viernes, 07 de octubre del 2022 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Desde la materia “inerte” a los pensamientos

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

« 

Cosmología, la ciencia que estudia TODO el UniversoCosmología * * - DICCIONARIO FILOSÓFICO de Centeno

              Una parte de la ciencia estudia la estructura y la evolución del Universo: La cosmología.

Un universo de instrumentos para la observación astronómica - Revista MètodeCosmo Noticias | El Universo está lleno de sorpresas | Página 52

La cosmología observacional se ocupa de las propiedades físicas del Universo, como su composición física referida a la química, la velocidad de expansión y su densidad, además de la distribución de Galaxias y cúmulos de galaxias.  La cosmología física intenta comprender estas propiedades aplicando las leyes conocidas de la física y de la astrofísica.  La cosmología teórica construye  que dan una descripción matemática de las propiedades observadas del Universo basadas en esta comprensión física.

                                La cosmologia

La cosmología también tiene aspectos filosóficos, o incluso teológicos, en el sentido de que trata de comprender por qué el Universo tiene las propiedades observadas. De hecho, después de unos miles de millones de años de evolución, el Universo se ha valido de las estrellas para elaborar los materiales que han posibilitado la aparición de la vida.

La cosmología teórica se basa en la teoría de la relatividad , la teoría de Einstein de la gravitación.  De todas las fuerzas de la naturaleza, la gravedad es la que tiene efectos  intensos a grandes escalas y domina el comportamiento del Universo en su conjunto. El espacio-tiempo, la materia contenida en el Universo con la fuerza gravitatoria que genera y, nuestras mentes que tienen conocimientos de que todo esto sucede.

El cerebro olvida para ahorrar energíaEl cerebro humano consume mucha energía en la infancia y retarda el  desarrollo físico

 

Está con nosotros, es la parte más importante del Ser. Sin embargo, no nos paramos a pensar en que sea posible tal maravilla de la Naturaleza. Un pequeño reducto de un Ser vivo que genera ideas y pensamientos… ¡Y también sentimientos! Es la parte de nosotros que nos hace mejor cuando enlaza con la idea de la familia. También es la parte que, en algunos, hace posible que la especie avance con sus ideas nuevas y superiores.

              Tu manera de pensar define tus sentimientos - La Mente es Maravillosa

De manera que, nuestro consciente (sentimos, pensamos, queremos obrar con conocimiento de lo que hacemos), es el elemento racional de nuestra personalidad humana que controla y reprime los impulsos del inconsciente, para desarrollar la capacidad de adaptación al mundo exterior. Al ser conscientes, entendemos y aplicamos nuestra razón natural para clasificar los conocimientos que adquirimos mediante la experiencia y el estudio que aplicamos a la realidad del mundo que nos rodea. Claro que, no todos podemos percibir la realidad de la misma manera, las posibilidades existentes de que el conocimiento de esa realidad responda  exactamente a lo que ésta es en sí, no parece .

          Teoría del conocimiento

El ojo humano es el primer elemento del sistema sensorial: en este caso, la visión, para el sistema visual.

Descartes, Leibniz, Locke, Berkeley, Hume (que influyó decisivamente en Kant), entre otros, construyeron una base que tomó fuerza en Kant, para quien el conocimiento arranca o nace de nuestras experiencias sensoriales, es decir, de los  que nos suministra nuestros cinco sentidos, pero no todo en él procede de esos datos.  Hay en nosotros dos fuentes o potencias distintas que nos capacitan para conocer, y son la sensibilidad (los sentidos) y el entendimiento (inteligencia).  Esta no puede elaborar ninguna idea sin los sentidos, pero éstos son inútiles sin el entendimiento.

                         

A todo esto, para mí, el conocimiento está inducido por el .  La falta y ausencia de interés aleja el conocimiento.  El interés puede ser de distinta índole: científico, social, artístico, filosófico, etc.  (La gama es tan amplia que existen conocimientos de todas las posibles vertientes o direcciones, hasta tal punto es así que, nunca nadie lo podrá saber todo sobre todo). Cada uno de nosotros puede elegir sobre los conocimientos que prefiere adquirir y la elección está adecuada a la conformación individual de la sensibilidad e inteligencia de cada cual. Allí, en alguna parte, está el germen del interés-curiosidad de cada cual.

                                           Si la ignorancia da la felicidad, ¿es la inteligencia sinónimo de tristeza?  - Quora

También se da el caso de personas que prácticamente, por cuestiones genéticas o de otra índole, carecen de cualquier  por el conocimiento del mundo que les rodea, sus atributos sensoriales y de inteligencia funcionan a tan bajo rendimiento que, sus comportamientos son cuasi-animales (en el sentido de la falta de racionalidad), son guiados por la costumbre y las necesidades primarias: comer, dormir…

El polo opuesto lo encontramos en múltiples ejemplos de la historia de la ciencia, donde personajes como NewtonEinstein, Riemann, Ramanujan y tantos otros (cada uno en su ámbito del conocimiento), dejaron la muestra al mundo de su genio .

La última cena del agujero negro de la Vía Láctea y las Burbujas de Fermi,  el gran eructo que quedó visible en el centro de la galaxia - BBC News MundoLos chorros que originan las burbujas de Fermi en la Vía Láctea - La  Ciencia de la Mula Francis

Pero toda la realidad está encerrada en una enorme burbuja a la que llamamos Universo y que encierra todos los misterios y secretos que nosotros, seres racionales y conscientes, perseguimos. Todo el mundo sabe lo que es la conciencia; es lo que nos abandona cada noche cuando nos dormimos y reaparece a la  siguiente cuando nos despertamos.  Esta engañosa simplicidad me recuerda lo que William James escribió a finales del siglo XIX sobre la atención:

”Todo el mundo sabe lo que es la atención; es la toma de posesión por la mente, de una forma clara e intensa, de un hilo de pensamiento de entre varios simultáneamente posibles”.

 

Rumiación: cuando los pensamientos entran en un bucle

Más de cien años más tarde somos muchos los que creemos que seguimos sin tener una comprensión de fondo ni de la atención, ni de la conciencia que, desde luego, no creo que se marche cuando dormimos, ella no nos deja nunca.

La falta de comprensión ciertamente no se debe a una falta de atención en los círculos filosóficos o científicos.  Desde que René Descartes se ocupara del problema, pocos han  los temas que hayan preocupado a los filósofos tan persistentemente como el enigma de la conciencia.

                                                                       Descartes Cogito Ergo Sum: Famous Philosophy Quote Composition College  Notebook and Diary to Write In / 140 Pages of Ruled Lined & Blank Paper /  6"x9" : Pearson, Emily: Amazon.es: Libros

Para Descartes, como para James  de dos siglos después, ser consciente era sinónimo de “pensar”: el hilo de pensamiento de James no era otra cosa que una corriente de pensamiento. El cogito ergo sum“pienso, luego existo”, que formuló Descartes como fundamento de su filosofía en Meditaciones de prima philosophía, era un reconocimiento explícito del papel central que representaba la conciencia con respecto a la ontología (qué es) y la epistemología (qué conocemos y cómo le conocemos).

Claro que tomado a pie juntillas, “soy consciente, luego existo”, nos conduce a la creencia de que nada existe más allá o fuera de la propia conciencia y, por mi parte, no estoy de acuerdo.   Existen muchísimas cosas y hechos que no están al alcance de mi conciencia.  Unas veces por imposibilidad física y otras por imposibilidad intelectual, lo cierto es que son muchas las cuestiones y las cosas que están ahí y, sin embargo, se escapan a mi limitada conciencia.

Todo el entramado existente alrededor de la conciencia es de una complejidad enorme, de hecho, conocemos mejor el funcionamiento del Universo que el de nuestros propios cerebros, una máquina compleja que algunos dicen que hizo el Universo para poder observarse  mismo.

     La Conciencia del Yo | La guía de PsicologíaPuede explicarse la conciencia con física cuántica? - BBC News Mundo

                                             Un día se despierta y nos acompaña para siempre

¿Cómo surge la conciencia como resultado de procesos neuronales particulares y de las interacciones entre el cerebro, el cuerpo y el mundo? ¿Cómo pueden explicar  procesos neuronales las propiedades esenciales de la experiencia consciente?

Cada uno de los estados conscientes es unitario e indivisible, pero al mismo tiempo cada persona puede elegir entre un  ingente de estados conscientes distintos.

