Jun
23
¡La Imaginación! ¿Dónde estará el límite?
por Emilio Silvera ~
Clasificado en General ~
Comments (10)
Hemos conseguido grandes logros y enormes conocimientos, cualquiera de ellos es suficiente para causar nuestro asombro. Por ejemplo, matemáticamente, la fuerza eléctrica fue descubierta en el año 1.785 por el ingeniero en estructuras Charles Coulomb. Ahora bien, con relación a las grandes distancias, la fuerza eléctrica y magnética actúa igual a como lo hace la gravedad: al duplicar la distancia, su magnitud disminuye a la cuarta parte.
Claro que la gravedad depende de la masa y la electricidad de la carga y, mientras que la primera sólo es atractiva, la segunda puede ser atractiva cuando los objetos tienen carga diferentes (protón positiva y electrón negativa) o repulsivos cuando las cargas son iguales (protón rechaza a protón y electrón rechaza a electrón); se puede probar jugando con dos imanes que se juntarán por sus polos negativos-positivo y se rechazarán por sus polos positivo-positivo y negativo-negativo. Más tarde llegó Michael Faraday con sus experimentos eléctricos y magnéticos y, finalmente, James Clerk Maxwell formuló con sus ocho ecuaciones vectoriales la teoría del electromagnetismo.
Las que siguen son algunas de las imágenes generadas para mostrar efectos de la Relatividad Especial (velocidades constantes), desde el punto de vista del viajero.
1- Toma en reposo, que apunta en la dirección del movimiento:
2- El mismo punto de vista, pero viajando al 80% de la velocidad de la luz: la visión se ha ampliado en forma similar a como deforma la imagen un lente “ojo de pez”, objetos que antes estaban detrás del ángulo de visión aparecen por delante.
Al acercarnos a la velocidad de la luz, el mundo toma desde nuestro punto de vista, un aspecto muy raro: todo acaba comprimido en una pequeña ventana circular que está constantemente delante de nosotros. Desde el punto de vista de un observador estacionario (quieto), la luz que nosotros reflejamos se enrojece cuando partimos y se azulea cuando volvemos hacia él.
Si nos desplazáramos hacia ese observador a una velocidad cercana a la de la luz, nos vería envueltos en un fantástico resplandor cromático: nuestra emisión infrarroja, normalmente invisible, se desplazará hacia longitudes de onda más visibles, más cortas. Nos vería comprimidos en la dirección de nuestra trayectoria, nuestra masa aumentará, y el tiempo, la sensación de transcurrir del tiempo que le daríamos, sería de gran lentitud, lo que constituye… la dilatación temporal.
Científicos del National Institute of Standards and Technology (NIST) en Estados Unidos probaron que la dilatación del tiempo –un fenómeno predicho por las teorías de relatividad de Einstein, en las que el tiempo corre más rápido o más lento dependiendo de la velocidad y gravedad del objeto– sucede en el día a día de una persona. El efecto de la dilatación del tiempo es uno de los más famosos en las teorías de Einstein. En la televisión, el ejemplo clásico es el de un grupo de astronautas que es lanzado al espacio casi a la velocidad de la luz, y luego cuando regresan a la Tierra siguen jóvenes, aún cuando en nuestro planeta han pasado muchos años (como en el Planeta de los Simios por ejemplo).
Experimento mental de la dilatación del Tiempo (1ª imagen)
El efecto fue planteado por Albert Einstein pero no se probó hasta muchos años después. Una de las demostraciones más famosas ocurrió en 1971, cuando científicos pusieron relojes atómicos en jets comerciales y los hicieron volar alrededor del mundo. Cuando el avión aterrizó, la hora en el reloj del avión y el reloj que estaba en Tierra era distinta. Esto probó que la dilatación del tiempo de veras ocurre. Lo interesante ahora, es que esta dilatación se puede medir en distancias muy pequeñas, con relojes mucho más precisos, en tareas cotidianas.
Lorentz nos descubrió que un objeto que viaje a velocidades cercanas a la de la luz, c, se achatará por la parte delantera del sentido de su marcha (contracción de Lorentz) y, mientras tanto, su masa aumentará (lo que ha sido comprobado en los aceleradores de partículas).
Max Planck nos trajo su cuanto de acción, h, que dio lugar a la mecánica cuántica al descubrir que la energía se transmite en forma discontinua mediante paquetes discretos a los que llamó cuantos. También fue obra de Planck perfeccionar las unidades de Stoney y nos dejó esas cantidades naturales de tiempo, espacio, energía y masa.
En otro orden de cosas:
Es difícil estimar el alivio que la idea de Schrödinger produjo en la comunidad de la física tradicional. Aunque extraña, su imagen del átomo era, al menos, una imagen y los científicos aman las imágenes. Ellos le permitieron el uso de su intuición.
Tomando la idea de De Broglie acerca de la misteriosa onda piloto que transportaba loselectrones alrededor del átomo y la llevó un paso más allá. Sostuvo que el electrón en realidad era una onda de energía que vibraba tan rápido que parecía una nube alrededor del átomo. Una onda de pura energía con forma de nube. Lo que es más, elaboró una nueva y poderosa ecuación que describía completamente esa onda y el conjunto del átomo en términos de la física tradicional.
La ecuación de Schrödinger en general, dependiente del tiempo, que es una ecuación de ondas
Esta ecuación se llama, hoy en día, la Ecuación de onda de Schrödinger. Es increíblemente poderosa. Y su característica principal es que muestra una nueva cantidad llamada la función de onda (Ψ) que según Schrödinger describe completamente el comportamiento del mundo subatómico.
El éxito de la ecuación, deducida de esta expresión utilizando el principio de correspondencia, fue inmediato por la evaluación de los niveles cuantificados de energía del electrón en el átomo de hidrógeno, pues ello permitía explicar el espectro de emisión del hidrógeno: series de Lyman, Balmer, Bracket, Paschen, Pfund…, y otros.
La función de onda, su ecuación y su interpretación. Postulados.
La interpretación física correcta de la función de onda de Schrödinger fue dada en 1926 por Max Born. En razón del carácter probabilista que se introducía, la mecánica ondulatoria de Schrödinger suscitó inicialmente la desconfianza de algunos físicos de renombre como Albert Einstein, para quien «Dios no juega a los dados» y del propio Schrödinger.
Schrödinger, con su función de onda (Ψ), nos dijo la manera de solucionar, en parte, el problema planteado por Heisenberg con su principio de incertidumbre, según el cual no podemos saber, al mismo tiempo, dónde está una partícula y hacia dónde se dirige; sólo estamos capacitados para saber una de las dos cosas, pero no las dos al mismo tiempo. Así que la función de onda nos dice la probabilidad que tenemos para encontrar esa partícula y en qué lugar se encuentra.
La llegada de Einstein, en 1.905, fue para la física como el elefante que entró en la cacharrería; lo puso todo patas arriba. Los cimientos de la física temblaron con aquellos nuevos y osados conceptos que, en un primer momento, no todos pudieron comprender. Precisamente, Max Planck fue uno de esos pocos privilegiados que, al leer el artículo de Einstein sobre la relatividad especial, comprendió que a partir de ese momento habría que concebir la física bajo la base de otros principios.
Einstein, un desconocido, le decía al mundo científico que la velocidad de la luz en el vació, c, era el límite de la velocidad alcanzable en nuestro universo; nada podía ir más rápido que la luz. Además, decía que el tiempo es relativo y que no transcurre igual para todos. La velocidad del paso del tiempo depende de la velocidad a la que se viaje y de quien sea el observador.
