Jul
7
Las estructuras fundamentales de la Naturaleza
por Emilio Silvera ~
Clasificado en La Naturaleza...El Universo ~
Comments (1)


Una molécula de Agua y otra de Amoníaco
Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.


La cosmología sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del Big B ang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo. Alguna vez he puesto el ejemplo de mirar algo que nos es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.


Bacterias de la mano de una niña

Esta imagen de un cristal de zeolita, que mide 0,004 milímetros, obtenido en el laboratorio a partir de un residuo de aluminio. Las zeolitas son minerales que se originan por reacciones entre rocas sedimentarias y volcánicas.

La cabra ayuda a recolectar el fruto

– M. monandra. A: epidermis de la lemma en su tercio medio dorsal.
B: epidermis de la lemma en su tercio distal. C: detalle de epidermis abaxial con costillas, surcos y una hilera de células cortas costales. D: detalle de un surco con un pelo bicelular (flecha).
E: detalle de epidermis adaxial con células papilosas y macropelos.
F: Epidermis de la cara interna de la gluma superior, con células papilosas y estomas (flecha). Fotomicrografías obtenidas con Microscopio Electrónico de Barrido.
Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y complejo como una ciudad, y con sus límites delineados por la pared celular. Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.
Ya ahí tenemos pruebas de historia. Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.
Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes. Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros. Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión. Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol. Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones.

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad y ahora están en nosotros y en todos los objetos del universo, chicos o grandes, todo lo material está hecho de Quarks y Leptones desde una bacteria hasta una galaxia. Por supuesto, también nuestro cerebro y las neuronas que crean pensamientos.

Electrones y positrones colisionan por primera vez en el acelerador SuperKEKB
Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores. Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía. Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del Big Bang.

Los telescopios, y no solamente los que trabajan en la zona visible del espectro electromagnético, son instrumentos que nos dejan ver objetos cada vez más lejanos y al mismo tiempo más jóvenes (más cercanos al big bang), por eso podemos llamarlos ‘máquinas del tiempo
Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo. Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.
Hemos llegado a dominar técnicas asombrosas que nos facilitan ver aquello que, prohibido para nuestro físico, sólo lo podemos alcanzar mediante sofisticados aparatos que bien nos introduce en el universo microscópico de los átomos, o, por el contrario nos llevan al Universo profundo y nos enseña galaxias situadas a cientos y miles de millones de años-luz de la Tierra.

Cuando vemos esos objetos cosmológicos lejanos, cuando estudiamos una galaxia situada a 100.000 mil años-luz de nosotros, sabemos que nuestros telescopios la pueden captar gracias a que la luz de esa galaxia, viajando a 300.000 Km/s llegó a nosotros después de ese tiempo, y, muchas veces, no es extraño que el objeto que estamos viendo ya no exista o si existe, que su conformación sea diferente habiéndose transformado en diferentes transiciones de fase que la evolución en el tiempo ha producido.

El acelerador europeo ha obtenido y estudiado plasma de quarks-gluones, el primer estado de la materia tras el Big Bang
En el ámbito de lo muy pequeño, vemos lo que está ahí en ese momento pero, como se explica más arriba, en realidad, también nos lleva al pasado, a los inicios de cómo todo aquello se formó y con qué componentes que, en definitiva, son los mismos de los que están formadas las galaxias, las estrellas y los planetas, una montaña y un árbol y, cualquiera de nosotros que, algo más evolucionado que todo lo demás, podemos contarlo aquí.
Estas y otras muchas maravillas son las que nos permitirán, en un futuro relativamente cercano, que podamos hacer realidad muchos sueños largamente dormidos en nuestras mentes.
Emilio Silvera V.
Jul
6
Estamos hechos de polvo de estrellas
por Emilio Silvera ~
Clasificado en General ~
Comments (1)

https://www.facebook.com/watch/?v=1851353128208926
Los materiales de los que estamos hechos los seres vivos se “fabricaron” en las estrellas que, durante más de 10.000 millones de años fusionaron elementos sencillos en otros más complejos para que ahora, seres vivos pululen por todo el Universo (no parece creíble la idea de que solo en la Tierra existe la Vida).
Jul
6
Biología de las Estrellas, y, la Vida
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (2)