                                                   QU ES LA CONCIENCIA Samael Aun Weor Educacin

Muchos han sido los que han querido explicar lo que es la conciencia.  En 1.940, el gran neurofisiólogo charles Sherrington lo intento y puso un ejemplo de lo que él pensaba sobre el problema de la conciencia.  Unos pocos años más tarde también lo intentaron otros y, antes, el mismo Bertrand Russell hizo lo propio, y, en todos los casos, con más o menos acierto, el resultado no fue satisfactorio, por una sencilla razón: nadie sabe a ciencia cierta lo que en verdad es la conciencia y cuales son sus verdaderos mecanismos; de hecho, Russell expresó su escepticismo sobre la capacidad de los filósofos para alcanzar una :

 

Fuentes Luminosas o Fuentes de Luz - AreacienciasQué es la Luz Azul y cómo afecta a tus ojos - Avanlens

 

“Suponemos que un proceso físico da comienzo en un objeto visible, viaja hasta el ojo, donde se convierte en otro proceso físico en el nervio óptico y, finalmente, produce algún efecto en el cerebro al mismo tiempo que vemos el objeto donde se inició el proceso; pero este proceso de ver es algo “mental”, de naturaleza totalmente distinta a la de los procesos físicos que lo preceden y acompañan.  Esta concepción es tan extraña que los metafísicos han inventado toda suerte de teorías con el fin de sustituirla con algo menos increíble”.

Está claro que en lo más profundo de ésta consciencia que no conocemos, se encuentran todas las respuestas planteadas o requeridas mediante preguntas que nadie ha contestado.

                             Tarotistas Videntes Expertos Tarot Visa Tarotistas Honestas

No creo que mirando en el fondo de la bolita encontremos las respuestas que todos buscamos. Más bien estarán dentro de nosotros mismos y, lo que tendremos que hacer es, comenzar la  de nuestro propio yo. Lo cierto es que, no nos conocemos ni a nosotros mismos.

Al comienzo mencionaba el cosmos y la gravedad junto con la consciencia y, en realidad, con más o menos acierto, de lo que estaba tratando era de hacer ver que todo ello, es la misma cosa.  Universo-Galaxia-Mente.  Nada es independiente en un sentido global, sino que son  de un todo y están estrechamente relacionados.

Una Galaxia es simplemente una parte pequeña del Universo, nuestro planeta es, una mínima fracción infinitesimal de esa Galaxia, y, nosotros mismos, podríamos ser comparados (en  a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes.  Sin embargo, todo forma parte de lo mismo y, aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras (efecto mariposa).

La conciencia en los animalesCaracterísticas de la prehistoria. La evolución del ser humano | Unión CDMX

Pocas dudas pueden caber a estas alturas del  hecho de que  estar hablando de estas cuestiones, es un milagro en sí mismo.

Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los animales con ciertas estructuras cerebrales de alta complejidad que, podían ser capaces de construir una escena mental, pero con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.

La conciencia de orden  (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras.  Como mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.

Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los  y experimentos que se están realizando, su complejidad es tal que, de momento, los avances son muy limitados.  Estamos tratando de conocer la “máquina” más compleja y perfecta que existe en el Universo.

                   Neuronas

                            Cien mil millones de neuronas, tantas como estrellas tiene nuestra Galaxia

Si eso es así, resultará que después de todo, no somos tan insignificantes como en un principio podría parecer, y solo se trata de tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas.  Para entonces, sí estaremos totalmente integrados y formando parte, como un todo, del Universo que  presentimos.

El carácter  de la conciencia me hace adoptar una posición que me lleva a decidir que no es un objeto, sino un proceso y que, desde este punto de , puede considerarse un ente digno del estudio científico perfectamente legítimo.

                                     La Conciencia

La conciencia plantea un problema especial que no se encuentra en otros dominios de la ciencia.  En la Física y en la Química se suele explicar unas entidades determinadas en función de otras entidades y leyes.  Podemos describir el agua con el lenguaje ordinario, pero podemos igualmente describir el agua, al menos en principio, en términos de átomos y de leyes de la mecánica cuántica.  Lo que hacemos es conectar dos niveles de descripción de la misma entidad externa (uno común y otro científico de extraordinario poder explicativo y predictivo.  Ambos niveles de descripción) el agua líquida, o una disposición particular de átomos que se comportan de acuerdo con las leyes de la mecánica cuántica (se refiere a una entidad que está fuera de nosotros y que supuestamente existe independientemente de la existencia de un observador consciente.)

                

                                                                Una maraña e conexiones sin fin

En el caso de la conciencia, sin embargo, nos encontramos con una simetría.  Lo que intentamos no es simplemente comprender de qué manera se puede explicar las conductas o las operaciones cognitivas de otro ser humano en términos del funcionamiento de su cerebro, por difícil que esto parezca.  No queremos simplemente conectar una descripción de algo externo a nosotros con una descripción científica más sofisticada.  Lo que realmente queremos hacer es conectar una descripción de algo externo a nosotros (el cerebro), con algo de nuestro : una experiencia, nuestra propia experiencia individual, que nos acontece en tanto que observadores conscientes.  Intentamos meternos en el interior o, en la atinada ocurrencia del filósofo Tomas Negel, saber qué se siente al ser un murciélago.  Ya sabemos qué se siente al ser nosotros mismos, qué significa ser nosotros mismos, pero queremos explicar por qué somos conscientes, saber qué es ese “algo” que nos hace ser como somos, explicar, en fin, cómo se generan las cualidades subjetivas experienciales.

                           Pienso luego… existo | PolítiKa UCAB

En suma, deseamos explicar ese “Pienso, luego existo” que Descartes postuló como evidencia primera e indiscutible sobre la cual edificar toda la filosofía. Y, todo esto, amigos míos, es posible gracias a que, en el Universo que nos acoge está presente la Física, la Química y la Biología que surgieron de la evolución de las estrellas y de la radiación cósmica para que , nosotros estemos aquí para comentar sobre un “todo” conformado por la materia y la mente.

emilio silvera

Fuerzas y Constantes…¡El Universo!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

mundo brana

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundo-brana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil. Seguramente ese será el motivo por el cual, encontrar  al Bosón mediador de la fuerza, el Gravitón, resulta tan difícil.

                                                         

Muchos han sido los intentos de localizar al gravitón, sin éxito alguno. ¿Será el de arriba? Seguramente no. Sin embargo, aunque no será fácil, debemos seguir la búsqueda del bosón que intermedia en la fuerza gravitacional.

Las fuerzas fundamentales

Tipo de Fuerza Alcance en m Fuerza relativa Función
Nuclear fuerte <3×10-15 1041 Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil < 10-15 1028 Es responsable de la energía radiactiva   producida de manera natural.  Portadoras W y Z
Electromagnetismo Infinito 1039 Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación Infinito 1 Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies

 Fuerza Nuclear Fuerte

Fuerzas nuclearesfuerza nuclear | Mgmdenia's Blog

La Fuerza nuclear fuerte es la más potente de las cuatro fuerzas fundamentales. Los núcleos de los átomos están conformados por protones y neutrones que, a su vez están hechos de quarks. Los quarks están confinados dentro de los nucleones y sujetos por las partículas mediadoras de la fuerza, los Gluones que no permiten que los quarks se separen manteniendo así, el debido equilibrio.

Fuerza Nuclear Débil

Fuerza Nuclear Debil ConceptoDefinición y ejemplos de fuerza nuclear débil

“La fuerza nuclear débil es la responsable de la desintegración radiactiva de las partículas subatómicas y es la iniciadora del proceso conocido como fisión nuclear.​ La teoría de la interacción débil se conoce también como flavordinámica cuántica (QFD, de las siglas en inglés), aunque el término casi no se utiliza porque la fuerza nuclear débil se entiende mejor en términos de la teoría electrodébil (EWT).​ Es una fuerza de muy corto alcance, 10–17 m.

                                                    

                                                                  Desintegración Beta

Según el modelo estándar de física de partículas, la interacción débil es causada por la emisión o absorción de Bosones W y Z; por tanto, se considera una fuerza sin contacto, al igual que las otras tres fuerzas fundamentales. La interacción débil afecta a todos los fermiones conocidos, es decir, las partículas que tienen un espín (una propiedad de todas las partículas) semi-entero. El efecto más conocido de esta emisión es la desintegración Beta, que es una forma de radioactividad Los bosones W y Z son mucho más pesados que los protones o neutrones justamente eso explica el corto alcance de la interacción débil. De hecho, se denomina «débil» porque su intensidad de campo es varios órdenes de magnitud menor que la del electromagnetismo y la de la fuerza nuclear fuerte.”

