de €
Los investigadores están tratando de entender cómo sus larvas se dispersan y colonizan nuevas áreas de respiraderos hidrotermales, algo que hasta ahora no se había observado en la columna de agua. Los científicos sugieren que las larvas podrían viajar a través del subsuelo utilizando los fluidos de los respiraderos. Este descubrimiento se realizó en una zona volcánica activa, la Cordillera Albatross, una cadena submarina de 9.000 kilómetros de largo, donde los choques tectónicos crean erupciones de magma que generan los respiraderos hidrotermales. Gracias a un cincel robótico, los científicos lograron extraer muestras de la corteza terrestre, encontrando organismos que sobreviven en estas condiciones extremas.
Hallazgo inaudito debajo de la corteza terrestre
Recientemente, un equipo de biólogos marinos ha hecho un descubrimiento impresionante en las profundidades del océano Pacífico, que desafía las creencias previas sobre la vida en la corteza terrestre. En investigaciones previas, se pensaba que sólo los virus y los microorganismos podrían sobrevivir en las capas más profundas del océano. Sin embargo, los estudios realizados por Monika Bright y Sabine Gollner, publicadas en Nature Communications, han demostrado la existencia de animales mucho más complejos, como gusanos tubícolas gigantes, caracoles y otras criaturas marinas que habitan debajo del fondo marino.
Este hallazgo fue posible gracias al uso de un submarino operado remotamente llamado SuB-astian, que permitió al equipo adentrarse a 2.515 metros de profundidad en un respiradero hidrotermal situado en la dorsal del Pacífico Oriental, una de las zonas volcánicas más activas del planeta. A lo largo de su exploración, los científicos descubrieron que el lecho marino oculta tanto minerales como una vasta comunidad de vida. Bajo la superficie, encontraron grandes gusanos tubícolas que, aunque se pensaba que solo habitaban en la superficie de los respiraderos, también prosperan bajo el suelo marino en cavidades llenas de fluidos calientes.
Los investigadores plantean la hipótesis de que las larvas de estos gusanos pueden desplazarse por el subsuelo a través de los fluidos de los respiraderos hidrotermales, lo que les permite colonizar rápidamente nuevas zonas tras las erupciones volcánicas. Este fenómeno implica que las comunidades animales en el fondo marino están interconectadas con las que habitan en las cavidades subterráneas, lo que abre nuevas perspectivas sobre cómo se distribuyen y sobreviven los ecosistemas marinos en condiciones extremas.
En cuanto a las implicaciones científicas de este descubrimiento, destaca la importancia de preservar estos ecosistemas subterráneos, ya que muchos de los animales encontrados en las cavidades tienen bacterias quimiosintéticas que oxidan compuestos químicos reducidos, lo que juega un papel crucial en la fijación de carbono y en el flujo geoquímico regional.
Estas bacterias podrían tener un gran impacto en los ciclos globales de carbono y podrían ser sensibles a cambios en el entorno, lo que subraya la necesidad de proteger estos hábitats. De hecho, los científicos advierten que aún no se ha determinado la extensión total de estos ecosistemas, lo que resalta la necesidad de investigar más a fondo y garantizar la protección de estos lugares únicos.
La expedición también ofrece un nuevo enfoque para estudiar la vida en la Tierra. Los científicos ahora quien analizar más en profundidad cómo estas comunidades, que se encuentran tan lejos de la luz solar, logran sobrevivir en la oscuridad total. Los animales en estos ecosistemas dependen de la energía que proviene de reacciones químicas, en lugar de la luz solar, lo que podría proporcionar pistas sobre cómo la vida podría prosperar en otros planetas, como Marte, o incluso en las lunas de Júpiter, como Europa, donde se sabe que existen océanos subterráneos bajo la capa de hielo.
Además, este hallazgo resalta la importancia de comprender los procesos geoquímicos que ocurren en el fondo del océano, ya que estos procesos tienen implicaciones directas en la dinámica del manto terrestre y la tectónica de placas. Las interacciones entre el magma y el agua en los respiraderos hidrotermales podrían ser un factor clave en la formación de nuevos ecosistemas y en la circulación de elementos esenciales para la vida. Por ello, este descubrimiento no sólo es crucial para la biología marina, sino también para la geología, ya que ofrece una visión más completa de cómo funciona el planeta Tierra.

Dic
11
Cada vez es menor la capacidad de asombrarnos
por Emilio Silvera ~
Clasificado en El Universo y... ¿nosotros? ~
Comments (0)
Cada vez es menor la capacidad de asombrarnos
Conjeturas y Teorías sobre lo que no alcanzamos a saber, nos guiamos por indicios e intuiciones
Hemos llegado a la conclusión de que hace unos 13.800 millones de años, una de esas “burbujas”, extremadamente condensada y muchísimo más pequeña que un átomo, estalló repentinamente. Esa explosión, el Big Bang, desató una temperatura altísima, y desde ese instante el Universo se fue extendiendo, creando al mismo tiempo el espacio y el tiempo.
Sabemos del Universo que no sabemos cómo surgió, si está sólo o acompañado, si es cíclico y se reproduce una y otra vez, si cada vez que surge también viene acompañado por los mismos procesos que nos llevan hacia la vida…
La imagen de arriba tomada por el Telescopio Espacial Hubble, fue cedida en su día por la NASA y, en ella, podemos contemplar la inmensidad de un Universo que no hemos llegado a conocer y, como nos pasa en tantas otras cuestiones, nos tenemos que conformar construyendo Modelos que nos aproximen a lo que pudo ser y que no reflejan, necesariamente, lo que fue.