Han tenido que pasar miles de millones de años para hacer posible la existencia de imágenes como las que arriba podemos ver, Y, las estrellas, han estado fusionando elementos sencillas en otros más complejos para hacer posible la llegada de la Vida,
:format(jpg)/f.elconfidencial.com%2Foriginal%2F11e%2F6e6%2Fabc%2F11e6e6abca374cfabd9f6e5cf03fdc52.jpg)
Nadie se atreve a negar la posible existencia de formas de vida en otros mundos, ya que, sabiendo que el Universo es igual en todas partes (por alejadas que puedan estar sus regiones), y, que en todas ellas está regido por las mismas leyes fundamentales y las mismas constantes universales… ¡Lo que pase “aquí” podrá pasar “allí”, y, salvo cambios singulares debidos al entorno (Gravedad, Atmósfera, Radiación…l), todas las formas de vida se deduce que estarán basadas en el Carbono (sin descartar), la posible existencia de otras que podrían estar basadas en elementos como el Silicito.
¿Es viejo el universo?
“Las cuatro edades del hombre: Lager, Aga, Saga y Gaga”.
Nebulosas donde nacen estrellas de segunda generación y planetas
Jul
5
¡Andrómeda! ¿Una amenaza?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Andrómeda, junto a la Vía Láctea, es la galaxia más grande del Grupo Local de galaxias, en el que estamos inmersos junto a otras más pequeñas y, dicho cúmulo pertenece a otro mucho mayor. El Supercúmulo de Virgo, o Supercúmulo Local, (en inglés ‘Local Supercluster’ o LS) es el supercúmulo de galaxias que contiene al Grupo Local y con él, a nuestra galaxia, la Vía Láctea.
La galaxia Andrómeda se aproxima hacia la Vía Láctea a una velocidad de unos 420.000 km/h, y algunos especulan que ambas colisionarán dentro de unos 5.860 millones de años, fusionándose en una galaxia mayor, en el evento conocido como Lactómeda.
Claro que, pensar en las consecuencias que se derivarán de ese encuentro, no deja de parecer prematuro, ya que, más de 5.000 M de años es mucho Tiempo para poder supeditarnos a lo que podría pasar en aquel futuro tan lejano, y, habría que pensar en otros eventos que podrían estar presentes en ese inte5rmidio inconmensurable.
Pero veamos el video y pensemos que las nuevas tecnologías nos traerán nuevos datos y conocimientos que nos permitan conocer más acertadamente lo que pasará en un Tiempo en el que, nosotros, ya no estaremos aquý, e incluso, es dudoso que la misma Humanidad sea testigo de esos momentos.
Jul
5
La Importancia del Carbono
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
![]()
Un átomo vital: el Carbono
El carbono es el elemento de símbolo C y número atómico Z=6. Esto significa que un átomo de carbono tiene 6 protones en su núcleo y, para neutralizar dicha carga, 6 electrones en su capa electrónica, con una estructura 1s22s22p2

Los elementos de la Vida

La Vida en la Tierra está constituida sólo por un grupo reducido de elementos, entre los cuales podemos nombrar al Hidrógeno, Oxígeno, Nitrógeno, Fósforo, Azufre, y sobre todo, Carbono. El carbono es un elemento que muestra una gran facilidad para enlazarse con múltiples átomos, o consigo mismo; actúa como la goma que une las piezas de la vida. Pero, ¿a qué se debe esta versatilidad del Carbono?
“El carbono posee 6 protones y 6 neutrones en su núcleo. Su número atómico es 6 y su masa atómica es 12. Esto significa que tiene en su núcleo 6 protones y 6 neutrones en su configuración estable, y que el núcleo está rodeado por 6 electrones.”
¿Cómo es posible que en los átomos, los electrones orbiten alrededor del núcleo si, según la función de onda de Schrödinger, dichos electrones están en varios sitios a la vez?
Podemos decir, de manera muy simple e incorrecta, que los electrones en un átomo, orbitan alrededor de un núcleo en forma de capas concéntricas; en cualquier átomo, cada capa puede contener cierto número de electrones. La primera acomoda sólo 2 electrones, la siguiente 8. Sin embargo el átomo de carbono posee sólo 6 electrones, 2 en la capa interna y 4 en la siguiente. Los átomos de Carbono tienden a llenar estos “agujeros” con electrones de otros átomos de las inmediaciones creando enlaces sencillos distintos, o bien pueden llenarlos con 2 o 3 electores de un mismo átomo formando un enlace doble o triple.