Las constantes fundamentales

Constante Símbolo Valor en unidades del SI
Aceleración en caída libre g 9,80665 m s-2
Carga del electrón e 1,60217733(49) × 10-19 C
Constante de Avogadro NA 6,0221367 (36) × 1023 mol-1
Constante de Boltzmann K=R/NA 1,380658 (12) × 10-23 J K-1
Constante de Faraday F 9,6485309 (29) × 10C mol-1
Constante de los gases R 8,314510 (70) × J K-1 mol-1
Constante de Loschmidt NL 2,686763 (23) × 1025 mol-3
Constante de Planck h 6,6260755 (40) × 10-34 J s
Constante de Stefan-Boltzmann σ 5,67051 (19) × 10-8 Wm-2 K-4
Constante eléctrica ε0 8,854187817 × 10-12 F m-1
Constante gravitacional G 6,67259 (85) × 10-11 m3 Kg-1 s-2
Constante magnética μ0 4π × 10-7 Hm-1
Masa en reposo del electrón me 9,1093897 (54) × 10-31 Kg
Masa en reposo del neutrón mn 1,6749286 (10) × 10-27 Kg
Masa en reposo del protón mp 1,6726231 (10) × 10-27 Kg
Velocidad de la luz c 2,99792458× 10m s-1
Constante de estructura fina α 2 π e2/h c

                        

Desde el Big Bang, cuando aparecieron las fuerzas fundamentales, también lo hicieron las constantes universales que contribuyen a que, nuestro Universo sea tal como lo conocemos y posibilitan la presencia de vida aquí en la Tierra, y posiblemente, en otros muchos planetas.

Unas pueden ser más constantes naturales que otras, pero lo cierto es que, de momento, han servido como herramientas eficaces.

                                                        Velocidad de la luz GIF - Descargar & Compartir en PHONEKY

          La velocidad de la luz (299.762.458 m/s) es el límite que impone el Universo para moverse

La última lección importante que aprendemos de la manera en que números puros como α (alfa) definen el mundo, es el verdadero significado de que los mundos sean diferentes.

La constante de estructura fina de Sommerfeld (símbolo α) es la constante física fundamental que caracteriza la fuerza de la interacción electromagnética. Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado

La expresión que la define y el valor recomendado por CODATA 2002 es:

 

La Mecánica Cuántica: La estructura fina del hidrógenoPor qué el número 137 es uno de los grandes misterios de la física | Life -  ComputerHoy.com

                                         137 EL NÚMERO PURO Y ADIMENSIONAL

El número puro que llamamos constante de estructura fina, e indicamos con α, es como  decimos en el comentario siguiente, una combinación de ec y h (el electrón, la velocidad de la luz y la constante de Planck). Inicialmente, podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si eh y c cambian de modo que los valores que tienen en unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas, pero el valor de α permaneciera igual; este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la Naturaleza.

                                     Covariancia - EcuRed

Fue Einstein el que anunció lo que se llamó principio de covariancia: que las leyes de la naturaleza deberían expresarse en una forma que pareciera la misma para todos los observadores, independientemente de dónde estuvieran situados y de cómo se estuvieran moviendo. Cuando trató de desarrollar este principio, Einstein tuvo dificultades; no encontraba la manera de expresarlo con la formulación matemática adecuada.

Pidió ayuda a su amigo Marcel Grossmann, matemático, quien sabiendo de las necesidades exactas de Einstein, le envió la copia de una conferencia que dio un tal Riemann, unos sesenta años antes.

             La conferencia de Riemann" El... - Parábola de Prometeo | FacebookLos matemáticos que ayudaron a Einstein y sin los cuales la teoría de la  relatividad no funcionaría - BBC News Mundo

               Las matemáticas que ayudaron a Einstein para su teoría de los espacios curvos

Einstein fue muy afortunado, ya que durante la última parte del siglo XIX en Alemania e Italia, matemáticos puros habían estado inmersos en el estudio profundo y detallado de todas las geometrías posibles sobre superficies curvas. Habían desarrollado un lenguaje matemático que automáticamente tenía la propiedad de que toda ecuación poseía una forma que se conservaba cuando las coordenadas que la describían se cambiaban de cualquier manera. Este lenguaje se denominaba cálculo tensorial. Tales cambios de coordenadas equivalen a preguntar qué tipo de ecuación vería alguien que se moviera de una manera diferente.

Riemann, Georg Friedrich Bernhard, 17.9.1826 - 20.7.1866, el científico  alemán (matemático), retrato, dibujo del siglo XIX Fotografía de stock -  AlamyLa Teoría de la Relatividad: El tensor de Riemann II

    Riemann , Georg Bernhard y la Teor´çia de la relatividad el tensor métrico

Einstein se quedó literalmente paralizado al leer la Conferencia de Riemann. Allí, delante de sus propios ojos tenía lo que Riemann denominaba Tensor métrico. Einstein se dio cuenta de que era exactamente lo que necesitaba para expresar de manera precisa y exacta sus ideas. Así  llegó a ser  posible la teoría de la relatividad general.

Einstein pudo expresar su principio de covariancia expresando sus leyes de la naturaleza como ecuaciones tensoriales, que poseían automáticamente la misma forma para todos los observadores.

                                       

Tensor métrico de Riemann: 

La geometría de los espacios curvos de Riemann hizo posible la relatividad general de Einstein que se pasó siete años buscando la formulación adecuada a su ideas.

Este paso de Einstein completó un movimiento espectacular en la concepción física de la naturaleza que ha sido completado en el siglo XX. Está marcado por una evolución que se aleja continuamente de cualquier visión privilegiada del mundo, sea una visión humana, basada en la Tierra, o una visión basada en patrones humanos, la naturaleza tiene sus propios patrones (el 137 es un ejemplo de ello).

El James Webb ofrece la imagen más profunda del Universo | Todas las  noticias de PalenciaUniverso - Wikipedia, la enciclopedia libre

El Universo es igual en todas partes sin importar lo lejos que estén sus regiones

Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintos leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario,  los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos:

                                         Las partículas elementales

Quarks y Leptones que formaron los hadrones llamados bariones (como protones, neutrones y otros) para conformar la materia que vemos a nuestro alrededor, en los cielos y en el Universo profundo. Todo eso, grande o pequeño, está formado por la materia que está hecha de estos infinitesimales objetos ciudadanos del mundo cuántico y que se juntan por miles y cientos de miles de millones para dejarse ver en forma de mundos, de estrellas y galaxias y, ¿por qué no? también de seres vivientes racionales o no (aunque la definición de racionales no parece muy convincente).

emilio silvera

¿Que hay en el núcleo de un Púlsar? ¿Existen estrellas de...

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La pasta nuclear podría limitar el período de rotación de los Púlsares. Parece que con el nuevo descubrimiento se ha dado un paso más, hacia la comprensión de la materia y las formas que puede adoptar bajo ciertas circunstancias.

Jose A. Pons, profesor de la Universidad de Alicante

 

Diferencias entre cuásar, púlsar y estrella de neutrones on Make a GIF

 

“Un púlsar de milisegundos ( MSP ) es un púlsar con un período de rotación inferior a unos 10 milisegundos . Se han detectado púlsares de milisegundos en partes de radio , rayos X y rayos gamma del espectro electromagnético . La teoría principal sobre el origen de los púlsares de milisegundos es que son estrellas de neutrones viejas que giran rápidamente y que se han hecho girar o “reciclado” a través de la acumulación de materia de una estrella compañera en un sistema binario cercano. Por esta razón, los púlsares de milisegundos a veces se denominan púlsares reciclados “

 

Estrellas de neutrones: características, formación y curiosidades |  Meteorología en Red

 

“Una estrella de neutrones es un tipo de remanente estelar resultante del colapso gravitacional de una estrella supergigante masiva después de agotar el combustible en su núcleo y explotar como una supernova tipo II, tipo Ib o tipo Ic.

Como su nombre indica, estas estrellas están compuestas principalmente de neutrones, más otro tipo de partículas tanto en su corteza sólida de hierro, como en su interior, que puede contener tanto protones y electrones, como piones y kaones.

Las estrellas de neutrones son muy calientes y se apoyan en contra de un mayor colapso mediante presión de degeneración cuántica, debido al fenómeno descrito por el principio de exclusión de Pauli. Este principio establece que dos neutrones (o cualquier otra partícula fermiónica) no pueden ocupar el mismo espacio y estado cuántico simultáneamente.”

                                                               Observan por primera vez un púlsar evolucionando entre dos fases

 

“Una investigación en la que han participado científicos del Instituto de Ciencias del Espacio (ICE CSIC-IEEC) ha permitido observar por primera vez un púlsar (estrella de neutrones que emite radiaciones magnéticas) transitando entre dos de sus fases evolutivas.

Según ha informado el ICE, los científicos creen haber encontrado con esta observación “el eslabón perdido de los púlsares en los sistemas binarios”, con lo que confirmarían una teoría que se describe desde hace tres décadas.”