Nuestro Sol, esa estrella mediana, amarilla del tipo G2V que, nos calienta y hace posible que la vida en el planeta Tierra esté presente. Ese suceso de la vida consciente en un planeta idóneo para la evolución de la materia hacia niveles de impensables rendimientos como, de hecho, son las ideas y los pensamientos, nos llevan a pensar que, nuestro Universo, “parece” que tenía un plan predeterminado para nosotros. Bueno, al menos eso nos gusta pensar para sentirnos más importantes.
Sólo conocemos el Universo que nos ha dejado ver la luz, esa radiación electromagnética a la que es sensible el ojo humano, y, otras de ondas más cortas que mediante telescopios hemos podido captar, son las referencias visuales que del Universo tenemos y, hay que decir que, cuando podamos captar las ondas gravitatorias que emiten los Agujeros Negros, podremos ver un Universo nuevo.
Muchas son las maneras en las que hemos querido representar y “ver” a nuestro Universo. El concepto de un universo holográfico no es nada nuevo. Los sufíes del siglo XII llegaron a la conclusión de que “el macrocosmos es el microcosmos”. El Profeta egipcio Hermes Trismegisto dijo que la cuna de la comprensión universal es la clave y está en comprender que “el pequeño es como el grande”. Los alquimistas medievales tenían otro lema: “Como es arriba, es abajo”. Con el paso de los tiempos se han establecido unas claves para entender la realidad en que vivimo.
Claro que, para nosotros, no será fácil saber si, nuestra realidad, es la auténtica realidad del Universo. Estamos inmerso en nuestro “propio mundo”, el mundo de nuestros sentidos que nos hacen ver y sentir un universo propio, particular y supeditado a las potestades que dichos sentidos puedan tener… A partir de ahí… ¿Quién sabe?
¡Se dicen tantas cosas! ¡Nos cuentan tantas historias!
Por ahí he podido leer que: “Hoy en día los superordenadores utilizan una técnica llamada “cuadrícula de cromodinámica cuántica”, una técnica que funciona a partir de las leyes físicas que rigen el Universo, capaz de simular con cierto grado de éxito pequeñas porciones del mismo en una escala de una billonésima de metro, un poco más grande que el núcleo de un átomo.
Para los investigadores, con el tiempo las simulaciones más potentes serán capaces de modelar en la escala de una molécula, luego de una célula e incluso de un ser humano. Para ello dicen que deberán pasar varias generaciones de equipos cada vez más potentes, tanto, que podrían simular porciones del Universo lo suficientemente grandes como para entender las limitaciones a las que se verían sometidos los procesos físicos que conocemos. Estas limitaciones serían la prueba de que, como dice Bostrom, vivimos en una simulación informática.”
Lo único cierto es, que nadie sabe “la verdad” de en qué estamos inmersos y, sin embargo, todo el mundo habla y, como profetas, nos dicen lo que fue, lo que es y hasta se atreven con lo que será… ¡Ilusos! De ilusión también se vive pero…, la cruda realidad vendrá de manos de la Naturaleza que, como debemos saber, siempre impone su ley.
Lo prudente es seguir avanzando y procurando desvelar “el saber del mundo”, y, mientras tanto, cuando queramos explicar alguna cosa decir: Por ejemplo, referido al átomo. Parece que el átomo se comporta como si, en su interior, tuviera protones y neutrones que, a su vez, pueden estar conformados por Quarks y, ese núcleo, parece estar rodeado por partículas denominadas electrones que hacen el conjunto atómico que. unidos, llegan a formar moléculas y estas la materia.
Ni conocemos el reloj (para nosotros eterno) del Universo, ni tampoco conocemos ese árbol del que tanto hablamos, el de la vida que resulta ser algo que nosotros mismos representamos y que no podemos explicar. ¿Se habrá visto mayor paradoja?
Hemos mirado por todas partes sin encontrar nada… de momento
Y si no estamos sólos, ¿por qué no están aquí? Bueno, seguramente por la misma razón por la que nosotros tampoco podemos estar allí. La Empresa nos sobrepasa y, seguramente, también a “ellos”, les viene grande. ¡Distancias inauditas! ¡Velocidades inalcanzables! ¡Tiempo de evolución de miles de millones de años! Todo eso junto, conforma la imposibilidad en la que nos encontramos de poder, estrechar la mano de esos seres que, como nosotros, pensarán en ese día que, cuando llegue (si es que llega), marcará un hito universal.
¡Los hemos imaginado de tantas maneras! Lo hemos intentado y continuamos en el empeño pero… Las cosas no serán fáciles para poder, algún día, decir que no estamos solos en el inmenso Universo.
Muchos antes que nosotros han intentado descubrir nuestro lugar en el mundo, los secretos que la Naturaleza esconde, el por qué el Universo nos muestra cosas que no siempre llegamos a comprender, y, seguimos intentando llegar a esa “verdad” que incansables perseguimos. Y, mientras tanto conseguimos saber donde estamos, de donde venimos y hacia donde vamos, seguimos enredados cuestiones tales como:
“La Paradoja de Olbers en acción. A medida que se consideran las estrellas situadas en capas y capas más lejanas a la Tierra el cielo debería verse más y más luminoso.”
