sábado, 20 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Tiempo y el Espacio

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

       Desde Einstein el Espacio y el Tiempo quedaron unidos como una sola Entidad

 

Pero escuchemos lo que nos dicen en el video y veremos como las ideas del viejo Einstein nos llevo a una nueva Cosmología, conceptos que hasta entonces estaban profundamente escondidos y él sacó a la superficie.

Nosotros, el mundo y el Universo: Todo Energía

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En concreto, la energía es una cantidad que depende de cómo midamos las distancias y los intervalos de tiempo. Un automóvil de prueba que choca a gran velocidad contra una pared de ladrillos tiene obviamente energía. No obstante, si el veloz automóvil se aproxima a la velocidad de la luz, sus propiedades de distorsionan. Se contrae como un acordeón y los relojes en su interior se frenan. Lo que es más importante, Einstein descubrió que la masa del automóvil también aumenta cuando se acelera. Pero, ¿de dónde procede este exceso de masa?, y él concluyó que procedía de la energía.

 

                                         Nosotros somos energía conectados a la Galaxia

La teoría desarrolla un sistema de matemáticas con el fin de reconciliar estas afirmaciones en aparente conflicto. Una conclusión de la teoría es que la masa de un cuerpo, m, aumenta con su velocidad. Einstein también concluyó que si un cuerpo pierde energía L, su masa disminuirá en L/c2. Einstein generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con su ecuación m=E/c2 que, en su versión más conocida es E=mc2.

 

♻️Ley de la Conservación de la Materia ⚛️ [Fácil y Rápido] | QUÍMICA | - YouTubeLey de conservación de la masa

 

Esto tuvo consecuencias perturbadoras. Dos de los grandes descubrimientos de la física del siglo XIX fueron la conservación de la masa y la conservación de la energía; es decir, la masa total y la energía total de un sistema cerrado, tomados por separado, no cambian. Por ejemplo, si el coche veloz choca contra el muro de ladrillos, la energía del automóvil no desaparece, sino que se convierte en energía sonora del choque, energía cinética de los fragmentos de ladrillo que vuelan por los aires, energía calorífica, y así sucesivamente. La energía total (y la masa total) antes y después del choque es la misma.

  Inmensas energías de una explosión supernova han transformado los elementos simples en otros más complejos

 

Origen y evolución del UniversoOrigen y evolución del Universo

 

Sin embargo, Einstein decía ahora que la energía del automóvil podría convertirse en masa (un nuevo principio de conservación que decía que la suma total de la masa y la energía debe siempre permanecer constante). La materia no desaparece repentinamente, ni la energía brota de la nada. En este sentido, la materia desaparece sólo para liberar enormes cantidades de energía o viceversa.

Cuando Einstein tenía 26 años, calculó exactamente cómo debía cambiar la energía si el principio de la relatividad era correcto, y descubrió la relación E = mc2. Puesto que la velocidad de la luz al cuadrado (c2) es un número astronómicamente grande, una pequeña cantidad de materia puede liberar una enorme cantidad de energía. Dentro de las partículas más pequeñas de materia hay un almacén de energía, más de un millón de veces la energía liberada en una explosión química. La materia, en cierto sentido, puede verse como un depósito casi inagotable de energía; es decir, la materia es en realidad energía condensada.

Einstein supo ver que las dimensiones más altas tienen un propósito: unificar los principios de la naturaleza. Al añadir dimensiones más altas podía unir conceptos físicos que, en un mundo tridimensional, no tienen relación, tales como la materia y la energía o el espacio y el tiempo, que gracias a la cuarta dimensión de la relatividad especial, quedaron unificados.

 

Espacio-tiempo curvo y los secretos del Universo : Blog de Emilio Silvera V.

 

Desde entonces, estos conceptos los tenemos que clasificar no por separado, sino siempre juntos como dos aspectos de un mismo ente materia-energía por una parte y espacio-tiempo por otra. El impacto directo del trabajo de Einstein sobre la cuarta dimensión fue, por supuesto, la bomba de hidrógeno, que se ha mostrado la más poderosa creación de la ciencia del siglo XX, claro que en contra del criterio de Einstein, que era pacifista y nunca quiso participar en proyectos de esta índole.

Einstein completó su teoría de la relatividad con un segundo trabajo, que al menos en parte, estaba inspirado por lo que se conoce como principio de Mach; la guía que usó Einstein para crear esta secuela final y completar su teoría de la relatividad general.

 

No hay ninguna descripción de la foto disponible.

 

Einstein enunció que la presencia de materia-energía determina la curvatura del espacio-tiempo a su alrededor. Ésta es la esencia del principio físico que Riemann no logró descubrir: la curvatura del espacio está directamente relacionada con la cantidad de energía y materia contenida en dicho espacio. Esto, a su vez, puede resumirse en la famosa ecuación de Einstein, que se denota:

Esta ecuación engañosamente corta es uno de los mayores triunfos de la mente humana. De ella emergen los principios que hay tras los movimientos de las estrellas y galaxias, los agujeros negros, el Big Bang, y seguramente, el propio destino del universo.