                                                                 ESTRELLAS DE NEUTRONES ESTRELLAS DE NEUTRONES

 

Un estudio liderado por el grupo de Astrofísica Relativista de la Universidad de Alicante ha detectado la que podría ser la primera evidencia observacional de la existencia de una nueva fase exótica de la materia en la corteza interna de las estrellas de neutrones (púlsares).

Los púlsares son estrellas de neutrones (estrellas ultra-compactas y fuertemente magnetizadas) en rotación, residuos de una explosión Supernova. Estas estrellas nacen rotando muy velozmente (hasta 100 veces por segundo), pero van perdiendo momento angular debido a la emisión de radiación electromagnética, de la misma forma que un gigantesco imán que gira perdería energía. Algunas de estas estrellas de neutrones emiten ondas de radio en la dirección de sus polos magnéticos que, cuando incidentalmente apuntan a la Tierra, pueden ser detectadas. El primer descubrimiento de estas señales muy periódicas se produjo en 1967 por Jocelyn Bell y Anthony Hewish, y significó que le concedieran el premio Nobel en 1974 a Anthony Hewish.

 

Cómo se realizó el hallazgo histórico del choque entre las estrellas de  neutrones - Infobae

 

Con el paso de las décadas, y el nacimiento de la astronomía de rayos X, (o en general de altas energías) se empezaron a detectar púlsares no sólo en radio, sino también en rayos X o en rayos gamma. Una de las incógnitas en el campo de los púlsares de rayos X es la existencia de un límite superior de 12 segundos en los periodos de rotación. Históricamente, se conocía que los radio-púlsares (aquellos que detectamos en ondas de radio) tenían un límite superior observado a su periodo de rotación que se atribuía a un simple efecto observacional: los que giran más lentamente emiten ondas de radio con menor intensidad y más focalizadas, con lo que es más difícil observarlos. Sin embargo, las misiones espaciales de la última década han detectado un creciente número de púlsares aislados de rayos X, y hemos visto con sorpresa que tampoco ninguno de ellos presenta un periodo de rotación superior a 12 segundos, pero no existía ninguna explicación teórica para este fenómeno.

      Púlsar — AstronooPúlsar — Astronoo

Dado que, para estrellas aisladas, el ritmo de perdida de energía de rotación depende del campo magnético de la estrella de neutrones, se esperaba que las estrellas de campo magnético alto se frenarán muy rápidamente, pudiendo alcanzar periodos de rotación de varias decenas o incluso centenares de segundos, mientras aún están suficientemente calientes para ser visibles en rayos X. Sin embargo, se vio con sorpresa que hay un acumulamiento de fuentes con periodos entre 10 y 12 segundos, pero sin que nunca se haya encontrado un pulsar de rayos X, que no forme parte de un sistema binario, con periodos de rotación superiores.

                                          La Jornada - Magnetar descubierto en 2020 también es pulsar: Nasa

Otra variante de esta clase de residuos estelares son los magnetar. arriba señalan uno

“En un estudio reciente, publicado en el último número de Nature Physics, aparecen los resultados de la investigación, basada en simulaciones por ordenador de la evolución del campo magnético de los púlsares, que aborda este misterio. La idea fundamental es que el campo magnético no permanece constante, sino que se disipa muy rápidamente debido a la alta resistividad eléctrica de una capa de la corteza interna, donde las corrientes eléctricas que soportan el campo magnético ultra-intenso de las estrellas de neutrones tienden a a desplazarse. Lo localización de dicha capa resistiva coincide con las predicción de un nuevo estado de la materia nuclear, llamado “pasta nuclear”.

¿Lasaña o espagueti?

                                    

La pasta nuclear, llamada así por similitud con la pasta italiana, sucede cuando la combinación de la fuerza nuclear y electro-magnética, a densidades cercanas a la de los núcleos atómicos, favorece el ordenamiento de los nucleones (protones y neutrones) en formas geométricas no esféricas, como láminas o filamentos (lasaña o espagueti).

Esta puede ser la primera evidencia observacional de la existencia de la fase de “pasta nuclear” en el interior de estrellas de neutrones, lo cual puede permitir que futuras misiones de observatorios de rayos X puedan usarse para aclarar aspectos de cómo funciona la interacción nuclear que aún no están del todo claros. Es una oportunidad única, ya que probablemente no hay otro lugar en el Universo, aparte de las estrellas de neutrones, donde podamos encontrar las condiciones necesarias para que se forme la “pasta nuclear”.

Los púlsares nacen girando muy rápidamente, sin embargo sus intensos campos magnéticos los frenan a lo largo de su vida, con lo cual su periodo de rotación aumenta. Entre tanto, en la capa de “pasta” las corrientes se disipan y el campo magnético de la estrellas se vuelve débil, hasta que ya no es capaz de frenar significativamente la rotación de la estrella: el púlsar está “al dente”, con un periodo de alrededor de 10-12 segundos.

Referencia:

A highly resistive layer within the crust of X-ray pulsars limits their spin periods, J. A. Pons, D. Viganò, N. Rea, Nature (2013), doi:10.1038/nphys2640.

Después de leer el artículo del profesor Pons, se me ocurre que la materia, en realidad, es una gran desconocida y guarda secretos que debemos desvelar para poder obtener de ella todo lo que nos ofrece que es mucho y que no hemos sabido aprovechar por el momento en toda su extensión y sus muchas posibilidades que nos llevarán hacia otra forma de ver el universo.

                                       Structure of matter - tec-science

                                                                                Structure of matter

En otra ocasión os hablé aquí de la posibilidad (nunca podemos negar nada que nuestra imaginación pueda idear), de que existieran estrellas hechas de materia extraña, es decir de una especie de pasta densa compuesta de Quarks-Gluones y que estaría en la escala intermedia entre las estrellas de neutrones y los agujeros negros.

                

La Hipótesis de estrella de Quarks (EQs) podrían responder a muchos interrogantes surgidos a partir de observaciones astrofísicas que no coinciden con los modelos canónicos teóricos de las Estrellas de Neutrones ( ENs ). Decimos que son hipotéticas porque se conjetura que estarían formadas por Materia Extraña ( ME ). La comunidad astrofísica espera evidencias observacionales que permitan diferenciarlas de las ENs, ya que podrían explicar un conjunto de observaciones astronómicas que aún resultan una incógnita. Es sabido que una EN es el remanente del colapso de una estrella masiva. El colapso de la estrella, la supernova, da lugar a un núcleo compacto hiperdenso de hierro y otros metales pesados que sigue comprimiéndose y calentándose. Su densidad continúa aumentando, dando lugar a una “neutronización“ (recombinación de electrones con protones que resultan en neutrones) y el gas degenerado de neutrones frena el colapso del remanente.

                                                 Cómo distinguir estrellas de neutrones y estrellas de quarks con ondas  gravitatorias - La Ciencia de la Mula Francis

Se especula con la posibilidad de que existan estrellas de Quarks que estarían hechas de materia extraña de Quaks y Gluones.

                                                                        

Una EQ, a diferencia de una EN, no se originaría necesariamente de una evolución estelar después del agotamiento del combustible nuclear de una estrella normal. Sería, probablemente, producto de la transición de fase hadrón-quark a altísima densidad. La Cromodinámica Cuántica (CDC), la Teoría de las Interacciones Fuertes que ocurren dentro de los nucleones (protones y neutrones), concibe teóricamente la idea de la transición de fase hadrón-quark a temperaturas y/ o densidades extremadamente altas con el consecuente desconfinamiento de quarks y gluones, que formarían una especie de “sopa “. Sin embargo, los quarks libres no se han encontrado aún, en uno u otro límite, en ningún experimento terrestre.

La “sopa“ que mencionamos antes, se conoce como Plasma Quark-Gluón ( PQG ). En el límite de altas temperaturas, el PQG está tratando de obtenerse en el laboratorio y existen fuertes indicios de que se logre con éxito experimentos de altas energías como el Colisionador Relativista de Iones Pesados (conocido por sus siglas en ingles como RHIC) de Brookhaven, New York.

                                                     Colisionador RHIC. Vista del colisionador de iones pesados relativistas ( RHIC) en el Laboratorio Nacional Brookhaven, en Long Island, Nueva York.  RHIC consta de dos anillos Fotografía de stock - Alamy

                                                           Brookhaven (RHIC) de Nueva York

Por otro lado, se espera que a través de observaciones astronómicas se compruebe que la transición a altas densidades se hubiese producido en el interior de alguna EN. Esto se debe a que los valores de densidades estimados para que dicha transición tuviese lugar coinciden con densidades del orden de (3 exp. – 12) ρ0 (siendo ρ0 ̃ 0, 17 fmˉ ³ la densidad de equilibrio nuclear) que son típicas del interior de las ENs. Los cálculos basados en diferentes ecuaciones de estado de la materia nuclear muestran estos resultados, por lo que sería razonable que el núcleo de las ENs estuviese formado por materia de quarks.