El jefe de estación observa como para el tren que viaja a 60 km/h. Puede ver como un niño que viaja con su padre, sentado junto a él, se asoma por la ventanilla y arroja una pelota, en el mismo sentido de la marcha del tren, impulsándola con una fuerza de 20 km/h. Si el que mide la velocidad de la pelota es el jefe de estación, comprobará que ésta va a 80 km/h, los 60 km a los que viaja el tren, más los 20 km a los que el niño lanzó la pelota; ambas velocidades se han sumado. Sin embargo, si la velocidad de la pelota es medida por el padre del niño que también va viajando en el tren, la velocidad será de 20 km/h, sólo la velocidad de la pelota; no se suma la velocidad del tren, ya que quien mide está montado en él y por lo tanto esta velocidad no cuenta. La velocidad de la pelota será distinta dependiendo de quien la mida, si el observador está en reposo o en movimiento.
De la misma manera, Einstein, en su teoría, nos demostraba que el tiempo transcurre más lentamente si viajamos a velocidades cercanas a las de la luz. Tal afirmación dio lugar a la conocida como paradoja de los gemelos. Resulta que dos hermanos gemelos de 28 años de edad se han preparado, uno para arquitecto y el otro para astronauta. El hermano astronauta se dispone a realizar un viaje de inspección hasta Alfa Centauri y su hermano se queda en la Tierra esperando su regreso.
Cuando por fin el astronauta, que a viajado a 250.000 km/s, regresa a la Tierra, desembarca con una edad de 38 años y es recibido por su hermano gemelo que se quedó en la Tierra y que tiene la edad de 80 años. ¿Cómo es posible eso?
Pues ha sido posible porque el hermano que viajó a velocidades cercanas a la de la luz ralentizó el tiempo que transcurrió más lentamente para él que para su hermano de la Tierra. El astronauta viajó hasta Alfa Centauro a 4’3 años luz de la Tierra, ida y vuelta 8’6 años luz. Pero al viajar tan rápido, muy cerca de la velocidad de la luz, transcurrieron sólo 10 años, mientras que en la Tierra pasaron 52 años.
Aunque parezca increíble, esa es la realidad comprobada.
También Einstein postulaba en su teoría que la masa y la energía eran dos aspectos de una misma cosa; la masa sólo era energía congelada. Para ello formulaba su famosa ecuación E = mc2.
Todo el Universo es energía
La estructura interna del átomo
En otro artículo, inspirado por el “cuanto” de Planck, Einstein dejó plasmado lo que desde entonces se conoce como “efecto fotoeléctrico”, demostrando que las partículas unas veces se comportan como tales y otras como una onda. Este trabajo le valió el premio Nobel de Física de 1.923, aunque la mayoría de la gente cree que se lo dieron por su teoría de la relatividad. En verdad, si se considera la importancia de sus trabajos, la Relatividad Especial se merecía un premio Nobel y la Relatividad General de 1.915, se merecía otro.
No fue hasta 1905, cuando Albert Einstein, utilizando la idea de Planck de la cuantización de la energía explicó satisfactoriamente el efecto fotoeléctrico. Por este trabajo Einstein recibió el premio Nobel en 1921.
Mientras que Planck utilizó la cuantización de la energía como un truco de cálculo para explicar la radiación del cuerpo negro, Einstein fue más allá e hizo la sugerencia de que la cuantización de la energía es una propiedad fundamental de la energía electromagnética, marcando así los principios de la teoría cuántica.
Einstein supuso que la luz, o cualquier onda electromagnética de frecuencia f, se puede considerar como una corriente de fotones, cada uno de ellos con una energía E. Contradiciendo la física clásica que dice que la energía de la luz está distribuida de modo uniforme sobre el frente de onda, Einstein postula que la energía lumínica se encuentra concentrada en regiones discretas o en paquetes llamados cuantos de luz. De acuerdo con esta explicación, la energía de un haz de luz monocromática llega en porciones de magnitud hf, donde f es la frecuencia de la luz, y h, la constante de Planck.
De todos sus trabajos, el más completo e importante, es el de la relatividad general, de cuya importancia para la física y para la cosmología, aún hoy, cerca de un siglo después, se están recogiendo resultados. Así de profunda, importante y compleja (dentro de su sencillez y belleza) son las ecuaciones de Einstein que un siglo después continua enviando mensajes nuevos de cuestiones de vital importancia. La teoría M también tiene su origen en la relatividad general que curva el espacio y distorsiona el tiempo en presencia de grandes masas, haciendo posible la existencia de agujeros negros y agujeros de gusano que según algunos, serán la posible puerta para viajar a otros universos y a otro tiempo.
Es necesario que los científicos piensen en estas cosas para solucionar los problemas del futuro y cuándo llegue el momento, salir de las encrucijadas a las que, irremediablemente, estamos destinados.
La gente corriente no piensa en estas cuestiones; su preocupación es más cercana y cotidiana, la hipoteca del piso o los estudios de los niños y, en la mayoría de los casos, lo “importante es el fútbol” para evadirse dicen algunos. Es una lástima, pero así son las cosas. No se paran ni a pensar cómo se forma una estrella, de qué está hecha y por qué brilla. Nuestro Sol, por ejemplo, es una estrella mediana, amarilla, del Grupo G-2, ordinaria, que básicamente consume hidrógeno y como en el Big Bang original, lo fusiona en helio. Sin embargo, puesto que los protones en el hidrógeno pesan más que en el helio, existe un exceso de masa que se transforma en energía mediante la fórmula de Einstein E = mc2. Esta energía es la que mantiene unidos los núcleos. Esta es también la energía liberada cuando el hidrógeno se fusiona para crear helio. Esta, al fin, es la razón de que brille el Sol.
Todos somos uno, y, sin embargo, diferentes. No sabemos mediante qué mecanismos llegan a nuestros cerebros esas ráfagas luminosas del saber que, a unos les hace comprender ciertas cuestiones complejas y, a otros no nos llegan esos fogonazos de luz que alumbren los rincones oscuros existentes en nuestras mentes. Así, para unos es el futbol y para otros las estrellas su mayor preocupación.
Ya hemos comentado alguna vez que los elementos complejos se forman en las estrellas que, desde el hidrógeno, helio, litio, berilio, carbono, neón, etc, hasta el uranio, sin las estrellas no existirían… y nosotros tampoco, ya que nuestra forma de vida está basada en el carbono, un material que tiene su origen en las estrellas y que, al ser de una asombraso adaptabilidad, hace posible la formación del material necesario para la vida.
Aunque, ¿Quién sabe las formas de vida que en el Universo pueden estar presentes? Algunos pudieran ser gigantes de gas, criaturas inteligentes que evolucionan en atmósferas inhóspitas para la vida basada en el carbono, tal vez seres burbuja de gas en Júpiter, cerca de etéreas formas que ni podemos imaginar.
Otros podrían ser viajeros que circulan por el universo cruzando agujeros de gusano, atajos dimensionales para abarcar el cosmos y sembrar su conciencia en diversos sitios de este gran ser holográfico que creemos conocer y, del que, en realidad, sabemos tan poco.
¿Podría ser esa inmensa forma redonda y azulada, un enorme mundo en el que otros seres observan como se acercan osados seres de un planeta llamado Tierra que, con sus rústicas naves y su inmensa ignorancia pretenden conquistar su habitad para envenenarlo como hicieron con el suyo?
Hasta podría haber vida basada en el Silicio en otros mundos
Claro que, el Universo es tan enorme e insólito que, todo en lo que podamos pensar, por muy exótico y raro que nos pueda parecer, ahí podría estar, en cualquier rincón olvidado de una lejana galaxia de las que, en el Universo, proliferan por cientos de miles de millones.
