La proto-célula prebiótica replicante, la evolución y el Tiempo hizo lo demás
La vida (a partir de su primer paso, del primer individuo de cada especie) viene de la vida. Ha surgido en el Universo de manera espontánea y, el Azar, bajo ciertas circunstancias muy especiales que estaban presentes en lugares privilegiados del Universo, dio lugar al surgir de la vida tal como la conocemos y, posiblemente, de muchas más formas desconocidas para nosotros. Y, todo eso amigos, es Entropía Negativa. Ahora, Las características de un ser vivo son siempre una recombinación de la información genética heredada.
CONSECUENCIA LOGICA: Las variaciones dentro de una misma especie son el resultado de una gran cantidad de información genética presente ya en sus antepasados y, como consecuencia de la lógica evolución, de la aparición espontánea de nueva información genética…
“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente pre-copernicana. La experiencia nos ha enseñado de forma repetida que este tipo de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”
Así se expresaba Fred Hoyle.
Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, desde 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.
¿Quién puede negar la presencia de agua en este lugar en el remoto pasado, o…, puede que no tan lejos.
Los fósiles más antiguos conocidos tienen 3.800 millones de años, cuando la Tierra aún se enfriaba
Marte un planeta gélido e inhóspito
Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil para la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).
Para los exo-biólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.
Imagen de Encédalo, la luna de Saturno (Equipo de imagen Cassini, SSI, JPL, ESA, NASA)
Encélado, se desplaza ante los anillos, que brillan intensamente a la luz del sol.
Debajo de su capa exterior helada, Encélado esconde un océano global de agua líquida.
“Encélado, la luna de Saturno, tiene un océano global bajo su corteza exterior de hielo, según una nueva investigación basada en datos arrojados por la misión Cassini de la NASA y publicada en la revista digital Icarus. Descubrimientos anteriores ya habían señalado que debía poseer una masa de agua líquida subterránea en el hemisferio sur, pero los científicos no sospechaban que pudiera extenderse por todo el núcleo del planeta. Tras este hallazgo, este satélite, geológicamente activo, se ha convertido en el primer mundo que conocemos con un océano subterráneo en contacto con la superficie y también en el candidato número uno en el Sistema Solar a albergar vida extraterrestre.”
La superficie de Europa no tiene montañas ni valles profundos, ni grandes impactos de meteoritos lo que podría indicar que es una luna joven o que en realidad su superficie está expuesta a procesos que la regeneran. La atmósfera que tiene es muy ligera y compuesta de oxígeno. Si pudiéramos ver de cerca su superficie, como la sonda Galileo, veríamos que el hielo se parece mucho al que existe en los polos de la Tierra, hielo a la deriva.
La luna Titán tiene una atmósfera muy parecida a la de la Tierra primigenia y, las posibilidades de que puede albergar alguna clase de vida… ¡No son nulas! La misión Cassini-Huygens nos regaló muchas imágenes de sus lagos de metano y otras curiosidades.
La forma de vida autónoma más sencilla es una célula, ¿y qué es una célula sino una membrana rellena de agua, material genético y orgánulos? Los microorganismos terrestres se basan en una membrana con estructura de bicapa lipídica para separar el medio interno del externo, pero una membrana de este tipo resulta imposible en Titán. Mientras que el agua es una molécula polar -y, por tanto, buen disolvente de otras sustancias polares e iones-, el metano es apolar. Sin embargo, en principio podríamos pensar que una membrana bicapa inversa es posible en el metano. Esto es, con los extremos fosfolípidos apolares e hidrófobos dirigidos hacia el exterior y el interior de la membrana -es decir, hacia el metano- y las cabezas hidrófilas hacia la sección media de la membrana.
Esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los datos que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.
La NASA descubre vestigios de agua en Marte
Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, pero nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos durante las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.
La sonda Galileo detecto chorros de agua en Europa
En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas desde que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.
Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años hasta que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.
Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad para la vida en el Sistema Solar después de la Tierra.
Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de forma constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.
Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito desde los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.
Del extraordinario viaje emprendido para dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.
Tenemos motivos -también- para estar orgullosos
No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, pero Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran como era aquel “mundo”.
Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros datos a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.
No estaría nada mal construir un Hotel en Titán y, por la venta, ver todas las mañanas la magnificencia de Saturno y todo el entorno que con el camino por el espacio interestelar.
Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió.
La sonda Huygens
De ahí que la NASA, pusiera su nombre a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.
La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de datos que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.
La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir también océanos de agua? Científicamente nada lo impide.