                                                     Púlsar de milisegundos

Recientemente, la relación entre campo magnéticos y materia densa está atrayendo la atención de los astrofísicos, especialmente después de las observaciones de emisiones peculiares de pulsares anómalos de rayos X, que se interpretan como ENs en rotación, y de emisiones de radiación γ de baja energía de los llamados repetidores de rayos γ suaves ( SGRs – soƒt gamma-ray repeaters ). El motor central de esas radiaciones podría ser un campo magnético mayor que 4 x 10¹³ Gauss, que es el campo crítico previsto por la Electrodinámica Cuántica.

Muchas observaciones astronómicas indirectas sólo se explicarían a través de la existencia de campos magnéticos muy intensos en los núcleos de ENs  en EQs, de manera que el papel que juega el campo magnético en la ME aún constituye un problema abierto y de sumo interés en la Astrofísica.

                            El púlsar más lento conocido reacelera hace un millón de años

 En particular, en un trabajo reciente, se ha analizado la ME considerando neutralidad de carga, equilibrio β y conservación del número bariónico. En dicho trabajo se obtuvo una cota superior para el valor del campo magnético que determina una transición de fase cuya explicación requiere ser estudiada en profundidad ya que sería independiente de la interacción fuerte entre los quarks. También se ha comprobado que la presencia de de campos magnéticos intensos favorece la estabilidad de la ME.

Por otro lado, estudios teóricos han demostrado que si la materia es suficientemente densa, la materia de quarks deconfinada podría estar en un estado superconductor de color. Este estado estaría formado por pares de quarks, análogos a los pares de Cooper (constituidos por electrones) existentes en los superconductores ordinarios.

                                             Diseño gráfico y visualización científica en física de partículas | Francis  (th)E mule Science's News

Los quarks, a diferencia de los electrones, poseen grados de libertad asociados con el color, el sabor y el espín. Por este motivo, dependiendo del rango de densidades en el cual estamos trabajando, algunos patrones de apareamiento pueden verse favorecidos generando la aparición de distintas fases superconductoras de color. Según estudios teóricos, la fase superconductora más favorecida a densidades extremadamente altas sería la Color Flavor Locked (CFL), en la cual los quarks u, d y s poseen igual momento de Fermi, y en el apareamiento participan los tres colores y las dos proyecciones de espín de cada uno de ellos. Estudios recientes sobre la fase CFL han incluido los efectos de campos magnéticos intensos, obteniendo que bajo determinadas condiciones el gas superconductor, que corresponde a la separación entre bandas de energía en el espectro fermiónico, crece con la intensidad del campo. A esta fase se la llama Magnetic Color Flavor Locked (MCFL).

                                                            Sobre el pulsar de la Nebulosa del Cangrejo. | Pablo Della Paolera

                                         El púlsar del Cangrejo. La imagen combina información óptica  del Hubble (en rojo) e imágenes de rayos X del Chandra (en azul). El púlsar está oculta en la Nebulosa del mismo nombre.

 Son muchos los misterios que contiene el Universo y, nosotros, debemos recorrer los caminos que sean necesarios para desvelarlos. Cuando las cosas son conocidas, se evitan las sorpresas y, además, se les puede sacar más rendimiento, Así, si conocemos las posibilidades que nos ofrece la Naturaleza…

En la superconductividad electromagnética usual, un campo magnético suficientemente fuerte destruye el estado superconductor. Para la superconductividad de color no existe aún un consenso de cómo, la presencia del campo magnético, podría afectar al apareamiento entre los quarks.

En este trabajo describiremos brevemente la materia extraña, con el objetivo de explicar su formación en el interior de una EN y entender la composición y características de una EQ. Posteriormente, utilizaremos el modelo fenomenológico de bag del Massachussets Institute of Technology (MIT) para encontrar las ecuaciones de estado de la ME en condiciones determinadas, comprobando la estabilidad de la misma, frente a la materia de quarks ordinaria formada sólo por quarks u y d. Presentaremos, además, algunas candidatas posibles a EQs según observaciones astrofísicas. Por último, trataremos de entender la superconductividad de color y la influencia del campo magnético intenso en las fases superconductoras.

Materia de Quarks:

                                 Descubren un nuevo tipo de materia dentro de las estrellas de neutrones •  Tendencias21

                  Ya se descubrió un nuevo tipo de materia dentro de las estrellas de neutrones

“En física de partículas, los cuarks​​ o quarks​​ son los fermiones elementales masivos que interactúan fuertemente formando la materia nuclear y ciertos tipos de partículas llamadas hadrones. Junto con los leptones, son los constituyentes fundamentales de la materia bariónica.”

Los bosones son las partículas que hacen el trabajo de las fuerzas físicasArchivo:Interacciones del modelo estándar de la física de particulas.png -  Wikipedia, la enciclopedia libre

                                                         Un gran logro de la Mente Humana

Uno de los mayores logros alcanzados por los físicos en el último siglo, fue la construcción del Modelo Estándar en la física de partículas elementales. Este modelo sostiene que la materia en el Universo está compuesta por fermiones, divididos en quarks y leptones, que interactúan a través de los llamados bosones de calibre: el fotón (interacción electromagnética), los bosones W± y Zº (interacción débil), y 8 tipos de gluones (interacción fuerte). Junto con los bosones de calibre, existen tres generaciones de fermiones: ( v e, e ), u, d ); ( vµ, µ ), ( c, s ) ; ( v….); y sus respectivas antipartículas. Cada “ sabor “ de los quarks, up ( u ), down ( d ), charme ( c ), strange ( s , top ( t ) y bottom ( b), tiene tres colores ( el color y el sabor son números cuánticos ). La partícula que aún no ha sido descubierta experimentalmente es el bosón de Higgs, que cabe suponer sería responsable del origen de la masa de las partículas.

                                                 Bosoneando: Quarks de colorines

                                                    Muchos son los científicos que buscan respuestas

Los quarks son los componentes fundamentales tanto de los hadrones fermiónicos (bariones formados por la combinación de tres quarks) como de los bosónicos (mesones formados por un quark y un antiquark). ES sabido que el núcleo de un átomo está compuesto por nucleones (protones y neutrones) que a su vez están compuestos por quarks (protón = udd). David Gross y Franks Wilczek y David Politzer, descubrieron teóricamente que en la CDC el acoplamiento efectivo entre los quarks disminuye  a medida que la energía entre ellos aumenta (libertad asintótica). La elaboración de esta teoría permitió que recibieran el Premio Nobel de Física en el año 2004. En los años 60, la libertad asintótica fue comprobada experimentalmente en el acelerador lineal de Stanford ( SLAC ).

                                                           Cromodinámica Cuántica | La guía de Física

Sin embargo, la CDC no describe completamente el deconfinamiento en un régimen de alta densidad y baja temperatura, debido a su complejidad matemática y a su naturaleza no lineal para bajas energías. No obstante, es posible recurrir a una descripción fenomenológica para intentar entender la física de la formación de la materia de quarks en las ENs. La materia de quarks, es decir, el plasma de quarks deconfinados y gluones, es una consecuencia directa de la libertad asintótica cuando la densidad bariónica o la temperatura son suficientemente altas como para considerar que los quarks son partículas más fundamentales que los neutrones o protones. Esta materia, entonces, dependiendo de la temperatura y del potencial químico (µ) de los quarks, aparecería esencialmente en dos regímenes. Uno de ellos, el PQG, constituiría la fase “caliente”  de la materia de quarks cuando T >> µ constituyendo la mencionada ME, que se formaría en el interior de las Ens. Esta transición de fase estaría ocurriendo en el Universo cada vez que una estrella masiva explotara en forma de supernova, con la consecuente aparición de una EN.

                     

Las estrellas de Quarks, aunque de momento son una conjetura su existencia, hasta donde podemos saber, no sería nada extraña que, en cualquier momento, se pudieran descubrir algunas y, pasarían a engrosar la lista de los objetos más masivos del Universo. Ellas estarían entre las estrellas de Neutrones y los Agujeros Negros.

En 1971 A.R. Bodmer propuso que la ME es más estable que el Fe, que es el más estable de todos los núcleos ordinarios. Por lo tanto, según su hipótesis, la ME constituía el estado más fundamental de la materia. En la Naturaleza, la presencia de núcleos atómicos ordinarios. Por lo tanto, según su hipótesis, la ME constituía el estado más fundamental de la materia. En la Naturaleza, la presencia de núcleos atómicos ordinarios no se halla en contradicción con la mayor estabilidad que presenta la ME. Esto se debe a que la conversión de un núcleo atómico en ME, requiere que se transformen quarks u y d en quarks extraños s. La probabilidad de que esto ocurra involucra una transición débil que hace que los núcleos con peso atómico A ≥ 6 sean estables por más de 10 exp60. Años. De manera que si la hipótesis de la ME fuera correcta, estaríamos en presencia del estado más estable de la materia hadrónica y para su formación se necesitaría un ambiente rico en quarks s o la formación de un PQG, Como ya mencionamos, podríamos alcanzar dicho estado en las colisiones de iones pesados relativistas, segundos después del Big Bang en el Universo primordial y en el interior de las Ens.