La energía oscura: de la indeterminación cuántica al universo acelerado

Hace tiempo ya que estamos pretendiendo subir la escalera que nos lleve hasta el secreto universal de la energía

Es curiosa la similitud que se da entre la teoría del electromagnetismo y la relatividad general; mientras que Faraday experimentó y sabía los resultados, no sabía expresarlos mediante las matemáticas, y apareció Maxwell que finalmente formuló la teoría.

Einstein, al igual que Faraday, había descubierto los principios físicos correctos, pero carecía de un formulismo matemático riguroso suficientemente potente para expresarlo (claro que Faraday no era matemático, y Einstein sí lo era). Carecía de una versión de los campos de Faraday para la gravedad. Irónicamente, Riemann tenía el aparato matemático, pero no el principio físico guía, al contrario que Einstein. Así que finalmente fue Einstein el que pudo formular la teoría con las matemáticas de Riemann.

 

                                                           

                                                                           Faraday y Maxwell

“¡Qué extraño sería que la teoría final se descubriera durante nuestra vida! El descubrimiento de las leyes finales de la naturaleza marcará una discontinuidad en la historia del intelecto humano, la más abrupta que haya ocurrido desde el comienzo de la ciencia moderna del siglo XVII. ¿Podemos imaginar ahora cómo sería?”

Steven Weinberg

¿Es la belleza un principio físico?

 

                                   
La recreación del mundo no parece cosa fácil, y, en estas teorías queremos recrear mucho más.

La teoría de supercuerdas nos da una formulación convincente de la teoría del universo, sin embargo, el problema fundamental radica en que una comprobación de dicha teoría está más allá de nuestras posibilidades actuales. De hecho, la misma teoría predice que la unificación de todas las fuerzas ocurre a la energía de Planck, o 1016 miles de millones de electronvoltios, que como sabéis, es alrededor de mil billones de veces mayor que las energía actualmente disponibles en nuestros aceleradores de partículas.

Ya he comentado otras veces que el físico David Gross (el de más edad de los miembros conocidos como el cuarteto de cuerdas y autores de la teoría llamada la cuerda heterótica) dijo en una ocasión: “El coste de generar esta fantástica energía necesitaría el dinero de las tesorerías de todos los países del mundo juntos, y quizá no llegara. Es verdaderamente astronómico.

 

 

Teoría de cuerdas heteróticas sin supersimetría - La Ciencia de la Mula Francis

 

Siendo así, de momento estamos condenados a no poder verificar experimentalmente este motor (parado) que haría marchar el vehículo de la física. La teoría deca-dimensional está paralizada en dos sentidos: el económico y técnico y el matemático. El primero por falta de dinero que nos pudiera construir aceleradores tan potentes (el LHC sólo cumple parte de nuestros deseos) como para descubrir la partícula de Higgs, los quarks e incluso las cuerdas vibrantes, esos previsibles y minúsculos objetos primordiales que conforman la materia. En segundo lugar, las formulaciones matemáticas complejas que, según parece, aún no se han inventado. Parece que hoy, ni siquiera Witten o Perelman conocen el secreto de los números mágicos que nos puedan llevar hasta el final del camino iniciado por Einstein y Kaluza-Klein.

 

 

Aunque llegar hasta las cuerdas no será nada fácil, particularmente opino que la teoría de cuerdas nos dará muchas alegrías y que en ella están las respuestas a muchas preguntas que no sabemos contestar. Es cierto que no puede ser verificada al tener la energía necesaria para ello. Sin embargo, hay indicios de que las cuerdas pueden estar ahí, a la espera de que las podamos encontrar.

Dentro del mundo de la física los hay de todas las opiniones: en contra y a favor. Es famosa la postura detractora del Nobel Sheldon Glashow de Harvard; no quiere ni oír hablar de la teoría de supercuerdas a la que califica de física de teatro.

Otros muchos, la mayoría, como Murray Gell-Mann, Steven Weinberg (ambos premios Nobel) o el mismo E. Witten (medalla Field), opinan lo contrario y ven en esta teoría de dimensiones más altas el futuro de la física. Simplemente se trata de que, dicha teoría, nos ha llegado por casualidad mucho antes de lo que correspondía.

 

                                                   

 

Los trabajos de Gabriele Veneziano (Florencia, 1942) son pioneros en uno de los temas estrella de la física teórica, la teoría de cuerdas, que permite desarrollar escenarios alternativos al Big Bang, mediante la existencia del tiempo y del espacio desde siempre.

La teoría de cuerdas se inventó a finales de los sesenta, y pasados los años se ha visto que era un escenario donde era posible describir al mismo tiempo la materia, el espacio y el tiempo, y de esa manera resolver un problema que se plantea en la teoría de la relatividad de Einstein. El mismo Einstein dedicó muchos años a intentar reconciliar su teoría de la relatividad con la mecánica cuántica. No lo consiguió, en su tiempo ni existían las matemáticas necesarias para ello, y, de hecho, aún seguimos esperando que aparezcan.

Ya sabemos que en física toda teoría debe ser verificada, una y otra vez, en uno y otro lugar, experimentalmente, obteniendo siempre el mismo resultado; es la única manera de que sea aceptada por la comunidad científica. Mientras tanto, la teoría no es fiable y queda a la espera de ser comprobada, verificada sin ningún lugar para la duda.

Pero, ¿se puede recrear la creación?