Sí, somos conscientes -al menos algunos- de nuestras limitaciones y, sabiendo eso, no cedemos en el empeño de saber, lo que el Universo es, y, de paso, si podemos captar algún dato esencial sobre nosotros… ¡mucho mejor!
Incluso tenemos dudas fundadas en saber, a ciencia cierta, en qué clase de universo estamos: ¿Es plano, es abierto, es cerrado? La cantidad de materia que contenga nuestro Universo, eso que llaman Omega y que determina la Densidad Crítica, dirá la última palabra sobre el tema para conocer cómo será el final que aguarda al inmenso universo.
Como las podemos observar, sí podemos explicar su evolución. Sin embargo, si alguien nos pregunta: ¿Cómo se formaron las galaxias? La única respuesta seria que podríamos dar sería… ¡No lo sabemos! Nadie ha podido dar una razón convincente de cómo se pudieron formar las galaxias a pesar de la expansión de Hubble. ¿Qué había allí que generaba Gravedad y retenía la materia el tiempo suficiente para que se formaran? Nadie lo sabe. Sospecho que algo tiene que ver con eso… ¡la sustancia cósmica! o “materia primigenia” surgida en el universo en el primer momento de su existencia y que, aunque no la veámos, está dispersa por todas partes.
Lo que no podemos asegurar es que todos los pensamientos surgidos de las mentes humanas sean constructivos y, como tales, se encaminen en la dirección correcta de construir un mundo más justo y equitativo donde todos (que somos uno). tengan las mínimas posibilidades para vivir de manera digna sea cual fuere su procedencia o condición. La desigualdad en el mundo nos degrada como seres humanos que no han sabido alcanzar la meta de esa Ley no escrita pero que está en la mente de todos: Justicia, igualdad, equidad, y, bienestar para todos los seres del mundo.
Sin embargo, nadie puede negar que formamos parte del Universo. Somos, en realidad, la parte del Universo que puede pensar y generar ideas y pensamientos y… ¡hasta sentimientos! Lo cual, es algo tan inconmensurablemente grande que… ¿No sabemos en que podrá desembocar finalmente!.
¿A qué resultará que no somos tan insignificantes?
Sí, somos capaces de todo… ¡Hasta de generar nuestra propia destrucción!
Emilio Silvera Vázquez
Dic
11
¿Todo es energía? Fijémonos en la Tierra II
por Emilio Silvera ~
Clasificado en Energías de la Tierra ~
Comments (2)
¿Todo es energía? Veamos: Potencia de fenómenos de corta duración | ||
Flujos de energía | Duración | Potencia |
Terremoto de magnitud 8 en la E. Richter | 30 s | 1’6 PW |
Gran erupción volcánica | 10 h | 100 TW |
Energía cinética de una tormenta | 20 min | 100 GW |
Gran bombardeo de la 2ª Guerra Mundial | 1 h | 20 GW |
Tornado medio en EE.UU. | 3 min | 1’7 GW |
Los cuatro motores del Boeing 747 | 10 h | 60 MW |
La mayor máquina de vapor de Watt | 10 h | 100 KW |
Carrera de 100 m | 10 s | 1’3 KW |
Lavadora doméstica | 20 min | 500 W |
Audición de un CD | 60 min | 25 W |
Una vela | 2 h | 5 W |
El vuelo de un colibrí | 3 min | 0’7 W |
El segundo principio de la termodinámica se refiere a la inevitable realidad de que a lo largo de la cadena de transformación de la energía se va perdiendo la capacidad de realizar un trabajo útil. Hay una magnitud asociada con esta pérdida de utilidad de la energía que se llama entropía; en cada transformación la energía se conserva, pero la entropía del sistema en su conjunto sólo puede aumentar. No hay nada que podamos hacer contra esta disminución de utilidad. Un barril de petróleo es un almacén de energía muy útil y de baja entropía que se puede transformar en calor, electricidad, movimiento y luz. Las moléculas calientes de aire emitidas por el tubo de escape de un motor o la luz que rodea una bombilla representan un estado de alta entropía en el que se producen irrecuperables pérdidas de utilidad.
En un sistema cerrado, este proceso unidireccional de disipación entrópica tiene la inevitable consecuencia de una pérdida de la complejidad y un aumento de la homogeneidad. Esto se puede ver si usted compara la multitud de moléculas orgánicas que componen el petróleo con la monotonía de unos pocos tipos de moléculas sencillas que forman los gases del tubo de escape.
Por el contrario, todos los organismos vivos (desde las bacterias hasta las civilizaciones humanas) son sistemas abiertos, que están importando y exportando energía constantemente; son capaces de mantenerse en estado de desequilibrio químico y termodinámico, creciendo y evolucionando hasta una mayor heterogeneidad y complejidad. Desafían temporalmente la tendencia entrópica.
No conviene utilizar unidades inadecuadas para medir esta gran variedad de procesos, porque casi siempre las cifras estarían seguidas o precedidas de muchos ceros. Tanto el julio como el vatio representan respectivamente cantidades muy pequeñas de energía y potencia. Aproximadamente 30 microgramos de carbón o 2 segundos de metabolismo de un ratón de campo equivalen a 1 julio. Un vatio es la potencia de una pequeña vela encendida o el vuelo rápido de un colibrí.