No, no estamos en la Tierra ni tampoco ese que brilla es el Sol. Estamos en un mundo lejano alumbrado por una estrella blanca, no amarilla que, con su luz y su calor, puede que llevara la vida al planeta pero, ¿Qué forma de vida será?
Imaginar que, contando desde hoy, han pasado ya 10.000 años, y, en Marte, se ha formado una atmósfera que impide la entrada de la radiación. Del subsuelo, han comenzado a salir extraños seres que, antes, vivían en las oscuras galerias subterráneas de origen volcánico por donde antes pasó las riadas de lava volcánica en el pasado del planeta. Ahora, a la luz del día y con una atmósfera razonablemente idónea para la vida… ¡Podrán evolucionar!
Marte tiene un rico pasado volcánico, y, la lava dejó grandes galerías en las profundidades del planeta. La temperatura en el subsuelo es más alta y, lo lógico es pensar que el agua corriente discurre libre y cantarina, y, si hay agua: Líquenes, hongos y bacterias estarán presentes.
Por qué Europa, la luna helada de Júpiter, es el mejor candidato para encontrar vida extraterrestre en el Sistema Solar
En cualquier noticia del futuro podríamos ver esta imagen y debajo de ella: ¡Vida en Europa! Imágenes tomadas por sondas robóticas han captado imágenes de estos seres que, viven en los fondos abisales de la luna de Júpiter. Es asombroso el parecido que tiene con algunos seres que viven en el fondo de nuestros océanos terrestres.
En nuestro planeta, la vida está hecha de seis componentes: carbono, hidrógeno, nitrógeno, oxigeno, fósforo y azufre…
Cuestiones tan interesantes como estas son ignoradas por la inmensa mayoría del común de los mortales que, en la mayor parte de los casos tiene una información errónea y deformada de las cosas que se han transmitido de unos a otros de oída, sin base científica alguna y, generalmente, confundiendo los términos y los conceptos. Sería muy deseable que, desde la infancia, como enseñanza obligatoria, todos tuvieran esos conocimientos básicos que podríamos denominar el cánon científico y que, sin ser unos conocimientos profundos, si les diera a cada uno, una noción cercana del mundo en el que viven y de cómo funciona la Naturaleza.
Así las cosas, estamos supeditados a unos pocos enamorados de la ciencia que, muchas veces, en las más ínfimas condiciones, (se les escatima el presupuesto) trabajan e investigan por la propia inercia de su curiosidad y deseo de saber para entregar al mundo (que no lo agradece) el logro de sus desvelos.
Como dijo Kart Raimund Popper, filósofo británico de origen austriaco (Viena, 1902 – Croydon, 1.994) que realizó sumas importantes trabajos en el ámbito de la metodología de la ciencia:
“cuanto más profundizo en el saber de las cosas, más consciente soy de lo poco que sé. Mis conocimientos son finitos pero, mi ignorancia, es infinita“.
Material para combatir esa infinita ignorancia, alguno tenemos. ¿Por qué no utilizarlo?
Está claro que la mayoría de las veces, no hacemos la pregunta adecuada porque nos falta conocimiento para realizarla. Así, cuando se hacen nuevos descubrimientos nos dan la posibilidad de hacer nuevas preguntas, ya que en la ciencia, generalmente, cuando se abre una puerta nos lleva a una gran sala en la que encontramos otras puertas cerradas y tenemos la obligación de buscar las llaves que nos permitan abrirlas para continuar. Esas puertas cerradas esconden las cosas que no sabemos y las llaves son retazos de conocimiento que nos permiten entrar en esos nuevos compartimentos del saber.
Creer que estamos solos…Es un enorme error
Desde tiempos inmemoriales, la Humanidad para avanzar se sirvió de las llaves encontradas por Tales de Mileto, Empédocles, Demócrito, Platón, Pitágoras, Aristóteles… Galileo, Newton… Stoney, Max Planck, Einstein, Heisemberg, Dirac, Feynman,… Witten... y vendrán otros que, con su ingenio y sabiduría, impedirán que todos los demás regresen a las cavernas. Así que ¡a disfrutar de la TV, el fax, los ordenadores, internet, los satélites, los teléfonos móviles tan necesarios, etc! No sabemos cómo funciona todo eso pero ¿qué más da?
Siempre habrá gente que se preocupe por los demás y harán el trabajo necesario para sacarles las castañas del fuego. Esa gente a la que me refiero, son los “chiflados” científicos, siempre en las nubes todos ellos, y no como los políticos “tan pendiente siempre de solucionar nuestros problemas”. Por desgracia, los primeros dependen de los segundos para que les otorguen presupuestos para investigar. ¡Qué mal está repartido el mundo!
Metido en su rincón ni se acuerda de comer
Ahora que menciono el viaje en el tiempo recuerdo “La máquina del tiempo” de H. G. Wells, en la que el científico se sienta en un sillón situado en su sala de estar, gira unos pocos botones, ve luces parpadeantes y es testigo del vasto panorama de la Historia; coloca la aguja para el pasado o para el futuro, señala el año que desea visitar y las guerras y civilizaciones pasan vertiginosamente ante sus ojos y la máquina se detiene en el año, mes y día que él señaló en una especie de dial.
La verdad es que no era, precisamente, un agujero de gusano
Tan rudimentario artilugio contrasta con el que propone Kip S. Thorne. Éste consiste en dos cabinas, cada una de las cuales contiene dos placas de metal paralelas. Los intensos campos eléctricos creados entre cada par de placas (mayores que cualquier cosa posible con la tecnología actual) rizan el tejido del espacio-tiempo, creando un agujero en el espacio que une las dos cabinas. Una cabina se coloca entonces en una nave espacial y es acelerada hasta velocidades cercanas a la de la luz, mientras que la otra cabina permanece en la Tierra. Puesto que un agujero de gusano puede conectar dos regiones del espacio con tiempos diferentes, un reloj en la primera cabina marcha más despacio que un reloj en la segunda cabina. Debido a que el tiempo transcurrirá diferente en los dos extremos del agujero de gusano, cualquiera que entrase en un extremo del agujero de gusano sería instantáneamente lanzado el pasado o al futuro.
Esta es más avanzada y está inspirada por Carl Sagan en su obra Contac que fue llevada al cine
Otra máquina del tiempo podría tener el siguiente aspecto. Si puede encontrarse materia exótica y dársele la forma de metal, entonces la forma ideal sería probablemente un cilindro. Un ser humano está situado en el centro del cilindro. La materia exótica distorsiona entonces el espacio y el tiempo a su alrededor, creando un agujero de gusano que se conecta a una parte lejana del universo en un tiempo diferente. En el centro del vértice está el ser humano, que no experimenta más que 1 g de tensión gravitatoria cuando es absorbido en el agujero de gusano y se encuentra así mismo en el otro extremo del universo.
Aparentemente, el razonamiento matemático de Thorne es totalmente impecable. Las ecuaciones de Einstein muestran en realidad que las soluciones de agujeros de gusano permiten que el tiempo transcurra a diferentes velocidades en cada extremo del agujero de gusano, de modo que el viaje en el tiempo es posible en principio. El problema reside en crear el agujero de gusano en primer lugar, y como Thorne y sus colaboradores señalan rápidamente, lo difícil está en cómo dominar la energía suficiente para crear y mantener un agujero de gusano, como se ha dicho, con materia exótica que, de momento, no parece fácil de conseguir.