 

La ambición del nuevo colisionador de hadrones que será 4 veces más largo y 10 veces más potente que el actual - BBC News Mundo

 

Sí, somos tan osados que ahí, debajo de ese círculo, el Gran Colisionador de Hadrones (LHC), situado cerca de Ginebra por la Organización Europea para la Investigación Nuclear (CERN), (formando un anillo de 27 kilómetros de circunferencia a 100 metros de profundidad, estamos pretendiendo recrear lo que en aquellos momentos (de la creación) pasó.

La teoría de supercuerdas trata de eso. Quiere explicarnos todos los misterios del universo a partir de ese primer momento, ¡la creación! ¿Cuántas y cuántas páginas no habré leído y escrito sobre estos temas fascinantes de los secretos del universo, las fuerzas que lo rigen, la materia de las galaxias y de los objetos que lo pueblan? No podría decirlo. Sin embargo, hay una cosa que sí puedo decir: ¡cuanto más profundizo en estas cuestiones, cuanto más conocimientos adquiero, más fascinación siento, y desde luego, mi capacidad de asombro persiste!

El gran colisionador de hadrones estará apagado hasta 2021

                       El LHC no es suficiente para generar las energías necesarias para llegar a las cuerdas

Qué lástima que no se construya un super-colisionador superconductor , que encontrara los vestigios subatómicos que mostrara una señal característica de la supercuerda, tal como la supersimetría. Claro que, no creo que hoy por hoy podamos ser capaces de construir un “monstruo” semejante que  pudiera sondear la distante energía de Planck (1019 GeV), pero sí podría habernos ofrecido una evidencia muy fuerte (aunque indirecta) de la corrección de la teoría de supercuerdas.

Ese super-colisionador fue un proyecto fallido que se hubiese completado en las afueras de Dallas, Texas, hubiera contado con un tubo gigantesco de 85 Km de circunferencia rodeado de enormes bobinas magnéticas. Lanzaría protones a velocidades muy cercanas a la de la luz, que viajarían en el sentido de las agujas del reloj y el sentido contrario, para en un momento dado hacerlos colisionar a una energía de 40 billones de electronvoltios (TeV), generando una intensa ráfaga de residuos subatómicos analizados por detectores que encontrarían partículas exóticas que hubieran arrojado luz sobre la forma esencial de la materia. Los campos magnéticos para guiar los protones y los antiprotones dentro del tubo son tan excepcionalmente grandes (del orden de 100.000 veces el campo magnético de la Tierra) que hubieran sido necesarios procedimientos extraordinarios para generarlos y mantenerlos. Además, el enfriamiento de las bobinas hasta casi el cero absoluto (-273º) y otros problemas hubieran obligado a enormes avances tecnológicos. Sin embargo, la política retiró el proyecto y nos quedamos sin la esperada partícula de Higgs (que ahora busca el LHC), que es la que genera la ruptura de simetría y es por tanto el origen de la masa de los quarks, así que habríamos podido descubrir el origen de la masa mucho antes. Aunque a decir verdad…, no las tenemos todas consigo.

 

                                                                 

 

Acordaos de que hace unos días os contaba como allá por el siglo XIX algunos científicos declararon que la composición de las estrellas estaría siempre fuera del alcance del experimento. En 1.825, el filósofo y crítico social francés Auguste Comte, al escribir el Curso de Filosofía, declaraba que nunca conoceríamos las estrellas de otra forma que como inalcanzables puntos de luz en el cielo debido a su enorme distancia de nosotros. Las máquinas del siglo XIX, o de cualquier siglo, argumentaba, no eran suficientemente potentes como para escapar de la Tierra y alcanzar las estrellas.

Así que parecía que el determinar la composición de las estrellas era imposible, y lo curioso es que casi al mismo tiempo, el físico alemán Joseph von Fraunhofer estuviera haciendo precisamente eso. Utilizando un prisma y un espectroscopio pudo descomponer la luz blanca emitida desde las estrellas lejanas y determinar la composición química de dichas estrellas. De la misma manera pudiera, en este mismo instante, estar trabajando un físico-matemático en profundizar en la teoría de supercuerdas y estar formulando otro respetable avance hacia nuestro futuro. Podemos desconfiar pero…negar la posibilidad de algo, sería arriesgado.

 

Joseph von Fraunhofer | German physicist | Britannica

Como científico, ingeniero y emprendedor alcanzó logros como el descubrimiento de las “líneas de Fraunhofer” en el espectro óptico de la luz del sol, inventó un nuevo método de manufactura de lentes e inició un negocio de producción de vidrio para microscopios y telescopios. Debido a su carácter multifacético el instituto tecnológico Fraunhofer-Gesellschaft  lleva su apellido.

¿Qué sería de nosotros sin la física?

Tampoco los átomos eran verificables hace dos siglos y llegaron Planck, Einstein,  Bohr, Heisenberg, Schrödinger, Feynman y tantos otros que dejaron todo el misterio al descubierto con la mecánica cuántica que nos puede facilitar datos con una precisión asombrosa.

La topología es probablemente la más joven de las ramas clásicas de las matemáticas. En contraste con el álgebra, la geometría y la teoría de los números, cuyas genealogías datan de tiempos antiguos, la topología aparece en el siglo diecisiete, con el nombre de analysis situs, ésto es, análisis de la posición. No podemos perderla de vista, ahí pueden estar las respuestas de la teoría de cuerdas.