Prefijo de unidades científicas | ||
Prefijo | Abreviatura | Notación científica |
Deca- | D | 101 |
Hecto- | H | 102 |
Kilo- | K | 103 |
Mega- | M | 106 |
Giga- | G | 109 |
Tera- | T | 1012 |
Peta- | P | 1015 |
Exa- | E | 1018 |
Deci- | d | 10-1 |
Centi- | c | 10-2 |
Mili- | m | 10-3 |
Micro- | μ | 10-6 |
Nano- | n | 10-9 |
Pico- | p | 10-12 |
Femto- | f | 10-15 |
Atto- | a | 10-18 |
Como los múltiplos son inevitables, se introduce una serie de prefijos para abreviar los múltiplos más útiles: un kilogramo de buen carbón equivale a cerca de 30 millones de julios, 30 mega-julios (MJ) de energía, y el consumo actual de combustibles fósiles en el mundo es aproximadamente diez billones de vatios, 10 tera-vatios (TW). Los mismos prefijos se añaden a las unidades de energía eléctrica: el voltio (v) es una medida de la diferencial de potencial entre dos puntos de un conductor, y el amperio (A), que mide la intensidad de la potencia eléctrica. La potencia de un sistema eléctrico es el producto de la diferencia de potencial y la intensidad de la corriente, lo que significa que un vatio es igual a un voltio por un amperio.
En la anterior tabla se relaciona una lista completa de los múltiplos y submúltiplos, algunos de los cuales se usan con mucha menos frecuencia cuando se trata de flujos de energías cotidianos.
Relación energética del Sol y la Tierra
Mientras en el núcleo del Sol quede suficiente hidrógeno para mantener las reacciones termonucleares, la estrella que nos alumbra inundará la Tierra con radiación solar, que suministra la energía necesaria para mantener la mayoría de los procesos físicos y químicos que se producen en nuestro planeta.
Esta radiación calienta la atmósfera y el océano, genera vientos y lluvias y sostiene el inexorable proceso de la denudación. De todas las conversiones generadas de las energías globales que se producen en la Tierra, las geotectónicas (la lenta modificación del fondo oceánico y de los continentes, acompañada de terremotos y las espectaculares liberaciones energéticas de los volcanes), son las únicas que no proceden de la radiación solar, sino de la gravedad y de la liberación gradual del calor terrestre.
La luz solar también suministra la energía necesaria para la fotosíntesis, la más importante transformación bioquímica, creando nueva biomasa en bacterias, fitoplancton, plantas superiores y, sobre todo, en bosques y praderas. Esta síntesis es el fundamento de la cadena alimenticia necesaria para el metabolismo heterótrofo de animales y personas, a los cuales la nutrición les permite desarrollar actividades que van desde una simple carrera a trabajos más elaborados, como la ocupación laboral y el ocio.
Así de importante es la luz. Las sociedades humanas, desde los pequeños grupos de cazadores o pastores hasta las sociedades más complejas que dependen de los enormes flujos de combustibles fósiles y electricidad, han estado ineludiblemente ligadas al continuo flujo de energía solar y a los almacenamientos energéticos procedentes de la misma.
El proceso de formación de carbón a partir de restos vegetales acumulados en zonas acuáticas y sumergidos, de tal manera que estaban aislados de la atmósfera, sufrieron una transformación por efecto de las bacterias anaeróbicas, que aumentan la concentración de carbono de los azúcares y desprenden gases, como metano y anhídrido carbónico. Así se forma una masa gelatinosa de turba. Posteriormente, ésta se hunde y sobre ella se van depositando nuevas capas. Las más inferiores pueden sufrir transformaciones metamórficas debido a la elevada presión y temperatura que soportan, convirtiéndose en grafito. Las condiciones biológicas, climáticas y estructurales más favorables para que tenga lugar esta serie de transformaciones se dieron durante el periodo carbonífero, que en Eurasia y Norteamérica se encontraban situadas en posición tropical y cubiertas de grandes bosques próximos al mar, que se inundaron debido a los movimientos verticales causados por la orogenia hercínica. Los yacimientos de carbón de mayor antigüedad proceden del devónico y los más modernos del cuaternario inferior.
El proceso de formación del petróleo se origina a partir de acumulaciones de plancton marino que sufre transformaciones, semejantes a la carbonización, por bacterias anaeróbicas, y que dan lugar a una materia denominada sapropel y posteriormente a la mezcla de hidrocarburos típica del petróleo. Esta transformación de hidrocarburos suele tener lugar al mismo tiempo que el proceso de sedimentación de arenas y arcillas que se transformarán en areniscas y margas, y quedarán impregnadas por el petróleo, dando lugar a las rocas madre de éste. Cuando éstas sufren presiones orogénicas o simplemente quedan sometidas a una mayor presión al hundirse los sedimentos, el petróleo migra hasta encontrarse con rocas impermeables que impiden su avance y se acumula en el subsuelo, generando los verdaderos yacimientos petrolíferos.
Los hidrocarburos gaseosos están acumulados en la parte superior de estos yacimientos de petróleo (aceites de roca: del latínpetram, “piedra” yoleum, “aceite”), que es un aceite mineral hidrocarbonato, oleaginoso, inflamable, de olor acre, densidad inferior a la del agua y cuyo color varía desde el negro al incoloro. Consta principalmente de hidrocarburos líquidos, en los que se encuentran disueltos hidrocarburos sólidos (asfaltos y betunes) y gaseosos (metano, butano y acetileno); también contiene pequeñas porciones de nitrógeno, azufre, oxígeno, colesterina, porfirinas, vanadio, níquel, cobalto y molibdeno. De todo esto, mediante procesos industriales de refinado, se obtienen los productos de todos conocidos como la gasolina, nafta, queroseno, gasóleo, etc.