Stargate
Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los automóviles en movimiento, los pájaros que vuelan y los misiles propulsados tienen todos energías positivas. (Por definición, el espacio vacío tiene energía nula.) Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el del vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un círculo.
Este concepto más bien simple se conoce con un título que suena complicado: la condición de energía media débil (AWEC). Como Thorne tiene cuidado de señalar, la AWEC debe ser violada; la energía debe hacerse temporalmente negativa para que el viaje en el tiempo tenga éxito. Sin embargo, la energía negativa ha sido históricamente anatema para los relativistas, que advierten que la energía negativa haría posible la antigravedad y un montón de otros fenómenos que nunca se han visto experimentalmente, y que desde luego, nos vendrían como anillo al dedo para solucionar serios problemas.
Kip S. Thorne señala al momento que existe una forma de obtener energía negativa, y esto es a través de la teoría cuántica. En 1.948, el físico holandés Herrik Casimir demostró que la teoría cuántica puede crear energía negativa: tomemos simplemente dos placas de metal paralelas y descargadas. Ordinariamente, el sentido común nos dice que estas dos palcas, puesto que son eléctricamente neutras, no ejercen ninguna fuerza entre sí. Pero Casimir demostró que, debido al principio de incertidumbre de Heisenberg, en el vacío que separa estas dos placas hay realmente una agitada actividad, con billones de partículas y antipartículas apareciendo y desapareciendo constantemente a partir de la nada en ese espacio “vacío”, partículas virtuales que mediante el efecto túnel vienen y van fugaces, tan fugaces que son en su mayoría inobservables, y no violan ninguna de las leyes de la física. Estas “partículas virtuales” crean una fuerza neta atractiva entre las dos placas de Casimir que predijo que era medible.
Cuando Casimir publicó su artículo, se encontró con un fuerte escepticismo. Después de todo, ¿Cómo pueden atraerse dos objetos eléctricamente neutros, violando así las leyes normales de la electricidad clásica? Esto era inaudito. Sin embargo, 10 años después, en 1.958, el físico M. J. Sparnaay observó este efecto en el laboratorio, exactamente como predijo Casimir. Desde entonces, ha sido bautizado como el “efecto Casimir”.
Por el momento, aun no hay veredicto sobre la máquina del tiempo de Thorne. Todos están de acuerdo en que el factor decisivo es tener una teoría de la gravedad completamente cuantizada para zanjar la cuestión de una vez por todas. Por ejemplo, Stephen Hawking ha señalado que la radiación emitida en la entrada del agujero de gusano sería muy grande y contribuiría a su vez al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación en las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, quizá incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.
Los dos físicos, Hawking y Thorne, muy amigos, tienen una apuesta sobre el tema. ¿Quién la ganará? Puede suceder que la respuesta llegue cuando ninguno de los dos exista. Thorne, a petición de su amigo Carl Sagan, le asesoró en la novela “Contact” que en el cine interpretó Jodie Foster, y en la que una experta astrónoma buscaba contactar con inteligencia extraterrestre y lo consigue, recibiendo los planos para la construcción de una maquina del tiempo mediante el agujero de gusano de Thorne. La película está conseguida y el objetivo perseguido también; un mensaje de lo que, en un futuro (aún lejano) podría ser posible.
Claro que, para ello, antes habrá que conseguir unificar la Relatividad General de Einstein (la gravitación universal), con la Mecánica Cuántica de Planck (el microcosmos, el átomo), lo que de nuevo nos lleva al punto de partida.
emilio silvera
Jun
22
Nos cuentan nuestro destino
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
https://youtu.be/a6ERPHDX1Vk
Lo cierto, amigos, es que cuando el Sol agote su combustible nuclear de fusión y sea una Gigante Roja, habrá crecido tanto que engullirá a Mercurio y Venus y se estima que estará tan cerca de la Tierra que las temperaturas se elevarán y se evaporarán los océanos, y, la vida tal como la conocemos, desaparecerá de éste mundo calcinado.
El Sol. mediante la fusión nuclear que se produce en sus “entrañas”, radia y hace que tienda a expandirse (como cuando la leche hierve el cazo). La fuerza de Gravedad es la energía contrapuesta que frena esa expansión, y, así, en ese equilibrio lleva el Sol más de 4.500 millones de años y lo estará otros cinco mil millones.
Cuando agote todo el combustible y se acabe la mecánica de fusión, el Sol quedará a merced de la fuerza de Gravedad que lo contraerá sobre sí mismo, de manera tal que, sólo se verá frenado por la degeneración de los electrones que son fermiones sometidos al Principio de exclusión de Pauli (podéis mirar ese principio).
Como los electrones no soportan estar juntos, a medida que la ingente masa del Sol se comprime más y más, se sienten como claustrofóbicos y se degeneran, y, entonces, comienzan a moverse a velocidades relativistas, de tal manera que dicho fenómeno puede frenar ala Gravedad, y, para entonces, el Sol habrá eyectado material al Espacio Interestelar para formar una Nebulosa planetaria, y, el resto de la masa se habrá convertido en una estrella enana blanca que radiará en el ultravioleta rabioso ionizando el material de la nebulosa.
Esto será, a grandes rasgos, el destino del Sol y de la Tierra, y, para cuando eso suceda (espero), la Humanidad habrá partido hacia otros mundos que, como la Tierra ahora, les de cobijo. Claro que, no sabemos si nuestra Civilización llegará tan lejos, o, si mientras todo eso llega, el movimiento de la Tierra (observado por un equipo de astrónomos) alejándose del Sol, la hará salirse de la zona habitable y, si eso es así….
Por otra parte, tenemos a nuestra vecina Andrómeda que se acerca velozmente a la Vía Láctea con la que quiere fusionarse, y, tan “casamiento”, tampoco traerá nada bueno para la Humanidad.
Lo cierto es que, si no es por una cosa lo será por otra pero, nuestro Futuro… ¡No se ve nada amigable!
Y, no digamos lo que puede pasar con la dichosa Inteligencia Artificial que, con fuerza inusitada trata de crear una generación de Robots inteligentes que, si llegan a tener conciencia de Ser….
¡Vaya porvenir nos espera!
Jun
22
Creando parcelas del saber: ¡Datación!
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
En el siguiente trabajo aquí expuesto hoy nos preguntamos ¿Tiene memoria la materia? Y, en este otro trabajo tenemos la respuesta. Sí que tiene memoria la materia si sabemos como buscar lo que esconde y nos puede decir.
Es curioso como nuestra imaginación ha ido creando parcelas del saber para desvelar misterios bien guardados por la Naturaleza, y, uno de ellos es el tiempo de las cosas muy antiguas y fósiles del pasado profundamente enterrados a los que tenemos que buscar sus fechas de nacimiento.
Los radioisótopos son átomos inherentemente inestables que se desintegran espontáneamente en elementos descendientes estables con tasas que pueden medirse con precisión en el laboratorio. Por tanto, si determinamos la cantidad de isótopo radiactivo progenitor que ha desaparecido del mineral con el tiempo, o la cantidad de isótopo descendiente que se ha acumulado, podemos calcular la edad del mineral.
Curiosamente, lo que se mantiene constante en la desintegración radiactiva es la proporción de radioisótopo que se desintegra en un intervalo de tiempo determinado, y no el número de átomos que se desintegran. Por tanto, a medida que disminuye con el tiempo la abundancia de un isótopo radiactivo en un mineral, la tasa absoluta de desaparición del elemento también disminuye. El ritmo de desintegración de un isótopo radiactivo se denomina vida media, y se define como el tiempo necesario para que la mitad del radioisótopo de un material se desintegre en otro elemento.