El Cuerpo de las Matemáticas | Aula Abierta de Matemáticas

Es la rama de las matemáticas  dedicada al estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas. Es una disciplina que estudia las propiedades de los espacios topológicos y las funciones continuas.  La Topología se interesa por conceptos como proximidadnúmero de agujeros, el tipo deconsistencia (o textura) que presenta un objeto, comparar objetos y clasificar, entre otros múltiples atributos donde destacan conectividad, compacidad, metricidad, o metrizabilidad, etcétera.

 

                                  Leonhard Euler 2.jpgProponen nuevo enfoque de Ecuación de Euler | Boletín BoCES

                      Retrato de Leonhard Euler, pintado por Johann Georg Bruker

De todas las maneras, yo no perdería de vista la funciones modulares de Ramanujan, una bella teoría para la teoría de cuerdas supone que cada modo o vibración de una cuerda fundamental representa una partícula elemental distinta, y puede explicar a la vez la naturaleza de la materia y del espacio-tiempo (las partículas en lugar de ser puntuales pasan a ser unidimensionales). Es la primera teoría cuántica de la gravedad: Cuando se calcularon por primera vez las ligaduras de auto-consistencia que impone la cuerda sobre el espacio-tiempo, se observó con sorpresa que las ecuaciones de Einstein ( teoría de la gravedad) emergían de la cuerda, de hecho, el gravitón o cuanto de gravedad era la menor vibración de la cuerda cerrada.

 

El estado actual de la teoría M - La Ciencia de la Mula Francis

 

No sabemos todavía por qué la teoría de cuerdas está definida sólo en 10, 11 y 26 dimensiones, aunque parece seguro que esta teoría no podría unificar las fuerzas fundamentales con tan solo tres dimensiones. Las cuerdas se rompen y se forman en el espacio N-dimensional arrastrando con ellas una serie de términos que destruyen las maravillosas propiedades de la teoría. Afortunadamente, estos términos aparecen multiplicados por el factor (N-10), lo que nos obliga a elegir N=10 para eliminarlos.

Los teóricos de cuerdas al intentar manipular los diagramas de lazos KSV ( Kikkawa-Sakita-Virasoro) creados por las cuerdas en interacción encuentran unas extrañas funciones llamadas modulares que aparecen en las ramas más distantes e “inconexas” de las matemáticas((Yutaka Taniyama ( Japón, 1927-1958) observó que cada función modular está relacionada con una curva elíptica. Esto forma la base de la conjetura Taniyama-Shimura que demostró ser una parte importante en la demostración del Último Teorema de Fermat de Andrew Wiles )). Una función que aparece continuamente en la teoría de funciones modulares se denomina función de Ramanujan, en honor al matemático Srinivasa Ramanujan, nacido en 1887 en Erode, India, cerca de Madrás.

 

                                                           

Ramunujan ¡Qué personaje misterioso! su mente estaba conformada por teoremas en lugar de por neuronas, y, aunque murió muy joven (como Riemann), sus trabajos del último año de su vida mientras se estaba muriendo, se podría comparar con el trabajo de toda una vida de los 10 mejores matemáticos del mundo. En otra ocasión ya os hablé de este personaje extensamente.

emilio silvera

La Historia de la Vida en nuestro planeta

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

De lo único que podemos estar seguros es de que en la Tierra la Vida surgió y se expandió con millones de especies que, a lo largo del Tiempo, algunas no supieron adaptarse y se extinguieron, otras pudieron asumir los cambios y siguen estando con nosotros, los humanos que llegamos algo tarde.

Está claro que la vida prevalece en el planeta gracias al Sol, nos manda la luz y el calor necesarios para que las cosas sean tal como son: Acogedoras para la vida.

Estrellas como nuestro Sol existen (sólo en la Galaxia Vía Láctea), unos 30.000 millones, no pocos de esos “soles” tienen sus planetas y, aunque sólo el 10% esté situado en la zona habitable, ¿Cuántos planetas aptos para la vida habrán.

Es cierto que no tenemos la Prueba de la existencia de Vida en otros mundos, y, como decía el sabio: “La Ausencia de prueba, no es prueba de ausencia”. La lógica nos dice que la vida prolifera por todo el Universo, son las distancias las que nos impiden ese contacto soñado.

Hasta el momento… ¡Hemos tenido mucha suerte!

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Una bola de fuego «tan brillante como la luna» sobrevoló la provincia de Toledo

s.t. / toledo
Día 23/02/2015 – 10.27h

El fenómeno se produjo por la entrada en la atmósfera terrestre de una roca procedente de un asteroide

reuteres

El Complejo Astronómico de La Hita, ubicado en el municipio toledano de La Puebla de Almoradiel, ha captado una bola de fuego «tan brillante como la luna llena» que sobrevoló la provincia de Toledo el pasado viernes.

El fenómeno se produjo por la entrada en la atmósfera terrestre de una roca que, según los datos obtenidos, procedería de un asteroide, según ha informado el observatorio en un comunicado.