Teoría del enlace-valencia y Hibridación
Los electrones de número cuántico principal 2, reorganizan sus energías formando cuatro orbitales nuevos equipotentes en su energía, se les llama “orbitales híbridos” que se distribuyen en los vértices de un tetraedro regular.
![]()
Cuatro orbitales sp³.
![]()
Configuración de los orbitales sp².
Un simple átomo de carbono puede de esta forma mantener unida una molécula de formaldehído, u una hilera de átomos entrelazadas por carbono puede servir de columna dorsal para una proteína .Sin embargo, los sistemas complejos, autorregulados, que viven, se reproducen y mueren, requieren moléculas mucho más sofisticadas los cuales sólo pueden ser producto de una larga evolución, la que a su vez, requiere de ciertas condiciones particulares. Estas moléculas complejas, creadas en el curso de millones de años, son los llamados polímeros orgánicos, cadenas gigantescas, anillos, retículos y glóbulos construidos a partir de unidades químicas conocidas como monómeros, de entre los cuales los aminoácidos son una variedad. Las proteínas son conjuntos enmarañados de cadenas de péptidos, los cuales consisten a su vez de cientos de aminoácidos ligados.


La unidad más pequeña de vida autosuficiente en la Tierra es la célula. La célula se compone esencialmente de 2 partes: el citoplasma, donde se encuentra la mayor parte de las sustancias alimenticias y un núcleo, donde existen dos ácidos que son fundamentales para la vida, el ADN y el ARN.

El ADN se encuentra en el núcleo es el que contiene el código genético que dice qué proteínas debe construir y cómo se colocarán los aminoácidos para construirlas, El ARN está también en el citoplasma y actúa como el mensajero del código genético al citoplasma, donde están los aminoácidos que luego formarán las proteínas.
![]()
Las manos son un ejemplo típico de enantiómeros
La asimetría del átomo de carbono. Los estereoisómeros y la Vida

Cuando un compuesto de Carbono tiene un átomo de éste asimétrico, es decir que tiene sus cuatro valencias saturadas por radicales distintos, entre otras cosas podemos distinguir dos isómeros espaciales o estereoisómeros. Esto ocurre con los glúcidos y los aminoácidos, entre otros compuestos de la vida.
Fijémonos en el glúcido bio-orgánico más simple: el Gliceraldehido. Éste tiene un átomo de carbono asimétrico; se trata del carbono 2. Fijándonos en ese carbono podemos distinguir dos isómeros espaciales o estereoisómeros; el D-gliceraldehido, cuando el –OH está a la derecha, y el L-gliceraldehido, cuando el –OH está a la izquierda. Cada una de estas estructuras es una imagen especular de la otra, se las llama estructuras enantiomorfas.
Estas dos estructuras no pueden coincidir al hacerlas girar en el espacio; son estructuras diferentes
Existiendo un electrón en cada uno de los orbitales.
Según esto, los cuatro átomos de hidrógeno del metano se dispondrían así:
Tan diferentes que un enzima que catalice a una forma no lo hará con la enantiomorfa.
Parece que la Vida se decidió por Glúcidos de la forma D; sólo algunos casos excepcionales de formas L, encontramos en los seres vivos (por ejemplo la vitamina C, en nosotros mismos, que es de forma L). También parece que la Vida se decidió por las formas L de los aminoácidos.
Las probabilidades de formarse ambas es la misma. ¿Porqué la Vida escoge a una y no a otra?. Ello ha sido intensamente discutido y se han propuestos las hipótesis más especulativas (como la del plano de polarización de la luz de la Luna, las arcillas de los mares primigenios primaron a unas formas y no a otras, etc.).