A) Formación de Materia Extraña en una Estrella de Neutrones:

                                           Las estrellas de neutrones y quarks explicadas para todos los públicos: así  se forman dos de los objetos más asombrosos del universo

Inmediatamente después de la transición de fase hadrón-quark en el interior de la estrella, no existe una configuración de equilibrio químico entre los quarks. Esto puede entenderse de la siguiente forma: en el punto de transición, la materia bariónica predominante son los quarks u y d con una pequeña cantidad de electrones. Así, la densidad del quark d es aproximadamente dos veces la densidad del quark u, Nd ~ 2Nu, debido al hecho de que la materia en las estrellas compactas es eléctricamente neutra. Por el principio de exclusión de Pauli, sería energéticamente más favorable para los quarks d decaer en quarks s hasta restablecer el equilibrio entre sabores vía interacciones débiles. Dado que la densidad bariónica de la materia de quarks en el interior de la estrella sería ~ 5ρ0, los potenciales químicos de los quarks deberían ser grandes respecto de las masas. Esto implicaría que las densidades de los quarks fueran prácticamente iguales. De esta forma, la configuración más estable en el interior de la EN, sería un núcleo de ME con una densidad bariónica Nb = Ni ( i= u , d, s ). Si el interior de una EN estuviese compuesto por ME, cabe entonces preguntarnos: ¿podría transformarse una EN en una EQ?

B) EQs: Formación y características:

                                    Evolución Estelar

Para los astrónomos ha quedado bien establecido que el remanente estelar después de la explosión de una supernova podría resultar ser una  Enana Blanca, una Estrella de neutrones o un Agujero Negro, dependiendo de la masa de la estrella de origen.

Observaciones astronómicas recientes sugieren un remanente aún más exótico: las EQs. La idea de la existencia de estas estrellas apareció en 1969, cinco años después de la predicción de Gell- Mann de la existencia de los quarks.

En el año 1984, Farhi y Jaffe, basándose en el modelo de bag del MIT, mostraron en sus cálculos que la energía por barión de la ME era menor que la del núcleo atómico más estable, el Fe. Esto daba mayor solidez a la hipótesis de Bodmer- Witten e inmediatamente se comenzaron a desarrollar modelos teóricos de Eqs. En el año 2002, el Observatorio de Rayos X Chandra, de la NASA, reportó el descubrimiento de dos estrellas candidatas a ser Eqs.

Para que una EN se transforme en una EQ pura, necesitamos algún mecanismo mediante el cual su densidad aumente cada vez más. Pensemos, por ejemplo, que la EN forma parte de un sistema binario. Para considerar que dos estrellas están en un sistema binario, debe analizarse su proximidad comparando el tamaño de las mismas con el radio del lóbulo de Roche, que es la región que define el campo de la acción gravitatoria de una estrella sobre otra.

                                                             

Si el radio de cada estrella es menor que el lóbulo de Roche, las estrellas están desconectadas. Por el contrario, si una de ellas llena el lóbulo de Roche, el sistema es semi-conectado y la materia puede fluir a través del punto de Lagrange interno. El potencial gravitatorio de un sistema binario se consume la masa de la estrella compañera. Cuando la masa de la EN alcanza el valor de ~2 M  (M corresponde a la masa solar), sufre un colapso gravitatorio, pudiéndose transformar en una EQ.

¿Podría el colapso de una supernova dar origen a la formación de una EQ? Esta pregunta nos conduce a otra hipótesis teórica acerca de la formación de la EN, hay conservación del momento angular. La proto-estrella de neutrones tiene una fracción pequeña de su radio original, que era el de la supernova, por lo que su momento de inercia se reduce bruscamente. Como resultado, la EN se forma con una altísima velocidad de rotación  que disminuye gradualmente. Los períodos de rotación se hacen cada vez más largos debido a la pérdida de energía rotacional por la emisión de vientos de electrones y positrones y de la radiación bipolar  electromagnética. Cuando la alta frecuencia de rotación o el campo electromagnético alcanzan un valor crítico, la EN se transforma en un pulsar que emite pulsos del orden de los milisegundos. Debido a la enorme fuerza centrífuga en estos objetos, la estructura interna se modifica, pudiendo alcanzar una densidad crítica por encima de la que corresponde a la transición de fase hadrón-quark. En estas condiciones, la fase de materia nuclear relativamente incomprensible se convertiría en la fase de ME, más comprensible, cuyo resultado final sería la aparición de una EQ.

           

La identificación de una EQ requiere señales observacionales consistentes. Con esto nos referimos a propiedades físicas de la estrella tales como su masa máxima, radio, período mínimo de rotación, enfriamiento por emisión de neutrinos. Todas estas propiedades dependen de una única ecuación de estado para la materia densa de quarks que aún no ha sido completamente establecida. Sin embargo, existe un rango de valores aceptados para las cantidades antes mencionadas, con base en datos observacionales recientes, que marcarían importantes diferencias entre las posibles Eqs y los demás objetos compactos.

Un rasgo característico de las Eqs es que la materia no se mantendría unida por la atracción  gravitacional, como ocurre en las Ens, sino que sería consecuencia directa de la interacción fuerte entre los quarks. En este caso, la estrella se dice auto-ligada. Esto implica una diferencia sustancial entre las ecuaciones de estado para las dos clases de estrellas. Las correcciones perturbativas a la ecuación de estado de la materia de quarks y los efectos de superconductividad de color complican aun más este punto. Otra característica para poder diferenciar las Eqs de las Ens es la relación entre su masa M y el radio R. Mientras que para una EQ, M ~ R³. De acuerdo con esta relación, las Eqs tendrían radios más pequeños que los que usualmente se le atribuyen a las Ens. Además, las Eqs violarían el llamado límite de Eddington. Arthur Eddington (1882-1994) observó que las fuerzas debido a la radiación y a la gravitación de las estrellas normales dependían del inverso del cuadrado de la distancia. Supuso, entonces, que ambas fuerzas podían estar relacionadas de algún modo, compensándose para que la estrella fuera más estable. Para estrellas de altísima masa, la presión de radiación es la dominante frente  a la gravitatoria. Sin embargo, debería existir una presión de radiación máxima para la cual la fuerza expansiva debido a la radiación se equilibrara con la gravedad local. Para una estrella normal, el límite de Eddington está dado por una ecuación que omito para no hacer más complejo el tema.

                    Discos de Acreción en Sistemas Binarios II | Curiosidad Científica

Para cualquier valor de radiación que supere este límite, no habrá equilibrio hidrostático, causando la pérdida de masa de la estrella normal. El mecanismo de emisión en una EQ produciría luminosidades por encima de dicho límite. Una posible explicación a este hecho sería que la EQ es auto-ligada y por lo tanto su superficie alcanzaría temperaturas altísimas con la consecuente emisión térmica.

Por otro lado, una alternativa para explicar algunas observaciones de destellos de rayos γ, sería suponer que las emisiones provienen de Eqs con radios R ~ 6 km, valores demasiados pequeños si pensáramos que los destellos provienen de ENs.

En esta sección, hemos presentado algunas características de las Eqs que las diferenciarían de las Ens. Futuras evidencias experimentales y observacionales nos permitirían saber si las Eqs realmente existen en la naturaleza.

C) Observaciones astrofísicas: posibles Eqs

El mes de febrero de 1987 fue la primera oportunidad de poner a prueba, a través de las observaciones directas, las teorías modernas sobra la formación de las supernovas. En el observatorio de Las Campanas, en Chile, fue observada la Supernova 1987A en la Gran Nube de Magallanes. Algunas características de la emisión de neutrinos de la SN 1987ª, podrían explicarse sin una hipotética fuente de energía subnuclear como la ME contribuyera a su explosión. El remanente estelar que ha quedado como consecuencia de la explosión de la Supernova 1987ª, podría ser una EQ, ya que el período de emisión de este pulsar es de P= 0.5 ms. Una EN canónica no podría tener una frecuencia de rotación tan alta.

                     Materia extra˜na en el universoMateria extra˜na en el universo

El observatorio Chandra de rayos X de la NASA también encontró dos estrellas inusuales: la fuente RX J1856.5-3754 con una temperatura de 105.  K y la fuente 3C58 con un período de 65 ms. RX J1856.5-3754 es demasiado pequeña para ser una EN convencional y 3C58 parece haberse enfriado demasiado rápido en el tiempo de vida que se le estima.