La paradoja de Aquiles y la tortuga junto a la efigie de Zenón
Fue un filósofo griego de la escuela eleática, nacido en Elea (Italia meridional). Fue discípulo de Parménides (uno de los filósofos griegos más importantes de la época y de los más señalados en la escuela eleática) y, según varios escritores, enseñó en Atenas durante algún tiempo. Zenón trató de mostrar que la realidad es una e invariable y que todo movimiento es ilusorio.
Era costumbre suya mostrar lo absurdo de algunas creencias y frecuentemente se valía de paradojas (expresión o situación que parece absurda y sin embargo es razonable), en las que viene a decir que todo movimiento es un engaño.
Contrastadas con la realidad, las pruebas de Zenón contra el movimiento, se revelan al punto como paradojas y como auténticos paralogismos (argumento o contradicción falsa). Es como ponerse a discutir el azul del cielo.
Los que conozcan bien los clásicos habrán recordado la paradoja de Zenón en la que Aquiles persigue a una liebre (¿O, era una tortuga?). Como héroe que es, Aquiles corre más rápido que su presa, y cada minuto que pasa acorta a la mitad la distancia entre ambos. ¿Cuándo alcanzará Aquiles a la liebre? La respuesta, naturalmente, es nunca, porque si la liebre se mueve a una velocidad constante, entonces Aquiles debe disminuir constantemente la suya. Si al principio lleva una desventaja de doscientos metros, puede correr doscientos metros en el primer minuto contra los cien de la liebre, pero en el segundo minuto avanzará sólo 150 metros, y en el cuarto apenas 112,5 m. Nótese que si conocemos la distancia recorrida por Aquiles y el modo como varía su velocidad de acuerdo con la distancia que media entre él y la liebre, podemos inferir cuánto tiempo lleva dedicado a esa frustrante persecución. En esencia, así es como funciona la datación radiométrica.
Radiación radiométrica
Por si te lo estás preguntando, la edad de estas rocas se determinó, como sucede con las muestras terrestres, utilizando la datación radiométrica , es decir, midiendo la concentración de isótopos inestables respecto a la de los productos en los que se desintegran — seguro que conoces la datación de muestras mediante el carbono-14; en el caso de las rocas el sistema es el mismo, con la diferencia de que la vida media del carbono-14 es de unos 5 700 años (de modo que sirve para datar muestras recientes), mientras que en el caso de las rocas se utilizan otros isótopos, como el uranio-235 (con una vida media de unos 700 millones de años) y el uranio-238 (cuya vida media es de unos 4 500 millones de años).
El sistema de datación radiométrica más conocido es el proporcionado por el ¹⁴C, o Carbono 14, un isótopo raro del Carbono que se produce de forma natural por acción de los rayos cósmicos y antropogénicamente por bombas nucleares. Se desintegra en Nitrógeno (¹⁴N) con una vida media de 5.730 años. Como el ¹⁴C es tan poco común (menos de uno de cada mil átomos de Carbono) y su vida media es tan corta, la Datación con radio carbono queda limitada a los últimos cien mil años, aproximadamente.
En los materiales más antiguos simplemente no queda suficiente ¹⁴C para que pueda medirse con precisión. Por consiguiente, el ¹⁴C proporciona una herramienta de datación valiosa para egiptólogos o para paleontólogos interesados en mamuts lanudos, pero no sirve para desentrañar la historia profunda de la Tierra.
Para datar sucesos más lejanos y arcaicos necesitamos un reloj más importante: un radioisótopo cuya vida media se mide en muchos millones de años, incluso miles de millones de años. El Potasio 40 (⁴⁰K) se identificó inicialmente como un candidato prometedor para la geocronología. Este isótopo inestable se desintegra formando o bien Calcio (⁴⁰ Ca), que desafortunadamente no puede distinguirse de los iones de calcio ya presentes en el mineral, o bien Argón (⁴⁰ Ar), que si puede distinguirse.
La vida media del ⁴⁰K es de 1.250 millones de años. Además el Potasio es abundante y está ampliamente distribuido en los minerales que forman las rocas: está presente en los feldespatos que tiñen de rosa los granitos, en los minerales microscópicos de las cenizas volcánicas y en arcillas que se forman durante la meteorización.
Pese a todas sus ventajas, el cronómetro de Potasio-Argón no es muy utilizado por los geólogos interesados en la Tierra antigua. El ⁴⁰K se comporta como un reloj, pero los procesos tectónicos y metamórficos se comportan como niños deseosos de juguetear con sus agujas.
Sucesos geológicos ocurridos mucho después de la formación del mineral pueden eliminar el Argón de éste, lo que equivale a poner el reloj a cero, y por tanto, a destruir la memoria química del tiempo transcurrido. (El Argón, un gas noble, sólo queda ligeramente ligado a las redes químicas de los minerales).
Lo que realmente necesitamos para datar las rocas muy antiguas es un sistema que funcione como las “cajas negras” de los aviones: un isótopo que no se pierda fácilmente de un mineral, y un mineral que no se altere fácilmente.
Los circones, unos minerales que contienen uranio y se encuentran en los granitos y otras rocas ígneas, son las cajas negras de la geología precámbrica. De hecho, el uranio enlazado a los a los cristales de circón en el momento de su formación nos proporciona dos cronómetros fiables: el ³²⁸U se desintegra en Plomo 206 (²⁰⁶ Pb) con una vida media de más de 4.500 millones de años (la edad de la Tierra), mientras que el isótopo ²³⁵U, menos abundante, se desintegra en ²⁰⁷ Pb con una vida media de algo más de 600 millones de años. Esta peculiaridad nos permite verificar por dos métodos las edades medidas: si los dos relojes dan una edad distinta es que el circón ha sufrido alguna alteración.
La Tierra tiene aproximadamente 4.600 millones de años. Entre los 3.500 y los 555 millones se estimaba que había habido únicamente bacterias, organismos unicelulares y formas de vida primitiva como la de las esponjas (de todos ellos existen rastros fósiles).
Si el circón tiene algún problema, es que es demasiado inalterable. A diferencia de otros muchos minerales, los circones pueden completar el ciclo completo de rocas –desde la cristalización en una roca ígnea hasta el metamorfismo y posterior erosión hasta formar partículas de sedimento-, sin perder un ápice de su integridad química. Tanto es así que durante su ascenso a través de la corteza de la Tierra, el magma puede arrancar circones de rocas adyacentes, incorporando minerales (y por tanto, relojes) más antiguos en rocas más recientes. Además, los circones pueden crecer durante cada tránsito por el interior de la Tierra; los circones arcaicos (anterior al Proterozoico) pueden presentar hasta media docena de capas alrededor de un núcleo central, cada una de las cuales es el producto de la acreción durante un evento geológico específico.
Bueno, sólo quería dejar aquí un comentario sencillo que aclarara, de alguna manera, el tema de la Datación que nos puede hablar del tiempo de determinadas rocas y de fósiles allí presentes que nos hablan de la vida primigenia en nuestro planeta desde hace miles de millones de años.
emilio silvera
Jun
22
Sí, el Universo tiene memoria
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Podríamos hablar del viaje de la luz, desde que surgió a partir del Big Bang (si fue ese el comienzo de todo), y suponiendo que ya tengamos los aparatos tecnológicos precisos para poder leer, los mensajes que la misma luz lleva escritos de lo que allí, en aquellos comienzos, pudo pasar. La Luz que es emitida por los cuerpos celestes y que nos trae su memoria que están recogidas en el interior de las partículas elementales que son las que dan forma a todos los objetos grandes constituidas en moléculas. Es realmente un canto a la Luz, a su compleja estructura que no hemos llegado a comprender. La luz nos trae mensajes y recuerdos de los origines en remanentes de estrellas supermasivas que dieron lugar a la creación de otras estrellas y sistemas planetarios y, ¿Quién sabe? si también formas de vida.