Su combustión es una de las fuentes más importantes de contaminación por los elevados porcentajes de azufre y otras materias que contiene. Sin embargo, por obtener esta fuente de contaminación y “riqueza” se crean conflictos que desembocan en las guerras que azotan nuestro mundo.
Ahora, después de esta breve explicación, sabemos un poco más sobre esta materia prima que ha servido, y continuará aún algún tiempo sirviendo de base a muchas generaciones pasadas y alguna menos futura: civilizaciones del combustible sólido, con su profesión de servicios energéticos, transporte generalizado y exceso de información (no siempre deseable, ya que si elimináramos el 80% de las programaciones televisivas, el mundo sería algo más culto y estaría menos embrutecido).
Un observador extraterrestre no podría encontrar nada extraordinario que le permitiera distinguir el Sol entre las millones de estrellas similares que existen en la nuestra y otras galaxias, y que a su vez representan una fracción de cientos de miles de millones de cuerpos radiantes que las forman. Como se ha dicho otras veces, nuestro Sol pertenece a una clase común de estrella localizada aproximadamente en el centro de la secuencia principal* del esquema de clasificación conocido como de Herzsprung-Russell, denominada enana G2, que posee un característico color amarillo y una magnitud estelar poco importante (+4’83). Así que, después de 4.500 millones de años, el Sol está a la mitad de su vida y va camino de transformarse de enana en gigante roja. Cuando esto ocurra, su luminosidad será mil veces mayor que la actual, y su diámetro, enormemente expandido, alcanzará (probablemente) la Tierra. Durante algún tiempo el planeta girará dentro de una órbita en el interior de la ligera cubierta de la estrella, pero final e inevitablemente caerá describiendo una espiral hasta ser engullida por el núcleo de la gigante roja.
Mucho antes de que el Sol se transforme en una gigante roja la vida en la Tierra desaparecerá. Según se contraiga el núcleo solar, las reacciones termonucleares calentarán su capa externa; el diámetro de la estrella se expandirá unas diez mil veces y la radiación de la subgigante roja evaporará los océanos y mares de la Tierra generando fortísimos vientos calientes en la convulsa atmósfera del planeta.
Sin embargo, mientras haya hidrógeno en el núcleo de la estrella, los inexorables cambios de su luminosidad serán graduales y el Sol continuará suministrando la energía necesaria, tanto para la vida en la Tierra como para la mayoría de las transformaciones físicas que ocurren en ella.
Las primeras explicaciones científicas de la radiación solar, cálculo basado en la gravitación de Hermann Helmholtz, conducen a una estimación de la vida de la estrella de unos treinta millones de años. La famosa ecuación de Einstein relacionando la materia y la energía abrió el camino hacia un modelo más preciso que, por sí sólo, tampoco nos ofrece una solución completamente satisfactoria. Por otra parte, no parece probable que la transformación total de materia solar, convirtiendo los núcleos atómicos y los electrones en radiación (según teorizaba Sir Arthur Eddington), pueda producirse ni siquiera a temperaturas superiores a los diez mil millones de grados Kelvin (K). La idea hoy aceptada de que la producción de la energía en el núcleo del Sol obedece a reacciones nucleares fue propuesta a finales de los años treinta por Hans Bethe, Charles Critchfield y Carl Friedrich von Weizsäcker.
La fusión de hidrógeno en helio, en el ciclo protón–protón, se inicia cuando la temperatura alcanza los trece millones de grados Kelvin. Justo por encima de los 16 millones Kelvin empieza a dominar el ciclo carbono-nitrógeno que genera C12. No podemos estar seguros, pero de acuerdo con los mejores modelos, el ciclo C-N genera solamente un 1’5% de la energía total del Sol.
Las reacciones en el núcleo solar consumen entre 4’3 y 4’6 millones de toneladas de materia cada segundo, de manera que de 4.654.000 t de hidrógeno, 4.650.000 se transforman en helio, y las 4.000 toneladas que faltan son lanzadas al espacio en forma de radiación termonuclear (luz y calor) de la que una pequeña parte nos llega a la Tierra para hacer posible la vida.
De acuerdo a la relación masa-energía de Einstein, liberan 3’89×1026 J de energía nuclear. Este inmenso flujo de energía es rápidamente transformado en energía térmica, que es transportado, isotrópicamente, hacia el exterior, primero por irradiación aleatoria y luego más rápidamente por convección direccional.
Suponiendo (como antes apuntaba) que la radiación es isótropa, la potencia de la luz visible que atraviesa cada metro cuadrado de la capa emisora de la fotosfera es aproximadamente de 64 MW. Como en el espacio no hay prácticamente atenuación de la radiación solar, cuando ésta alcanza la órbita de la Tierra tiene una densidad de potencia igual al cociente entre la luminosidad total del Sol (3’89×1026 W) y el área de una esfera de radio orbital (que, como promedio, es de unos 150 millones de kilómetros).