Combinando los datos del Chandra y del telescopio espacial Hubble, los astrónomos determinaron que RX J1856. 5 – 3754 radia como si fuera un cuerpo sólido con una temperatura de unos 1x 10 exp5. ºC y que tiene un diámetro de alrededor de 11 km, que es un tamaño demasiado pequeño como para conciliarlo con los modelos conocidos de las Ens.

Las observaciones realizadas por el Chandra sobre 3C58 también produjeron resultados sorprendentes. No se pudo detectar la radiación que se esperaba en la superficie de 3C58, una EN que se cree producto de la explosión de una supernova vista por astrónomos japoneses y chinos en el año 1181 de nuestra era. Se llegó a la conclusión de que la temperatura de la estrella, de menos de un millón de grados Celsius, era un valor mucho menor que el que predice el modelo. Estas observaciones incrementan la posibilidad de que los objetos estelares mencionados sean Eqs.

D) Ecuación de estado para la materia de quarks:

                                                        Comparación de la energía por barión, E/A, del 56 Fe, materia de quarks...  | Download Scientific Diagram

Las técnicas utilizadas para resolver las ecuaciones de la CDC no proveyeron aún un resultado aceptable para densidades bariónicas finitas como en el caso de la Electrodinámica Cuántica para el núcleo atómico. Como consecuencia, es necesario recurrir a modelos fenomenológicos para describir la materia de quarks dentro de las estrellas compactas cuando se consideran las propiedades de confinamiento y de libertad asintótica de la CDC. Uno de los modelos más usados es el modelo bag del MIT. En este modelo los hadrones son considerados como quarks libres confinados en una región finita del espacio: el “Bag“ o bolsa. El confinamiento no es un resultado dinámico de la teoría fundamental, sino que se coloca como parámetro libre, imponiendo condiciones de contorno apropiadas. Así, el modelo bag del MIT se basa en una realización fenomenológica del confinamiento.

Está claro que, las estrellas de Quarks, aunque con certeza no han sido aún detectadas, es casi seguro que andarán pululando por el inmenso Universo que, en relación a la materia bariónica, en muy buena parte, está conformado por Quarks.

La fuente de esta segunda parte del trabajo aquí expuesto, la encontré en una Revista publicada por la RSEF.

¿Cuánta materia vemos?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                          La constante de Hubble en función de la Densidad Crítica

La cantidad total de Materia del Universo se da generalmente en términos de una cantidad llamada Densidad Crítica, denotada por Ω. Esta es la densidad de la materia que se necesita para producir un universo plano.

                      Astronomía en tu bolsillo - ¿El universo es cerrado, abierto o es plano?  escoge uno y explica por qué crees que es así. Cabe mencionar que el  universo cerrado es un modeloConfirman que el Universo es plano

                                   En presencia de materia el universo se curva y marca su geometría

Si Densidad efectivamente observada es menor o mayor que ese , en el primer caso el Universo es abierto, en el segundo es cerrado. La Densidad Crítica no es muy grande; corresponde aproximadamente a un protón por metro cúbico de espacio. Puede que no parezca mucho, dado el número inmenso de átomos en un metro cúbico de lodo, pero no debemos olvidar que existe una gran cantidad de espacio “vacío” y no todo son galaxias.

Algunos números que definen nuestro Universo:

  • El de fotones por protón
  • La razón densidades de “Materia Oscura” y Luminosa.
  • La Anisotropía de la Expansión.
  • La falta de homogeneidad del Universo.
  • La Constante Cosmológica.
  • La desviación de la expansión respecto al valor crítico.
  • Fluctuaciones de vacío y sus consecuencias.
  • ¿Otras Dimensiones?

                           ”distribución_materia_oscura_y_materia_bariónica”

En las últimas medidas realizadas, la  Densidad crítica que es la densidad necesaria para que la curvatura del universo sea cero, ha dado el resultado siguiente:  r0 = 3H02/8pG = 1.879 h2 10-29 g/cm3, que corresponde a una densidad tan baja la de la masa de 2 a 3 átomos de hidrógeno por metro cúbico (siempre, por supuesto obviando la incertidumbre en la constante de Hubble).

El telescopio James Webb ofreció un primer vistazo del origen del universo

Estimar la cantidad de materia luminosa del universo es una cosa muy fácil de hacer. Sabemos el brillo que tiene una estrella media, así que podemos hacer una estimación del número de estrellas de una galaxia distante. Podemos contar entonces el número de galaxias en un volumen dado de espacio y sumar las masas que encontramos. Dividiendo la masa por el volumen del espacio obtenemos la densidad media de materia en ese volumen. Cuando llevamos a cabo esta operación, obtenemos que la densidad de la materia luminosa es aproximadamente entre el uno o dos % menor de la densidad crítica; es decir, menos de lo que se necesita cerrar el universo.

Por otro lado, está lo bastante cerca del valor crítico para hacer una pausa. Después de todo, esta fracción podría haber sido en principio de una billonésima o trillonésima, y también podría haber sucedido que fuese un millón de veces la materia necesaria para el cierre. ¿Por qué, entre todas las masas que podría tener el Universo, la masa de materia luminosa medida está cerca del valor crítico?

 

Claro que el hecho de que la materia luminosa medida esté tan cercana al valor crítico, simplemente deberse a un accidente cósmico; las cosas simplemente “resultan” de ese modo. Me costaría mucho aceptar una explicación y supongo que a otros también. Es tentador decir que el Universo tiene en realidad la masa crítica, pero que de algún modo no conseguimos verla toda.

Como resultado de esta suposición, los astrónomos comenzaron a hablar de la “masa perdida” con lo que aludían a la materia que habría llenado la diferencia densidades observadas y crítica. Tales teorías de “masa perdida”, “invisible” o, finalmente “oscura”, nunca me ha gustado, toda vez que, hablamos y hablamos de ella, damos por supuesta su existencia sin haberla visto ni saber, exactamente qué es, y, en ese plano, parece como si la Ciencia se pasara al ámbito religioso, la fe de creer en lo que no podemos ver ni tocar y, la Ciencia, amigos míos, es otra cosa.

                     Proponen el uso de satélites GPS para detectar materia oscura – Zona GeekChina lanza satélite para buscar señales de materia oscura - INVDES

Proponen el uso de satélites GPS para detectar materia oscura. China lanzó un satélite para detectarla

Tendremos que imaginar satélites y sondas que, de alguna manera, puedan detectar grandes halos galácticos que encierren la tan buscada materia oscura y que, al parecer, hace que nuestro Universo sea lo conocemos y, es la responsable del ritmo al que se alejan las galaxias, es decir, la expansión del Universo.

Esos halos, tendrían muchas veces las masas que podemos ver en la Materia luminosa de las estrellas, planetas, galaxias y nosotros mismos. La teoría de la materia oscura y su presencia en cúmulos y supercúmulos ha sido “descubierta” (o inventada para tapar nuestra ignorancia) en época relativamente cercana para que prevalezca entre los astrónomos la unanimidad respecto a su contribución a la masa total del universo. El debate continúa, está muy vivo y, es el tema tan candente e importante que, durará bastante tiempo mientras algún equipo de observadores no pueda, de una vez por todas, demostrar que, la “materia oscura” existe, que nos digan donde está, y, de qué está conformada y actúa. Claro que, cuando se haga la suma de materia luminosa y oscura, la densidad de la masa total del universo no será todavía mayor del 30% del valor crítico. A todo esto, ocurren sucesos que no podemos explicar y, nos preguntamos si en ellos, está implicada la Materia oscura.

La más abarrotada colisión de cúmulos galácticos ha sido identificada al combinar información de tres diferentes telescopios. El resultado brinda a los científicos una posibilidad de aprender lo que ocurre algunos de los más grandes objetos en el universo chocan en una batalla campal cósmica.

                                       MACSJ0717.5+3745

Usando el Observatorio de rayos-X Chandra, el Telescopio Espacial Hubble y el Observatorio Keck de Hawai, los astrónomos fueron capaces de determinar la geometría tridimensional y el movimiento en el sistema MACSJ0717.5+3745 localizado a 5.4 mil millones de luz de la Tierra. Los investigadores encontraron que cuatro distintos cúmulos de galaxias están envueltos en una triple fusión, la primera vez que un fenómeno así es documentado.

                           MACSJ0717.5+3745 etiquetado

La composición de imagen (arriba de todo) muestra el cúmulo de galaxias masivo MACSJ0717.5+3745. El color del gas caliente está codificado con colores mostrar su temperatura. El gas más frío es mostrado como un púrpura rojizo, el gas más caliente en azul y las temperaturas intermedias en púrpura. Las repetidas colisiones en el cúmulo son causadas por una corriente de galaxias, polvo y “materia oscura” -conocida filamento- de 13 millones de años luz.