La bola de fuego fue registrada por las cámaras que la Universidad de Huelva tiene en este Complejo Astronómico a las 1:47 horas del viernes 20 de febrero. El análisis llevado a cabo por el profesor José María Madiedo, de la Universidad de Huelva, explica que el impacto de esta roca contra la atmósfera se produjo a casi 60.000 kilómetros por hora sobre la vertical de Talavera de la Reina.

La bola de fuego se inició a una altura de unos 80 kilómetros sobre el nivel del suelo, avanzando en dirección sur hasta alcanzar una altura final de unos 30 kilómetros.

Una idea que persiste (Pendiente de confirmación)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Un día de hace ya cerca de veinte años, allá por el año 1996, el pueblo americano escuchaba con asombro a su presidente, Clinton por aquel entonces, que en marte podía existir vida. La noticia de que un antiguo meteorito caido en la Tierra y proveniente de dicho planeta, así parecía confirmarlo al contener fósiles de vida microbiana. Como podréis comprender, aquello impactó en la opinión pública de todo el mundo y, la noticia, fue objeto de todas las primeras planas y también, de todas las conversaciones en los corrillos en el trabajo, en el café, por las calles y en familia. ¡Vida en otro planeta!

Aunque no lo podamos saber todo y no estemos al tanto de lo que pasa en el mundo científico (las noticias saltan cuando hay un descubrimiento relevante), lo cierto es que, durante los últimos años los científicos han llevado a cabo una espectacular puesta al día de sus ideas sobre el origen de la vida. Todos hemos podido leer en los libros de texto que, la vida, comenzó temprano en nuestro planeta. Según todos los indicios (los fósiles encontrados en las rocas más antiguas así lo afirman), la vida ha estado presente en la Tierra desde hace ya unos cuatro mil millones de años.

 

Recreación del impacto de un meteorito y el cráter que produce. | Nicolle Rager-Fuller/NSF

       Encuentran microbios a dos kilómetros bajo tierra en un cráter en EEUU

Parece ahora que los primeros organismos terrestres vivían en el subsuelo profundo al calor de la joven Tierra, enterrados en rocas calentadas geotérmicamente en condiciones similares a las que podríamos encontrar en una olla a presión. Sólo posteriormente migraron estos organismos a la superficie. Sirprendentemente, los descendientes de esos microbios primordiales aún están allí, a kilómetros de profundidad bajo nuestros pies.

Hace algunos años nadie podía sospechar que la vida pudiera estar presente en un ambiente tan inhóspito escondidos en las rocas bajo la superficie de la Tierra y…  ¿de Marte?.

 

File:ALH84001.jpg

                                    Fotografía del meteorito ALH 84001

¿Cómo empezó la vida exactamente? ¿Qué procesos físicos químicos pueden transformar la materia “inerte” en un  organismo viv0? Esta compleja pregunta sigue siendo uno de los más grandes misterios de la naturaleza y quizás, el reto científico también mayor. Decenas de químicos y biólogos desde hace años, están abordando el complejo problema y tratan de desvelar el secreto tan celosamente guardado por la Naturaleza. Muchos de ellos, han tenido que concluir diciendo que, las leyes de la Naturaleza están predispuestas a favor de la vida y dicen que la vida se formará y surgirá en todos aquellos lugares que tengan las condiciones idóneas para ello.

 

File:ALH84001 structures.jpg

             Vista  microscópica de la estructura interna del ALH 84001

Así que, no sólo en la Tierra o Marte, también la vida podría estar presente en cualquier luna o planeta que, situado en la zona habitable de la estrella que los acoge, con atmósfera y elementos químicos y los demás ingredientes necesarios (Carbono, Hidrógeno, Oxígeno, Nitrógeno…) además de la presencia también de alguna clase de actividad tectónica-volcánica, una capa de ozono, la presencia de gases con efecto invernadero, agua líquida, ¿un planeta gigante?, existencia de un campo magnético…

La tectónica de placas y el vulcanismo activo de nuestro planeta habrían tenido un importante para mantener el clima . Estos procesos actúan como un gigantesco termostato natural que regula la cantidad de dióxido de carbono de la atmósfera, y manteniendo el efecto invernadero a raya.

Los gases de efecto invernadero tan satanizados hoy en día, son absolutamente imprescindibles para la vida. Los más importantes son el dióxido de carbono, vapor de agua y el metano que atrapan el calor del Sol que de otra forma escaparía al espacio. Sin estos gases en la atmósfera, el planeta entero sería un gigantesco congelador.

La capa de ozono es crítica para las plantas y animales bloqueando la mayor parte de estos nocivos rayos de alta energía procedentes del Sol.

 

El agua líquida es absolutamente imprescindible para la vida como la conocemos. Los océanos proporcionan el ambiente líquido perfecto para que proliferen los orgamisnos vivos. A pesar de todo, existen algunos organismos vivos exóticos capaces de sobrevivir en ambientes mucho más secos. El agua se filtra a gran profundidad en las rocas actuando además como natural en los movimientos de las placas tectónicas.

Este es uno de los aspectos más importantes para que la vida pueda desarrollarse. La zona habitable de un sistema estelar se suele definir como aquella región del sistema en la que el agua puede existir en forma líquida. Distancias menores a la estrellas provocarían que los océanos hirviesen y se secasen, distancias mayores causarían que los océanos se congelasen.