Lo cierto es que, el Universo, como un todo, nos presenta y manifiesta correlación bien afinadas que desafían cualquier explicación de sentido común y, desde luego, no es que nuestro sentido común no sea el más común de los sentidos, se trata simplemente de que, no llega a captar la esencia verdadera de lo que el Universo nos quiere transmitir.
Decir Universo es decirlo todo,
Inmensas galaxias cuajada de soles,
Donde orbitan los mundos,
Donde, de la vida, surgen los crisoles.
Todo es fuerza y energía,
Inmersas en un espacio-tiempo,
Transiciones de fase que guían,
Grandes acontecimientos.
La Memoria del Universo,
La Huella que deja el Tiempo,
Quedan gravados los sucesos,
Que descubre el conocimiento.
Sí, el Universo es mucho más que simples estrellas o las galaxias que las acogen, el Universo es también el Tiempo y el Espacio, son Universo las interacciones fundamentales que hace que nuestros mundos sean tal como los conocemos y, gracias a la variedad, la diversidad, las fuerzas y las constantes que en él están presentes, podemos decir que, los muchos mundos que son, algún día lejano en el futuro, nos darán la oportunidad de conocernos, nosotros los humanos de la Tierra y otros seres de más allá de nuestras fronteras que ahora, por imposibilidades físicas y tecnológicas, no podemos hacer una realidad.
En las rocas más antiguas de la Tierra, fósiles con miles de millones de años nos contemplan
El primer signo de vida en nuestro planeta data de 3,850 millones de años. Son simples formas fósiles encontradas en Groenlandia Sí, también eso de arriba es Universo. Cuando se creó la vida, surgieron unos seres que, evolucionados, llegaron a ser conscientes de su ser y pudieron desarrollar ideas y pensamientos y…también sentimientos que nos llevan de manera directa, mediante fuerzas irresistibles de la Naturaleza, a crear Entropía Negativa para compensar la que acompaña al Tiempo y que tanto daño hace en las cosas vivas o inertes.
Hemos realizado muchos estudios y llegado a muchas conclusiones que, finalmente, resultaron prematuras. Las mediciones actuales, por ejemplo, del fondo cósmico nos indican que, aun cuando toda la materia del Universo se hubiera originado en el (supuesto)Big Bang, sin embargo, el espacio-tiempo es plano: el universo se equilibraría con precisión entre la expansión y la contracción. Y, sin embargo, ¡las galaxias se están alejando las unas de las otras! Quizá después de todo, existe una constante cosmológica o fuerza similar no descubierta que es el que mantiene el cosmos en estado de expansión.
Los cosmólogos dudan del vacío cuántico y no creen que sea el origen de las energías extrañas representadas representadas por estas constantes. El espacio está lleno de partículas virtuales, en constante variación. La energía de las partículas virtuales concuerdan con los efectos que le atribuyen, incluso cuando tienen una existencia tan breve que no se puede medir. Se cree que esta energía, la “constante cosmológica positiva” es la responsable de la expansión acelerada de las galaxias. Esta suposición que no es nueva, es una más de las muchas que circulan por el mundo científico de la cosmología en el que, los “expertos” cosmólogos, andan locos por averiguar de qué se trata todo esto que no llegan a comprender.
El problema del horizonte. La coherencia que presentan las relsciones numéricas se ve reforzada por la evidencia de la observación. Ésta última da lugar al llamado “problema del horizonte” : el problema de la uniformidad en la gran escala del Cosmos en todos los puntos del horizonte visto desde la Tierra. Este problema empezó a destacarse tanto en relación a la radiación del fondo del Universo, como en relación a la evolución de sus galaxias.
“Nuestro universo parece ser completamente uniforme. Si miramos a través del espacio desde un extremo del universo visible hacia el otro, se verá que la radiación de fondo de microondas que llena el cosmos presenta la misma temperatura en todas partes.”
“Esto podría no parecer muy sorprendente, hasta que se considera que los dos bordes están separados por casi 28 mil millones de años luz y que nuestro universo tiene apenas algo menos de 14 mil millones de años de edad.”
“Nada puede más rápido que la de la luz, de modo que no hay forma en que la radiación pueda haber viajado entre los dos horizontes para igualar los puntos calientes y los fríos creados en el Big Bang y dejar así el equilibrio termal que hoy vemos.”
Está claro que el problema del Horizonte se les ha ido de las manos a los Cosmólogos que no lo saben explicar y, para ello, tratan de hilvanar extrañas historias y exóticas teorías que, de ninguna manera nos satisfacen.
Imagen: Las fluctuaciones de densidad de 1/100 000 de Kelvin son tratados de la radiación de microondas fósiles 2,73 K. Ellos muestran que alrededor de 380 000 años después del Big Bang, había áreas heterogéneas en el mundo, con un tamaño de entre 100 y 1 000 Mpc.
Como suele pasar siempre que mentes pequeñas quieren explicar cosas muy grandes, que no llegan a comprender, se limitan a inventar teorías y hacen conjeturas que, más o menos puedan estar acordes con la realidad que debería ser. El desarrollo de la cosmología física está lleno de enigmas que no podemos explicar y de anomalías que las teorías actuales tratan de desarrollar de la manera más coherente posible y, algunas se acercan y otras, quedan lejos de ser, ni siquiera admisibles por fantásticas e increíbles.
Lo dicho tsntas veces…¡Nuestra ignorancia!
emilio silvera
Jun
21
¡La Hiper-dimensionalidad! ¡Qué cosas nos cuentan!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Sí, en ese “universo” suceden cosas que difieren del sentido común (¿O son enemigas de la ignorancia?
El cerebro tiene secretos que… ¡Nunca nos contará! Neuronas como estrellas en la Galaxia
El 21 de diciembre de 2010 científicos estadounidenses descubrieron “un vimana atrapado en un pozo del tiempo“ (un campo gravitatorio electromagnético, que sólo puede ocurrir en una dimensión invisible del espacio) en la ciudad de Balkh, Afganistán, lugar que alguna vez Marco Polo catalogó como “una de las ciudades más nobles y grandiosas” del mundo”.
Los intentos por retirar el misterioso Vimana de la cueva donde había estado oculto durante por lo menos 5.000 años, causaron la “desaparición” de por lo menos 8 soldados norteamericanos, atrapados por el vórtex temporal ( nuestros cuerpos no pueden desplazarse como si nada del presente al futuro y del futuro al pasado sin cargarse el peso destructivo de las leyes de la física, salvo si se logra bloquear el campo magnético, algo que aparentemente los científicos norteamericanos tardaron ocho cadáveres en descubrir y solucionar, probablemente con jaulas de Faraday ).
La existencia de este tipo de fenómenos no está demostrado por los científicos (caso contrario estaríamos hablando de leyes), pero los físicos teóricos coinciden en general que podrían ser posibles si se acepta la teoría del Multi-universo (un universo de por lo menos 11 dimensiones espaciotemporales) como estructura lógica y matemática. Atravesando esa especie de plasma líquido, nos podríamos trasladar a otros mundos, a otras galaxias.