Este flujo, tradicionalmente conocido como la constante solar, es la tasa máxima de energía que llega a la parte superior de la atmósfera terrestre. A principios de los años setenta, la NASA utilizó para el diseño de las naves espaciales un valor de la constante solar igual a 1.353 W/m2. El flujo ha sido medido directamente en el espacio desde 1.979, cuando el satélite Nimbus 7 obtuvo un valor de 1.371 W/m2. En el más reciente satélite de la Solar Maximum Mission lanzado en 1.980 se obtuvo una media ponderada de 1.368’3 W/m2.
Las observaciones continuadas desde el espacio han revelado la existencia de una compleja regularidad de pequeñas fluctuaciones de corta duración que, debido a la interferencia de la atmósfera, no habían podido ser observadas anteriormente. Estas fluctuaciones de poca duración (del orden de días a semanas) y de hasta un 0’2 por ciento son debidas al paso de manchas oscuras y fáculas brillantes que arrastra el Sol en su rotación; el ciclo medido es de 11 años, en el que la radiación solar disminuye en un 0’1 por ciento entre el valor máxima y el mínimo.
La longitud de onda de la energía electromagnética emitida por el Sol y que llega a la Tierra varía en más de diez órdenes de magnitud. Va desde la longitud de onda más corta, que corresponde a los rayos gamma y rayos X de menos de 10-10 m, hasta la longitud de ondas de radio que superan el metro.
El aspecto del espectro de la radiación solar es similar al de un cuerpo negro a 6.000º K. Ambos espectros son especialmente parecidos en el rango de la longitud de onda mayor que la del amarillo, pero para longitudes de onda menores, el espectro solar cae notablemente por debajo de la línea de los 6.000º K. De acuerdo con la ley de desplazamiento de Wien, la emisión máxima a esta temperatura es de 483 nm, cerca del final de la zona azul del espectro visible y próximo al verde.
El flujo de energía se reparte desigualmente entre las tres grandes categorías espectrales: radiación ultravioleta (UV), cuya longitud de onda va desde las más cortas hasta los 400 nm y contribuye con menos del 9 por ciento de la radiación total; la luz visible, que va desde los 400 nm del violeta más lejano hasta los 700 nm del rojo más oscuro y representa un 39 por ciento; y la radiación infrarroja (IR), que representa cerca del 52 por ciento.
Es la radiación solar que llega a la superficie de la Tierra en forma de rayos provenientes del Sol sin haber sufrido difusión, ni reflexión alguna. Esta radiación llega a la superficie de la Tierra, sin cambios de dirección.
La radiación que llega a la superficie de la Tierra es muy diferente de la radiación extraterrestre, tanto cualitativa como cuantitativamente. Las razones físicas de esta diferencia son varias: que la órbita de la Tierra es elíptica, la propia forma del planeta, la inclinación del eje de rotación, la composición de la atmósfera y la reflectividad (albedo) de las nubes y superficies terrestres. Consecuentemente, la radiación solar que llega a la superficie de la Tierra presenta una compleja pauta espacial y temporal. La media anual global es ligeramente inferior a 170 W/m2 en los océanos y de unos 180 W/m2 en los continentes. La diferencia más importante del valor esperado, según la latitud de la zona, se encuentra en la disminución que se presenta en los trópicos y durante los monzones subtropicales, debido a la alta nubosidad. Grandes regiones de Brasil, Nigeria y el sur de China reciben menos insolación que Nueva Inglaterra o las regiones de Europa occidental. Es aún más sorprendente que no haya diferencia entre el flujo máximo que se recibe al mediodía durante el verano en Yakarta, situada en el ecuador, y el que se recibe en ciudades subárticas como Edmonton en Canadá o Yakutsk en Liberia. Quizás el mejor ejemplo sea el de Oahu, donde la casi siempre nublada cordillera Koolau, que intercepta las nubes y las lluvias arrastran los alisios, tiene una media anual de radiación de 150 W/m2, mientras que en Pearl Harbor, a 15 Km de distancia en la dirección del viento, la media es de 250 W/m2.
La radiación solar media de 170 W/m2 representa anualmente una energía de 2’7×1024 J, que equivale a 87 PW. Esta cantidad es casi 8.000 veces mayor que el consumo mundial de combustibles sólidos y electricidad durante los primeros años noventa. Sólo una pequeña fracción de este inmenso flujo es absorbida por los pigmentos de las plantas para realizar la fotosíntesis, y una parte algo mayor, pero también pequeña, se utiliza para calentar las plantas, los cuerpos de los animales y las personas, así como sus refugios.
La energía siempre sustentó la vida en nuestro planeta desde hace muchos millones de años
La radiación también sustenta la vida porque al calentar los océanos, las rocas y los suelos, impulsa funciones fundamentales en la biosfera, tales como el ciclo del agua, la formación de los vientos, el mantenimiento de la temperatura adecuada para que funcionen los procesos metabólicos y la descomposición orgánica. Además, es la causante de la erosión que transporta los nutrientes minerales para la producción primaria de materia orgánica.
A la larga, para mantener el equilibrio térmico del planeta, la radiación solar absorbida debe emitirse al espacio, pero la longitud de onda está drásticamente desplazada hacia el infrarrojo. A diferencia de la radiación de longitud de onda corta emitida por el Sol, que está determinada por la temperatura de la fotosfera (5.800º K), la radiación terrestre corresponde muy aproximadamente a las emisiones electromagnéticas de un cuerpo negro a 300º K (27ª C). El máximo de emisión de esa esfera caliente está en la zona del IR a 966 μm. Como el 99% de la radiación solar llega en longitudes de onda menores de 4 μm y el espectro terrestre apenas alcanza los 3 μm, el solapamiento de frecuencias entre estos dos grandes flujos de energías es mínimo.