 

                                               

Algunos científicos opinan que la existencia de un planeta masivo como Júpiter en nuestro Sistema solar solar protege a la Tierra de impactos de asteroides y cometas. Júpiter actuaría como un escudo, absorbiendo la mayoría de impactos de asteroides y cometas, capaces de provocar una enorme destrucción en la biosfera.

Un planeta habitable necesitaría un campo magnético capaz de protegerlo de la embestida de partículas cargadas del viento estelar desviando la corriente. Sin la presencia de un campo magnético, el viento solar o estelar podría arrancar la atmósfera del planeta que escaparía al espacio. Un campo magnético también protege de la radiación cósmica…

 

                 

La creencia en que la vida está inscrita en las leyes de la Naturaleza trae un débil eco de una era religiosa pasada, de un universo concebido para ser habitado por criaturas vivas. Muchos científicos menosprecian tales ideas, e insisten en que el origen de la vida  fue un accidente anómalo de la química que sólo se dio en la Tierra; y que la posterior emergencia de organismos complejos, incluyendo los seres conscientes, es así mismo un resultado puramente fortuito de una gigantesca lotería cósmica. En este debate está en juego el lugar mismo de la Humanidad en el Cosmos: ¿Quiénes somos y dónde encajamos dentro del gran esquema?

 

                         

Bueno, ahora estamos vigilantes y queremos desvelar ese misterio. En cuanto a que todo esto es el resultado de una gran loteria cósmica… me parece que no. En una loteria sale un número y, sin embargo, en lo relativo a la vida, sabemos que actualmente sólo viven en nuestro planeta aproximadamente un uno por ciento de todas las especies que lo han poblado a lo largo de su existencia. Y, si es así (que lo es), ¿cómo es posible esa diversidad de criaturas en un caso fortuito? ¿No será más lógico pensar que, la vida, es consustancial de la dinámica del Universo?

Hemos conformado un modelo del universo y de él partimos para poder explicar su Historia. Hemos inventado un Big Bang que, en parte, nos explica el suceso de la presencia del universo y de cómo pudo surgir. Su nacimiento explosivo estuvo acompañado por un inmenso destello de calor intenso. Durante la primera fracción se segundo emergieron las fuerzas físicas básicas y las partículas fundamentales de la materia. Al cabo de este primer segundo, los materiales esenciales del Cosmos ya estaban formados. El espacio está repleto por todas partes de una sopa de partículas subatómicas -protones, neutrones y electrones– bañadas en radiación a una temperatura de diez mil millones de grados.

 

Bueno, lo que en realidad estamos llamando el principio aquí es el universo cuando la temperatura rondaba los 100,000,000,000 K. El universo ya había existido al menos por una pequeña fracción de segundo y estaba dominado por radiación con unas pequeñas trazas de materia. La radiación estaba en forma de fotones, neutrinos y antineutrinos. La materia estaba en forma de electrones, positrones y una pequeña concentración de protones y neutrones (denominados nucleones) – aproximadamente un nucleón por cada 1,000 millones de partículas-.

 

A estas temperaturas y densidades tan extremas (la densidad equivalía a unos 3.800 millones de veces la densidad del agua), todas estas entidades se comportan como partículas. Eso significa que están todo el tiempo colisionando entre ellas, casi como lo harían un montón de canicas que estuvieran bien empaquetadas en un container. En el universo primitivo no existían “paredes” físicas que contuvieran a esas partículas, sino que el elevado número de colisiones y la rapidez de éstas jugaban perfectamente el papel de “paredes del universo”. Sin embargo, esas “paredes” no eran estáticas, sino que a medida que se producían las colisiones el universo aumentaba de tamaño. La expansión del universo producía una disminución de la densidad de energía que tenía que distribuirse en un volumen cada vez mayor. Este proceso implicaba a su vez una disminución de la temperatura del universo, proceso que continúa ocurriendo hoy en día.

 

 Las colisiones entre partículas tenían tres importantes consecuencias. La primera es que el universo estaba en equilibrio térmico. Para dar al lector una idea de lo que esto significa, vamos a fijarnos en un vaso de agua a 40 grados. La temperatura de un objeto es una medida de la energía media del movimiento (energía cinética) de sus moléculas. Pero no todas las moléculas la misma energía cinética correspondiente a una temperatura de 40 grados, sino que existen moléculas con menos energía y moléculas con más energía.

PRIMER CAMINO

Los núcleos de deuterio colisionan con un protón formando 3He, y seguidamente con un neutrón formando 4He

SEGUNDO CAMINO

El deuterio colisiona primero con un neutrón formando 3H (habitualmente conocido como tritio), y posteriormente con un protón para formar de nuevo 4He

Este núcleo fue el más pesado que se formó en el universo primitivo, debido a que en el momento en que esto fue posible, la densidad de energía ya era demasiado baja para permitir que los núcleos colisonarán con suficiente energía para fundirse. En el momento en que comenzó la nucleosíntesis, la abundancia relativa de protones y neutrones era: 13% de neutrones y 87% de protones. Todos los neutrones fueron utilizados para formar los núcleos de Helio. Los protones quedarían de esa manera como núcleos de hidrógeno. Por lo tanto, tenemos que en el momento en que se completó la nucleosíntesis primigenia, el universo consistía en prácticamente un 25% de He y un 75% H (en peso) con ligeras trazas de otros elementos ligeros.