Las leyes de la física se simplifican en dimensiones más altas
Theodor Kaluza, ya en 1921 conjeturaba que si ampliáramos nuestra visión del universo a 5 dimensiones, entonces no habría más que un solo campo de fuerza: la gravedad, y lo que llamamos electromagnetismo sería tan sólo la parte del campo gravitatorio que opera en la quinta dimensión, una realidad espacial que jamás reconoceríamos si persistiéramos en nuestros conceptos de realidad lineal, similar a un holograma.
Bueno, independientemente de que todo esto pueda ser una realidad, lo cierto es que, nosotros, ahora en nuestro tiempo, hablamos de un universo con más dimensiones y, la carrera de las más altas dimensiones la inicio (como arrtiba se menciona) en el año 1919 (no el 1921) por Theodor Kaluza, un osucro y desconocido matemático, cuando le presentó a Einstein mediante un escrito una teoría unificada que podía unificar, las dos grandes teorías del momento, la Relatividad General con el Magnetismo y podía realizarse si elaboraba sus ecuaciones en un espacio-tiempo de cinco dimensiones.
Universidad de Königsberg en Alemania
Así estaban las cosas cuando en 1.919 recibió Einstein un trabajo de Theodor Kaluza, un privatdozent en la Universidad de Königsberg, en el que extendía la Relatividad General a cinco dimensiones. Kaluza consideraba un espacio con cuatro dimensiones, más la correspondiente dimensión temporal y suponía que la métrica del espacio-tiempo se podía escribir como:
Finalmente el matemático Klein refinó la teoría que se llamó de Kaluza-Klein
Así que, como hemos dicho, ese mismo año, Oskar Klein publicaba un trabajo sobre la relación entre la teoría cuántica y la relatividad en cinco dimensiones. Uno de los principales defectos del modelo de Kaluza era la interpretación física de la quinta dimensión. La condición cilíndrica impuesta ad hoc hacía que ningún campo dependiera de la dimensión extra, pero no se justificaba de manera alguna.
Klein propuso que los campos podrían depender de ella, pero que ésta tendría la topología de un círculo con un radio muy pequeño, lo cual garantizaría la cuantización de la carga eléctrica. Su diminuto tamaño, R5 ≈ 8×10-31 cm, cercano a la longitud de Planck, explicaría el hecho de que la dimensión extra no se observe en los experimentos ordinarios, y en particular, que la ley del inverso del cuadrado se cumpla para distancias r » R5. Pero además, la condición de periodicidad implica que existe una isometría de la métrica bajo traslaciones en la quinta dimensión, cuyo grupo U(1), coincide con el grupo de simetría gauge del electromagnetismo.
Einstein al principio se burló de aquella disparatada idea pero, más tarde, habiendo leído y pensado con más atención en lo que aquello podía significar, ayudó a Kaluza a publicar su idea de un mundo con cinco dimensiones (allí quedó abierta la puerta que más tarde, traspasarían los teóricos de las teorías de más altas dimensiones). Algunos años más tarde, , el físico sueco Oskar Klein publicó una versión cuántica del artículo de Kaluza. La Teoría Kaluza-Klein que resultó parecía interesante, pero, en realidad, nadie sabía que hacer con ella hasta que, en los años setenta; cuando pareció beneficioso trabajar en la supersimetría, la sacaron del baúl de los recuerdos, la desempolvaron y la tomaron como modelo.
Pronto, Kaluza y Klein estuvieron en los labios de todo el mundo (con Murray Gell-Mann, en su papel de centinela de los idiomas, regañando a sus colegas que no lo sabían pronunciar “Ka-wu-sah-Klein”.
Pero, ¿Existen en nuestro Universo dimensiones ocultas?
Aunque la teoría de cuerdas en particular y la supersimetría en general apelaban a mayores dimensiones, las cuerdas tenían un modo de seleccionar su dimensionalidad requerida. Pronto se hizo evidente que la Teoría de cuerdas sólo sería eficaz, en dos, diez y veintiséis dimensiones, y sólo invocaba dos posibles grupos de simetría: SO(32) o E8 x E8. Cuando una teoría apunta hacia algo tan tajante, los científicos prestan atención, y a finales de los años ochenta había decenas de ellos que trabajaban en las cuerdas. Por aquel entonces, quedaba mucho trabajo duro por hacer, pero las perspectivas era brillantes. “Es posible que las décadas futuras -escribieron Schwarz y sus colaboradores en supercuerdas Green y Edward Witten- sea un excepcional período de aventura intelectual.” Desde luego, la aventura comenzó y, ¡qué aventura!
El mundo está definido por las Constantes adimensionales de la Naturaleza que hace el Universo que conocemos
Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck). Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.
Puesto que el radio de compactificación es tan pequeño, el valor típico de las masas será muy elevado, cercano a la masa de Planck Mp = k-12 = 1’2 × 1019 GeV*, y por tanto, a las energías accesibles hoy día (y previsiblemente, tampoco en un futuro cercano – qué más quisieran E. Witten y los perseguidores de las supercuerdas -), únicamente el modo cero n = 0 será relevante. Esto plantea un serio problema para la teoría, pues no contendría partículas ligeras cargadas como las que conocemos.
¿Y si llevamos a Kaluza-Klein a dimensiones superiores para unificar todas las interacciones?
En este proceso llamado desintegración beta y debido a la interacción débil, un neutrón se transforma en un protón, un electrón y un (anti)neutrino electrónico cuando uno de los quarks del neutrón emite una partícula W–. Aquí queda claro que el término “interacción” es más general que “fuerza”; esta interacción que hace cambiar la identidad de las partículas no podría llamarse fuerza (todo representado en uno de los famosos diagramas de Feyman).
La descripción de las interacciones débiles y fuertes a través de teorías gauge no abelianas mostró las limitaciones de los modelos en cinco dimensiones, pues éstas requerirían grupos de simetría mayores que el del electromagnetismo. En 1964 Bryce de UIT presentó el primer modelo de tipo Kaluza-Klein–Yang-Mills en el que el espacio extra contenía más de una dimensión.
El siguiente paso sería construir un modelo cuyo grupo de isometría contuviese el del Modelo Estándar SU(3)c × SU(2)l × U(1)y, y que unificara por tanto la gravitación con el resto de las interacciones.
Para verificar la Teoría necesitamos la energía de Planck ( 1019 GeV), energía fuera de nuestro alcance
Edward Witten demostró en 1981 que el número total de dimensiones que se necesitarían sería al menos de once. Sin embargo, se pudo comprobar que la extensión de la teoría a once dimensiones no podía contener fermiones quirales, y por tanto sería incapaz de describir los campos de leptones y quarks.
Por otra parte, la supersimetría implica que por cada bosón existe un fermión con las mismas propiedades. La extensión super-simétrica de la Relatividad General es lo que se conoce como super-gravedad (supersimetría local).
Joël Scherk (1946-1980) (a menudo citado como Joel Scherk) fue un francés teórico físico que estudió la teoría de cuerdas ysupergravedad [1] . Junto con John H. Schwarz , pensaba que la teoría de cuerdas es una teoría de la gravedad cuántica en 1974. En 1978, junto con Eugène Cremmer y Julia Bernard , Scherk construyó el lagrangiano y supersimetría transformaciones parasupergravedad en once dimensiones, que es uno de los fundamentos de la teoría-M .
Unos años antes, en 1978, Cremmer, Julia y Scherk habían encontrado que la supergravedad, precisamente en once dimensiones, tenía propiedades de unicidad que no se encontraban en otras dimensiones. A pesar de ello, la teoría no contenía fermiones quirales, como los que conocemos, cuando se compactaba en cuatro dimensiones. Estos problemas llevaron a gran parte de los teóricos al estudio de otro programa de unificación a través de dimensiones extra aún más ambicioso, la teoría de cuerdas.