Reacción protón–protón para formar helio 4 liberando energía
Es verdaderamente maravilloso que hallamos podido llegar a comprender los procesos complejos que, mediante hilos invisibles de energía, hacen posible que la vida en la Tierra esté presente, que los procesos esenciales del planeta sean posibles gracias al Sol y que, escenarios maravillosos como una puesta de Sol o una Aurora Boreal, sean todos la consecuencia de que, la energía, está presente en el Universo, en nuestro mundo, en nuestras vidas.
Emilio Silvera Vázquez
Dic
11
Los Quarks invisibles
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (1)
Una vez que se ha puesto orden entre las numerosas especies de partículas, se puede reconocer una pauta. Igual que Dimitri Ivanovich Mendeleev descubrió el sistema periódico de los elementos químicos en 1869, así también se hizo visible un sistema similar para las partículas. Esta pauta la encontraron independientemente el americano Murray Gell-Mann y el israelí Yuval Ne’eman. Ocho especies de mesones, todos con el mismo espín, u ocho especies de bariones, con el mismo espín, se podían reagrupar perfectamente en grupos que llamaremos multipletes. El esquema matemático correspondiente se llama SU(3). Grupletes de ocho elementos forman un octete “fundamental”. Por esta razón Gell-Mann llamó a esta teoría el “óctuplo camino”. Lo tomó prestado del budismo de acuerdo con el cual el camino hacia el nirvana es el camino óctuplo.
Rueda del dharma
El dharma chakra (o “rueda del darma”, “rueda de la ley”) es un símbolo que representa al dharma (‘ley’ o ‘religión’), en el hinduismo, el budismo y el jainismo. Ocasionalmente se traduce como ‘rueda de doctrina’. El dharmachakra o rueda del dharma.
El Noble Camino Óctuple es considerado, según el budismo, como la vía que lleva al cese del sufrimiento. Este cese del sufrimiento se conoce como nirvana. Puede ser que eso fuese lo que sintiera Gell-Mann al finalizar sus trabajos, y, de ahí la adopción del nombre y todo lo que lleva consigo de simbología.
El noble camino es una de las enseñanzas budistas fundamentales; la cuarta parte de las Cutro Nobles Verdades. En la simbología budista, el noble camino es usualmente representado con la rueda del dharma, donde cada rayo representa un elemento del sendero. Este símbolo también se utiliza para el budismo en general.
Los elementos del noble camino óctuple se subdividen en tres categorías básicas: sabiduría, conducta ética y entrenamiento de la mente (o meditación); para rehabilitar y desacondicionar la mente. En todos los elementos del noble camino, la palabra «correcta» es una traducción de la palabra “sammā” (en pali), que significa ‘plenitud’, ‘coherencia’, ‘perfección’ o ‘ideal’. El noble camino es: Sabiduría.
Pero sigamos con el trabajo.
Las matemáticas SU(3) también admiten multipletes de diez miembros. Cuando se propuso este esquema se conocían nueve bariones con espín 3/2. Los esquemas SU(3) se obtienen al representar dos propiedades fundamentales de las partículas, la extrañeza S frente al iso-espín I₃ , en una gráfica.
Primera observación de un neutrino en una cámara de burbujas, noviembre de 1970. El neutrino incidente golpea un protón (a la derecha en la foto). El neutrino se transforma en un leptón mu (la larga traza en medio de la foto). La traza corta es el protón. La tercera traza es de un mesón pi.
Arriba dos imágenes de trazas en la cámara de burbujas del primer evento observado incluyendo bariones Ω, en el Laboratorio Nacional Brookhaven. Dependiendo de su masa y tamaño las partículas producen distintos remolinos en la cámara de burbujas.
De esta manera, Gell-Mann predijo un décimo barión, el omega-menos (Ω¯), y pudo estimar con bastante precisión su masa porque las masas de los otros nueve bariones variaban de una forma sistemática en el gráfico (también consiguió entender que las variaciones de la masa eran una consecuencia de una interacción simple). Sin embargo, estaba claro que la Ω¯, con una extrañeza S = -3, no tenía ninguna partícula en la que desintegrarse que no estuviera prohibida por las leyes de conservación de la interacción fuerte. De modo que, la Ω¯ sólo podía ser de tan sólo 10¯²³ segundos como los demás miembros del multiplete, sino que tenía que ser del orden de 10¯¹⁰ segundos. Consecuentemente, esta partícula debería viajar varios centímetros antes de desintegrarse y esto la haría fácilmente detectable. La Ω¯ fue encontrada en 1964 con exactamente las mismas propiedades que había predicho Gell-Mann.
Se identificaron estructuras multipletes para la mayoría de los demás bariones y mesones y Gell-Mann también consiguió explicarlas. Sugirió que los mesones, igual que los bariones, debían estar formados por elementos constitutivos “más fundamentales aún”. Gell-Mann trabajaba en el Instituto de Tecnología de California en Pasadena (CalTech), donde conversaba a menudo con Richard Feynman. Eran ambos físicos famosos pero con personalidades muy diferentes. Gell-Mann, por ejemplo, es conocido como un entusiasta observador de Pájaros, familiarizado con las artes y la literatura y orgulloso de su conocimiento de lenguas extranjeras.