El paso final en la formación de los elementos fue la captura de los electrones libres por parte de los núcleos para formar los átomos neutros (proceso conocido curiosamente como recombinación a pesar de que es la primera vez que se ligaban electrones y núcleos).

Pero los electrones tenían aún suficiente energía para y el proceso de recombinación no ocurriría de forma masiva hasta que transcurrieran unos 700,000 años. La captura de los electrones para formar los átomos tuvo una consecuencia importantísima: sin electrones libres, la radiación electromagnética (los fotones) ya no tenían con quién interactuar y el universo se volvería transparente al paso de ésta. Esto significó que los fotones serían capaces de expandirse junto con el universo. Esos fotones que acabaron por ser libres tenían energías altísimas que se traducía en longitudes de onda muy cortas. Pero la expansión del universo causó el alargamiento de esta longitud de onda. Esos fotones de longitud de onda alargada debida a la expansión son a los que nos referimos cuando hablamos del fondo de microondas. Éste es un remanente del Big Bang. Hemos sido capaces de medir la intensidad de este fondo de radiación que se ajusta casi perfectamente a lo que predicen los cálculos teóricos. Ésta ha sido una de las evidencias más rotundas a favor de la imagen del universo que proporciona el modelo del Big Bang.

 

                                             

Unos doscientos millones de años más tarde de todos aquellos sucesos, el universo estaba más frío y los átomos se unieron para formar las primeras estrellas que comenzaron a brillar en el espacio interestelar del jóven universo. Así, durante diez mil millones de años, se fueron transmutando nuevos materiales en los nucleares, las estrellas masivas habían explosionado y dejado el rastro de nubes moleculares gigantescas, nacieron nuevas estrellas de II generación situadas en Sistemas solares que posibilitaron, presididos por una estrella mediana, amarilla de la clase G2V, que en un planeta situado a la distancia adecuada y con todos los ingredientes y parámetros necesarios, surgieran seres vivios a partir de la materia “inerte” evolucionada y, en alguna de aquellas especies, cuatro mil años más tarde, se llegó a adquirir la conciencia.

Personajes como Fred Hoyle, Brandon Carter, Eugene Wigner, Erwin Schrödinger, Martin Rees, Bernard Carr, Freeman Dyson y Tommy Gold, Lewis Wolpert y Sydney Brenner, Jhon Coway y Manfred Eigen y Grahan Cairns-Smith. Todos ellos grtandes especialistas en sus campos que abarcaban desde la biología, las matemáticas, la genética hasta la astronomía y la astrofísica…Todos ellos y más tarde otros,  como Casrl Sagan, creyeron ciegamente en la existencia de la vida por todo el universo. Para ellos (y para mí también), era una regla inamovible y consustancial con la dinámica y el ritmo que marca el Universo para que la Vida, esté en él presente.

Historia de la Vida. Evolución

La historia científica de la vida es una narración apasionante que, correctamente explicada, nos ayuda a comprender no sólo nuestro pasado biológico sino también la Tierra y toda la vida que nos rodea en la actualidad. Esa diversidad biológica es el producto de casi cuatro mil millones de años de evolución. Somos parte de ese legado; al intentar comprender la historia evolutiva de la vida, comenzamos a entender nuestro propio lugar en el mundo y nuestra responsabilidad como administradores de un planeta que nos dio cobijo y al que nos tuvimos que adaptar lo mismo que él, el planeta, se adaptó a la presencia de la vida que, de alguna manera cambió su entorno climático, precisamente debido, a esa presencia viviente que generó las precisas condiciones para poder estar aquí.

La historia de la vida tiende a relatarse (no pocas veces) al estilo de la genealogía de Abraham: las bacterias engendraron a los protozoos, los protozoos engendraron a los invertebrados, los invertebrados engendraron a los peces, y así sucesivamente. Tales listas de conocimientos adquiridos pueden memorizarse, pero no dejan mucho espacio para pensar. La cuestión no es tan sencilla y los descubrimientos de la paleontología, la más tradicional de las empresas científicas, se entrelazan con nuevas ideas nacidas de la biología molecular y la geoquímica.

 

                                                       

Los huesos de los Dinosaurios son grandes y espectaculares y hacen que los que los contemplan (niños y mayores), abran los ojos como platos, asombrados de tal maravilla. Pero, aparte del tamaño de sus habitantes, el mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutiles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hacia el mundo que conocemos hoy.

Pero, ¿cómo podemos llegar a comprender acontecimientos que se produjeron hace mil millones de años o más? Una cosa es aprender que en las llanuras mareales de hace mil quinientos millones de años vivían bacterias fotosintéticas, y otra muy distinta cómo se infiere que unos fósiles microscópicos pertenecen a bacterias fotosintéticas, cómo se averigua que las rocas que los rodean se formaron en antiguas llanuras mareales y cómo se estima su edad en mil quinientos millones de años.