No por haberme referido a ella en otros trabajos anteriores estará de más dar un breve repaso a las supercuerdas. Siempre surge algún matiz nuevo que enriquece lo que ya sabemos.
El origen de la teoría de supercuerdas data de 1968, cuando Gabriele Veneziano introdujo los modelos duales en un intento de describir las amplitudes de interacción hadrónicas, que en aquellos tiempos no parecía provenir de ninguna teoría cuántica de campos del tipo de la electrodinámica cuántica. Posteriormente, en 1979, Yaichiro Nambu, Leonard Susskind y Holger Nielsen demostraron de forma independiente que las amplitudes duales podían obtenerse como resultado de la dinámica de objetos unidimensionales cuánticos y relativistas dando comienzo la teoría de cuerdas.
En 1971, Pierre Ramona, André Neveu y otros desarrollaron una teoría de cuerdas con fermiones y bosones que resultó ser super-simétrica, inaugurando de esta forma la era de las supercuerdas.
David Jonathan Gross
Sin embargo, en 1973 David Gross, David Politzer y Frank Wilczek descubrieron que la Cromodinámica Cuántica, que es una teoría de campos gauge no abeliana basada en el grupo de color SU(3)c, que describe las interacciones fuertes en términos de quarks y gluones, poseía la propiedad de la libertad asintótica. Esto significaba que a grandes energías los quarks eran esencialmente libres, mientras que a bajas energías se encontraban confinados dentro de los hadrones en una región con radio R de valorR ≈ hc/Λ ≈ 10-13 cm.
Dicho descubrimiento, que fue recompensado con la concesión del Premio Nobel de Física a sus autores en 2.004, desvió el interés de la comunidad científica hacia la Cromodinámica Cuántica como teoría de las interacciones fuertes, relegando casi al olvido a la teoría de supercuerdas.
Reseña: “D-Brane. Superstrings and new perspective of our world” por Koji Hashimoto
D-Branas, dimensiones extra : Blog de Emilio Silvera V.
Se habla de cuerdas abiertas, cerradas o de lazos, de p branas donde p denota su dimensionalidad (así, 1 brana podría ser una cuerda y 2.Brana una membrana) o D-Branas (si son cuerdas abiertas) Y, se habla de objetos mayores y diversos que van incorporados en esa teoría de cuerdas de diversas familias o modelos que quieren sondear en las profundidades del Universo físico para saber, como es.
En la década de los noventa se creó una versión de mucho éxito de la teoría de cuerdas. Sus autores, los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohn, a quienes se dio en llamar el cuarteto de cuerdas de Princeton.
El de más edad de los cuatro, David Gross, hombre de temperamento imperativo, es temible en los seminarios cuando al final de la charla, en el tiempo de preguntas, con su inconfundible vozarrón dispara certeros e inquisidoras preguntas al ponente. Lo que resulta sorprendente es el hecho de que sus preguntas dan normalmente en el clavo.
“El gran problema de las teorías de cuerdas sin supersimetría que todo el mundo cita es el problema de la inestabilidad de los diagramas con tadpoles. Esta figura muestra un diagrama de Feynman con un tadpole y su equivalente en teoría de cuerdas. En este último caso la topología no cambia y la contribución debe ser nula (el teorema de Gauss y la conservación de la carga así lo exigen). Sin embargo, en las teorías de cuerdas heteróticas sin supersimetría estos diagramas dan un resultado diferente de cero. La existencia de que la carga no se conserve en estos diagramas implica una inestabilidad en el estado de vacío.”
Fuente de imagen y texto anterior: Ciencia de la Mula Francis
Gross y sus colegas propusieron lo que se denomina la cuerda heterótica. Hoy día, de todas las variedades de teorías tipo Kaluza-Klein que se propusieron en el pasado, es precisamente la cuerda heterótica la que tiene mayor potencial para unificar todas las leyes de la naturaleza en una teoría. Gross cree que la teoría de cuerdas resuelve el problema de construir la propia materia a partir de la geometría de la que emergen las partículas de materia y también la gravedad en presencia de las otras fuerzas de la naturaleza.
El caso curioso es que, la Relatividad de Einstein, subyace en la Teoría de cuerdas, y, si eliminamos de esta a aquella y su geometría de la Gravedad…todo resulta inútil. El gran Einstein está presente en muchos lugares y quizás, más de los que nos podamos imaginar.
Es curioso constatar que si abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. Esta, de hecho, es la razón por la que Witten se sintió atraído inicialmente hacia la teoría de cuerdas. En 1.982 leyó un artículo de revisión de John Schwarz y quedó sorprendido al darse cuenta de que la gravedad emerge de la teoría de supercuerdas a partir solamente de los requisitos de auto consistencia. Recuerda que fue “la mayor excitación intelectual de mi vida”.
Gross se siente satisfecho pensando que Einstein, si viviera, disfrutaría con la teoría de supercuerdas que sólo es válida si incluye su propia teoría de la relatividad general, y amaría el hecho de que la belleza y la simplicidad de esa teoría proceden en última instancia de un principio geométrico, cuya naturaleza exacta es aún desconocida. La Relatividad general de Einstein nos ayuda a estudiar las partes más grandes del Universo, como las estrellas y las galaxias. Pero los elemento diminuto solos átomos y las partículas subatómicas se rigen por unas leyes diferentes denominadas mecánica cuántica.
Claro que, como todos sabemos, Einstein se pasó los últimos treinta años de su vida tratando de buscar esa teoría unificada que nunca pudo encontrar. No era consciente de que, en su tiempo, ni las matemáticas necesarias existían aún. En la historia de la física del siglo XX muchos son los huesos descoloridos de teorías que antes se consideraban cercanas a esa respuesta final que incansables buscamos.
Hasta el gran Wolfgang Pauli había colaborado con Heisenberg en la búsqueda de una teoría unificada durante algún tiempo, pero se alarmó al oír en una emisión radiofónica como Heisenberg decía: “Está a punto de ser terminada una Teoría unificada de Pauli-Heisenserg, en la que sólo nos queda por elaborar unos pocos detalles técnicos.”
Wolfgang Pauli
Enfadado por lo que consideraba una hipérbole de Heisenberg que se extralimitó con aquellas declaraciones en las que lo involucraba sin su consentimiento, Pauli envió a Gamow y otros colegas una simple hija de papel en blanco en la que había dibujado una caja vacía. Al pie del dibujo puso estas pablabras: “Esto es para demostrar al mundo que yo puedo pintar con Tiziano. Sólo faltan algunos detalles técnicos.”
Los críticos del concepto de supercuerdas señalaron que las afirmaciones sobre sus posibilidades se basaban casi enteramente en su belleza interna. La teoría aún no había repetido siquiera los logros del Modelo Estándar, ni había hecho una sola predicción que pudiera someterse a prueba mediante el experimento. La Supersimetría ordenaba que el Universo debería estar repleto de familias de partículas nuevas, entre ellas los selectrones (equivalente al electrón super-simétrico) o el fotino (equivalente al fotón).
Lo cierto es que, nada de lo predicho ha podido ser comprobado “todavía” pero, sin embargo, la belleza que conlleva la teoría de cuerdas es tal que nos induce a creer en ella y, sólo podemos pensar que no tenemos los medios necesarios para comprobar sus predicciones, con razón nos dice E. Witten que se trata de una teoría fuera de nuestro tiempo, las supercuerdas pertenecen al futuro y aparecieron antes por Azar.
Y, a todo esto, ¿Dónde están esas otras dimensiones?
emilio silvera