A comienzos de los años sesenta, un profesor del Instituto de Tecnología de California (Caltech) imparte un curso completo de física ante una cada día más numerosa. Su nombre: Richard Feynman
Feynman fue un hombre hecho a sí mismo, un analista riguroso que se reía de cualquier cosa que le recordara la autoridad establecida. Hay una anécdota que parece no ser cierta de hecho, pero que me parece tan buena que no puedo evitar el contarla; podía haber sucedido de esta forma. Gell-Mann le dijo a Feynman que tenía un problema, que estaba sugiriendo un nuevo tipo de ladrillos constitutivos de la materia y que no sabía qué nombre darles. Indudablemente debía haber de haber pensado en utilizar terminología latina o griega, como ha sido costumbre siempre en la nomenclatura científica. “Absurdo”, le dijo Feynman; “tú estás hablando de cosas en las que nunc ase había pensado antes. Todas esas preciosas pero anticuadas palabras están fuera de lugar. ¿Por qué no los llamas simplemente “shrumpfs”, “quacks” o algo así?”.
Los pequeños componentes de la materia ordinaria
Cuando algún tiempo después le pregunté a Gell-Mann, éste negó que tal conversación hubiera tenido lugar. Pero la palabra elegida fue quark, y la explicación de Gell-Mann fue que la palabra venía de una frase de Fynnegan’s Wake de James Joyce; “¡Tres quarks para Muster Mark!”. Y, efectivamente así es. A esas partículas les gusta estar las tres juntas. Todos los bariones están formados por tres quarks, mientras que los mesones están formados por un quark y un anti-quark.
Los propios quarks forman un grupo SU(3) aún más sencillo. Los llamaremos “arriba (u)”, “abajo” (d), y “extraño” (s). Las partículas “ordinarias” contienen solamente quarks u y d. Los hadrones “extraños” contienen uno o más quarks s (o antiquarks ŝ).
La composición de quarks de espín 3/2 se puede ver en cualquier tabla de física.. La razón por la que los bariones de espín ½ sólo forman un octete es más difícil de explicar. Está relacionada con el hecho de que en estos estados, al menos dos de los quarks tienen que ser diferentes unos de otros.
Junto con los descubrimientos de los Hadrones y de sus componentes, los Quarks, durante la primera mitad del sigo XX, se descubrieron otras partículas. Los Hadrones forman dos ramas, los mesones formados por dos quarks y los bariones por tres.
.
La Mecánica cuántica es muy extraña
Realmente, la idea de que los hadrones estuvieran formados por ladrillos fundamentales sencillos había sido también sugerida por otros. George Zweig, también en el Cal Tech, en Pasadena, había tenido la misma idea. Él había llamado a los bloques constitutivos “ases!, pero es la palabra “quark” la que ha prevalecido. La razón por la que algunos nombres científicos tienen más éxito que otros es a veces difícil de comprender.
Pero en esta teoría había algunos aspectos raros. Aparentemente, los quarks (o ases) siempre existen en parejas o tríos y nunca se han visto solos. Los experimentadores habían intentado numerosas veces detectar un quark aislado en aparatos especialmente diseñados para ello, pero ninguno había tenido éxito.
Loa quarks –si se pudieran aislar- tendrían propiedades incluso más extrañas. Por ejemplo, ¿Cuáles serían sus cargas eléctricas? Es razonable suponer que tanto los quarks u como los quarks s y d deban tener siempre la misma carga. La comparación de la tabla 5 con la tabla 2 sugiere claramente que los quarks d y s tienen carga eléctrica -1/3 y el quark u tiene carga +2/3. Pero nunca se han observado partículas que no tengan carga múltiplo de la del electrón o de la del protón. Si tales partículas existieran, sería posible detectarlas experimentalmente. Que esto haya sido imposible debe significar que las fuerzas que las mantienen unidas dentro del hadrón son necesariamente increíblemente eficientes.
Todos sabemos que los Leptones son: El electrón, el muón y la partícula Tau y, cada una de ellas tiene su tipo de neutrino: el electrónico, el muónico y el tauónico.
Aunque con la llegada de los quarks se ha clarificado algo más la flora y la fauna de las partículas subatómicas, todavía forman un conjunto muy raro, aún cuando solamente unas pocas aparezcan en grandes cantidades en el universo (protones, neutrones, electrones y fotones). Como dijo una vez Sybren S. de Groot cuando estudiaba neutrinos, uno realmente se enamora de ellos. Mis estudiantes y yo amábamos esas partículas cuyo comportamiento era un gran misterio. Los leptones, por ser casi puntuales, son los más sencillos, y por tener espín se ven afectados por la interacción que actúa sobre ellos de forma muy complicada, pero la interacción débil estaba bastante bien documentada por entonces.
Los hadrones son mucho más misteriosos. Los procesos de choque entre ellos eran demasiado complicados para una teoría respetable. Si uno se los imagina como pequeñas esferas hachas de alguna clase de material, aún quedaba el problema de entender los quarks y encontrar la razón por la que se siguen resistiendo a los intentos de los experimentadores para aislarlos.
Emilio Silvera Vázquez
Si queréis saber más sobre el tema, os recomiendo leer el libro Partículas de Gerard ´t Hooft