 

        2018 abril 27 : Blog de Emilio Silvera V.
 En realidad, todo comenzó con aquella primera célula que fue capaz de replicarse a partir de un protoplasma vivo…

El leitmotiv epistemológico de cómo sabemos lo que creemos que sabemos, en realidad, aparece de manera espontánea a base de mucho estudio de campo, investigación exhaustiva en los más dispares rincones de la Tierra y, un profundo estudio concatenado en el tiempo de todo aquello que, en cada exploración pueda ir apareciendo. En tanto que empresa humana, estamos inmersos también en un relato de exploración que se extiende desde el espacio interior de las moléculas al espacio literalmente exterior de Marte y otros planetas.

Uno de los temas más claros de la historia evolutiva es el carácter acumulativo de la diversidad biológica. Las especies individuales (al menos las de los organismos nucleados) aparecen y desaparecen en una sucesión geológica de extinciones que ponen de manifiesto la fragilidad de las poblaciones en un mundo de competencia y cambio ambiental –de formas de vida con una morfología y fisiología características- es una historia de acumulación. La visión de la evolución a gran escala es indiscutiblemente la de una acumulación en el tiempo gobernada por las reglas de funcionamiento de los ecosistemas. La serie de sustituciones que sugieren los enfoques al estilo de la genealogía de Abraham no consigue captar este atributo básico de la historia biológica.

UNIDAD 2: ORGANIZACIÓN CELULAR DE LOS SERES VIVOS - ppt descargarMILLONES DE GALAXIAS EN EL UNIVERSO - ppt descargar

Así, creemos saber que la vida nació por mediación de procesos físicos en la Tierra primigenia. Estos mismos procesos –tectónicos, oceanográficos y atmosféricos- sustentaron la vida era tras era al tiempo que modificaban continuamente la superficie de la Tierra. Por fin la vida se expandió y se diversificó hasta convertirse en una fuerza planetaria por derecho propio, uniéndose a los procesos tectónicos y físico-químicos en la transformación de la atmósfera y los océanos.

Viajes por todo el mundo: Gran cordillera del Himalaya (Nepal y Bután)

 

Dondequiera que choquen las relativamente rápidas placas tectónicas oceánicas con las enormes placas continentales, se forman cadenas montañosas en continua elevación. Los ejemplos más espectaculares se subducción y formación montañosa son, respectivamente, la placa del Pacífico sumergiéndose en las profundas fosas del Asia oriental, y el Himalaya, que se eleva por el choque de las placas índica y euroasiática. Todo forma parte del proceso que llevó a la vida.

Para mí y para cualquiera que emplee la lógica de la ciencia que se guía por los hechos probados, el surgimiento de la vida como una característica definitoria –quizá la característica definitoria- de nuestro planeta es algo extraordinario.

 

 

Introducción - LAS CARACTERÍSTICAS DE NUESTRO UNIVERSO

                                         ¿Quién podría negar que somos parte del Universo?

¿Cuántas veces ha ocurrido lo mismo en la vastedad del Universo? Es lo primero que se me viene a la mente cuando (en la noche silenciosa, oscura y tranquila lejos del bullicioso ambiente de las ciudades y de su molesta contaminación lumínica), miro hacia las estrellas brillantes del cielo que, muy lejanas en regiones remotas, también como nuestro Sol, están rodeadas de mundos que, como el nuestro, habrán tenido la misma posibilidad que la Tierra para que la vida, pudiera surgir.

Hacer aquí un recorrido pormenorizado del largo camino que la vida ha tenido que recorrer, y dibujar un esquema a modo de un árbol de la vida, es imposible. El presente trabajo trata simplemente, de dejar una idea básica de cómo la vida llegó aquí, al planeta Tierra, y, de cómo pudo evolucionar con el paso del tiempo y dentro de su rica diversidad.

 

                                Estos escenarios son precursores de vida

Los expertos si han construido un árbol de la vida a partir de comparaciones ente secuencias de nucleótidos de genes de diversos organismos, las plantas y los animales quedan reducidos, en ese árbol, a brotes en la punta de una sola de las ramas. La mayor diversidad de la vida y, por extensión, la mayor parte de su historia, es microbiana. Así lo atestiguan todos y cada uno de los hallazgos encontramos en las rocas precámbricas que contienen fósiles de aquellas primeras formas de vida.

 

                        Hasta que la evolución de la materia llegó… ¡Hasta nosotros!

Y, una cosa está muy clara y no se presta a ninguna clase de dudas: Las Bacterias y las Arqueas, son los arquitectos de los ecosistemas terrestres.

Biólogos expertos indiscutibles de probada valía y reconocido prestigio, han llegado a sugerir que los genes de los organismos actuales contienen el relato completo de la historia evolutiva. Pero, de ser así se trataría, como en las historias de Shakespeare, de relatos limitados a los vencedores de la vida. Sólo la paleontología nos puede hablar de los trilobites, los dinosaurios y otras maravillas biológicas que ya no adornan la faz de la Tierra.

Cualquiera que sea la ctividad química notable que haya podido tener lugar en la Tierra primordial o en algún otro planeta situado en cualquiera de los miles de millones de galaxcias que por el Universo pululan, la vida ha podido ser desencadenada no por una vorágine molecular como tal, sino -¡de algún modo!- por la organización de la información que ha dado la misma Naturaleza a la materia para que sepa, seguir su destino desde lo inerte hasta los pensamientos.

De ello, os hablaré en próximos trabajos.

emilio silvera