Por tanto, aunque una Vida extraterrestre se basara en los mismos compuestos que nosotros, podría ocurrir que fuesen especulares nuestros ( y, así pues, estar tan distanciados de nosotros como si fueran de otra substancia).
Las macromoléculas. Ácidos Nucleicos y Proteínas.
La célula es capaz de alimentarse y reproducirse a partir de aminoácidos, proteínas y ácidos nucleicos. La aparición de estos compuestos orgánicos sobre la Tierra se puede estudiar si nos situamos en el medio ambiente primitivo de la Tierra. El universo está compuesto por casi el 90% de hidrógeno. Al principio la Tierra tenía una esfera muy rica en ciertos compuestos de hidrógeno como el vapor de agua, amoníaco, metano, sulfuro de hidrógeno, cianuro de hidrógeno, etc…; y también había un océano de agua líquida con gases atmosféricos disueltos en ella. Los elementos de la atmósfera y de la corteza terrestre reaccionaron entre sí formando moléculas mas complicadas, por ejemplo los aminoácidos. Con esta finalidad eran preciso una fuente de energía. En este entonces, la atmósfera carecía de oxigeno libre, imposibilitándose de formar el tan conocido ozono que impide el paso de los rayos ultravioleta del sol, tan dañinos para el hombre, pero tan favorable para la formación de las primeros moléculas vitales de la Tierra.

En este momentos los aminoácidos libre comenzaron a unirse formando proteínas. Estas a su vez, capaces de aprovechar el oxígeno deben haber elaborado el oxígeno que hoy en día tiene nuestra atmósfera. Luego este oxígeno se pudo agrupar formando el ozono el cual impidió el flujo de radiación ultravioleta, deteniendo la posibilidad de seguí creando organismos. En adelante, los nuevos organismo serían los herederos de esos primeros creados por la radiación solar. En un famoso experimento los investigadores americanos Miller y Urey aplicaron, descargas eléctricas en un recipiente conteniendo una mezcla de hidrógeno, metano, nitrógeno y amoníaco. Al final se comprobó que se habían formado distintas sustancias y combinaciones orgánicas. Se había generado, los bloques constituyentes de una proteína. Se considera que eran capaces de alimentarse y reproducirse. Más adelante fueron formando colonias. Las células se hicieron más interdependientes, dando lugar a los seres pluricelulares que poco a poco evolucionaron y se perfeccionaron. El resto es bastante conocido.
Otras “vidas”
Si nosotros tenemos Ordenadores personalizados que atienden a nuestras instrucciones y se ocupan de necesidades cotidianas en la casa, en la oficina, en la fábrica y, que son capaces de realizar planteamientos matemáticos en minutos que, los seres vivos que los inventaron, tardarían meses en finalizar. Si, de la misma manera, hemos mandado Jet robotizados a Marte y lunas para “ver” y que nos cuenten…¿Qué podría impedir que criaturas inteligentes de otros mundos, nos tuvieran puesta vigilancias y, al ver como somos, se estén pensando visitarnos.
En cualquier parte del Universo pudiera estar presente esas otras posibles formas de vida
Es concebible la existencia de vida en otros sistemas solares, a modo de estructuras complejas autorreproductoras, aunque no tengan por qué ser ácidos nucleicos, ni siquiera compuestos derivados del carbono. Los métodos experimentales que se utilizan para descubrir vida en otros planetas se basan en el supuesto de la bioquímica del carbono; se hace difícil, por tanto, el reconocimiento de otras posibles formas de vida alienígenas.
Se ha sugerido que el átomo de Silicio (inmediatamente debajo del Carbono en el Sistema Periódico, lo cual indica una composición electrónica similar en su última capa) puede funcionar de manera semejante al Carbono; pero su radio atómico es excesivo para formar con éxito cadenas grandes o muy grandes y complejas de Silicio-Silicio. Pero… ¿Quién sabe?.

¡La Vida! la Complejidad del Universo… ¡Lo único le da sentido! ¿Qué sentido tendría un universo sin vida?
Emilio Silvera V.
















Totales: 83.564.375
Conectados: 50
