Se han obtenido Imágenes (MACSJ0717) que muestran cómo cúmulos galácticos gigantes interactúan con su entorno en escalas de millones de años luz. Es un sistema hermoso para estudiar cómo los cúmulos crecen mientras el material cae en ellos a lo largo de filamentos. Simulaciones por ordenador muestran que los cúmulos de galaxias más masivos deben crecer en regiones donde filamentos de gran escala de gas intergaláctico, galaxias, y materia desconocida intersectan, pero…

¿Cuál debe ser la Masa del Universo?

Alan Guth's photo

                  Alan Guth

claro que la idea de masa perdida se introdujo porque la densidad observada de la materia del Universo está cerca del valor crítico. Sin embargo, hasta comienzos de los ochenta, no se tuvo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que entonces se ha conocido como “universo inflacionista”. Desde entonces, la teoría ha sufrido numerosas modificaciones técnicas, pero los puntos centrales no han cambiado.

Científicos dudan de la "inflación cósmica" y el origen del universo - BBC  News Mundo

Nuestra conversación de hoy, diremos que el aspecto principal del universo inflacionista es que estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico. Esta predicción viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. los otros muchos procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.

           Abell 370: cúmulo galáctico a través de una lente gravitacional | Imagen  astronomía diaria - ObservatorioAbell 370 - Wikipedia, la enciclopedia libre

Abell 370 La lente gravitacional distorsiona la Imagen y nos enseña, a la derecha, algo que nos parece una inmensa cuerda cósmica , ¿Qué podrá ser en realidad? la materia a lo largo y ancho del universo se reparte de manera que, se ve concentrada en cúmulos de galaxias y supercúmulos que son las estructuras más grandes conocidas y, dentro de ellas, están todos los demás objetos que existen. Claro que, dejando a un lado esas fluctuaciones de vacío y, la posible materia desconocida.

El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. el agua se convierte en hielo, se expande; una botella de leche explotará si la dejamos en el exterior en una noche de invierno de gélido frío. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.

                    Enviado el 17/08/2021 Más de dinero y administración • LADO B

La distancia a una galaxia lejana se determina estudiando la luz proveniente de estrellas de tipo Cefeidas Variables. El espectro de la luz estelar revela la velocidad a la que se mueve la galaxia (Efecto Doppler) y la cantidad de expansión que ha sufrido el universo que la luz salió de su fuente.

Lo que es sorprendente es la enorme amplitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1050. Este es tan inmenso que virtualmente no tiene significado para la mayoría de la gente, incluido yo mismo que, no pocas veces me cuesta asimilar esas distancias inconmensurables del Cosmos. Dicho de otra manera, pongamos, por ejemplo, que la altura de los lectores aumentara en un factor tan grande como ese, se extenderían de un extremo al otro del Universo y, seguramente, faltaría sitio. Incluso un sólo protón de un sólo átomo de su cuerpo, si sus dimensiones aumentaran en 1050, sería mayor que el mismo universo. En 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo como el tamaño de una naranja grande. No es extraño que el inflación esté ligado a este proceso.

Comparación entre un modelo de expansión desacelerada (arriba) y uno en expansión acelerada (abajo). La esfera de referencia es proporcional al factor de escala. El universo observable aumenta proporcionalmente al tiempo. En un universo acelerado el universo observable aumenta más rápidamente que el factor de escala con lo que cada vez podemos ver mayor del universo. En cambio, en un universo en expansión acelerada (abajo), la escala aumenta de manera exponencial mientras el universo observable aumenta de la misma manera que en el caso anterior. La cantidad de objetos que podemos ver disminuye con el tiempo y el observador termina por quedar aislado del resto del universo.

Cuando ( mucho tiempo ya) leí por primera vez acerca del universo inflacionario, experimenté dificultades para poder asimilar el índice de inflación. ¿No violaría un crecimiento tan rápido las reglas impuestas por la relatividad de Einstein que marcaban el límite de la velocidad en el de la luz en el vacío? Si un cuerpo material viajó de un extremo de una naranja a otro en 10-35 segundos, su velocidad excedió a la de la luz en una fracción considerable.

Los físicos ponen en duda la teoría de los neutrinos: las partículas  subatómicas exóticas pueden no existir en absoluto

Claro que, con esto pasar como ha pasado hace unos días con los neutrinos que, algunos decían haber comprobado que corrían más rápidos que la luz, y, sin embargo, todo fue un error de cálculo en el que no se tuvieron en algunos parámetros presentes en las mediciones y los aparatos que hacían las mismas. Aquí, podría pasar algo parecido y, la respuesta la podemos encontrar en aquella analogía con la masa de pan. Durante el período de inflación es el espacio mismo -la masa de pan- lo que está expandiéndose. Ningún cuerpo material (acordaos que en aquella masa estaban incrustadas las uvas que hacían de galaxias y, a medida que la masa se inflaba, las uvas -galaxias- se alejaban las unas de las otras pero, en realidad, ninguna de estas uvas se mueven, es la masa lo que lo hace.

                                 

                                                          El Universo se expande

Las reglas contra los viajes a mayor velocidad que la de la luz sólo se aplican al movimiento del espacio. Así no hay contradicción, aunque a primera vista pueda parecer que sí. Las consecuencias del período de rápida expansión se pueden describir mejor con referencia a la visión einsteniana de la gravitación. de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribución de la materia. A cauda de esa materia, el espacio-tiempo tendrá alguna forma característica. Supongamos que la superficie estaba arrugada antes de que se produjera la inflación. Y, de esa manera, cuando comenzó a estirarse, poco a poco, tomó la forma que podemos detectar de “casi” plana conforme a la materia que contiene.

La Galaxia NGC 4388 y su Inmensa Nube de Gas

En todo esto, hay un enigma que persiste, nadie sabe contestar cómo, a pesar de la expansión de Hubble, se pudieron formar las galaxias. La pregunta sería: ¿Qué clase de materia estaba allí presente, que, la materia bariónica no se expandiera sin rumbo fijo por todo el universo y, se quedara el tiempo suficiente para formar las galaxias? Todo ello, a pesar de la inflación de la que hablamos y que habría impedido su formación. Así que, algo tenía que existir allí que generaba la gravedad necesaria para retener la materia bariónica hasta que esta, pudo formar estrellas y galaxias.

No me extrañaría que, eso que llaman materia oscura, pudiera ser como la primera fase de la materia “normal” que, estando en una primera fase, no emite radiaciones ni se deja ver y, sin embargo, sí que genera la fuerza de Gravedad para que nuestro Universo, sea tal como lo podemos observar. ¿Será la sustancia cósmica a la que se referían los griegos clásicos naturalista y la llamaban Ylem?

                              

En imágenes como la de arriba , los “expertos” nos dicen cosas como:

“La materia oscura en la imagen de varias longitudes de onda de arriba se muestra en un falso color azul, y nos enseña detalles de como el cúmulo distorsiona la luz emitida por galaxias más distantes. En de gas muy caliente, la materia normal en falso color rojo, son fruto de los rayos-X detectados por el Observatorio de Rayos X Chandra que orbita alrededor de la Tierra.”

 

Algunas galaxias individuales dominadas por materia normal aparecen en colores amarillentos o blanquecinos. La sabiduría convencional sostiene que la materia oscura y la materia normal son atraídas lo mismo gravitacionalmente, con lo que deberían distribuirse homogéneamente en Abell 520. Si se inspecciona la imagen superior, sin embargo, se ve un sorprendente vacío de concentración de galaxias visibles a lo largo de la materia oscura. Una respuesta hipotética es que la discrepancia causada por las grandes galaxias experimentan algún de “tirachinas” gravitacional.

Una hipótesis más arriesgada sostiene que la materia oscura está chocando consigo misma de alguna forma no gravitacional que nunca se había visto antes..? (esto está sacado de Observatorio y, en el texto que se ha podido traducir podemos ver que, los astrónomos autores de dichas observaciones, tienen, unas grandes lagunas y, tratando de taparlas hacen aseveraciones que nada tienen que ver con la realidad).

            http://farm6.static.flickr.com/5146/5653032414_c8e6085f98.jpg

Lo cierto es que, en el Universo, son muchas las cosas que se expanden y, pienso yo…¿Por qué no tratamos todos de expandir nuestras mentes? De esa manera, posiblemente podríamos llegar a comprender esos fenómenos que nos atormentan y a los que no podemos encontrar una explicación  que podamos constatar.

¿Materia Oscura?  Sí, entonces… Unicornios y Gárgolas, también.

emilio silvera