La tecnología que enseña a los robots a pensar como humanos
El aprendizaje automático abre las puertas a un mundo en el que humanos y máquinas coexistirán en equipo
Sophia, un robot de Hanson Robotics, presentado en Ginebra como el último modelo de inteligencia artificial y ‘machine learning’. DENIS BALIBOUSEREUTERS
A finales de los años 1950, el informático Arthur Samuel creó un programa para jugar a las damas, utilizando un algoritmo sencillo para descubrir los mejores movimientos para ganar. Samuel entrenó el ordenador con una copia de sí mismo (el self play) y con una base de datos en la que estaban registrados centenas de partidos. Era el inicio del machine learning (aprendizaje automático), una rama de la inteligencia artificial (IA) que permite que las máquinas aprendan sin ser explícitamente programadas. Casi siete décadas después de ese juego, esa tecnología tiene aplicaciones tan diversas como el diagnóstico de un cáncer o la construcción de coches autónomos. Hace unos días se dio a conocer su último invento: Sophia, un androide desarrollado por la compañía Hanson Robotics, que acaparó todas las atenciones en la feria tecnológica de Ginebra.
“Es una tecnología aplicable a prácticamente todos los campos en los que haya datos disponibles”, explica a EL PAÍS Thomas Dietterich, uno de los padres del machine learning como campo de investigación. El experto menciona ejemplos que van desde los algoritmos usados en el mundo de los negocios para identificar posibles compradores de un producto hasta los sistemas utilizados por los gobiernos para solucionar problemas en infraestructuras como autopistas e hidroeléctricas. Otros ejemplos más cercanos son los sistemas de traducción automática en Skype, el reconocimiento facial de las cámaras de los móviles y los asistentes virtuales, apuestas de empresas como Google y Microsoft para aproximar la tecnología al usuario final.
Cortana, el asistente virtual de Microsoft, cuenta con 145 millones de usuarios y la compañía pretende “desarrollarlo hasta el punto en que se comunique directamente con otras IAs para ofrecer al usuario cualquier tipo de información o servicio, desde la compra de un zapato hasta la entrega de una pizza en casa”, según cuenta Ester de Nicolás, líder del equipo de Evangelismo Técnico de la empresa. “Nuestro objetivo es democratizar el acceso al machine learning”, afirma. La principal apuesta en ese sentido es la plataforma de aprendizaje automático en Azure, un servicio de análisis en la nube que permite crear e implementar modelos de máquinas según las necesidades de cada usuario.
Independientemente del reportaje anterior….
“Una nueva clase de máquinas robóticas surgirá en el futuro. En el futuro, cada máquina será un robot inteligente y “comprensivo” si se utiliza el motor cognitivo Robust.AI sin código. El futuro de la IA incluye robots cognitivos semánticamente alerta.”
Lo cierto es que (por lo menos a mí), cuando veo por donde va el camino de la robótica y hacia donde la quieren dirigir, la sensación que tengo es de “escalofrío” al pensar que, estos “seres” artificiales” puedan llegar a tener Consciencia de Ser.
Serán ellos los que puedan cumplir nuestros sueños de viajar a las estrellas, de visitar otros mundos que acondicionaran para la posterior instalación humana. Los viajes espaciales no están hechos para nosotros con la tecnología actual, y, los robots, no tienen debilidad a la radiación del Espacio, no comen ni beben, aguantan durante horas al no tener que dormir, sus “enfermedades” son mecánicas y las arreglan ellos mismos… ¿Para que nos quieren a nosotros?
A veces queremos” jugar” a ser dioses y… ¡No siempre saldrá bien!
La tecnología que enseña a los robots a pensar como humanos
El aprendizaje automático abre las puertas a un mundo en el que humanos y máquinas coexistirán en equipo
Sophia, un robot de Hanson Robotics, presentado en Ginebra como el último modelo de inteligencia artificial y ‘machine learning’. DENIS BALIBOUSEREUTERS
A finales de los años 1950, el informático Arthur Samuel creó un programa para jugar a las damas, utilizando un algoritmo sencillo para descubrir los mejores movimientos para ganar. Samuel entrenó el ordenador con una copia de sí mismo (el self play) y con una base de datos en la que estaban registrados centenas de partidos. Era el inicio del machine learning (aprendizaje automático), una rama de la inteligencia artificial (IA) que permite que las máquinas aprendan sin ser explícitamente programadas. Casi siete décadas después de ese juego, esa tecnología tiene aplicaciones tan diversas como el diagnóstico de un cáncer o la construcción de coches autónomos. Hace unos días se dio a conocer su último invento: Sophia, un androide desarrollado por la compañía Hanson Robotics, que acaparó todas las atenciones en la feria tecnológica de Ginebra.
“Es una tecnología aplicable a prácticamente todos los campos en los que haya datos disponibles”, explica a EL PAÍS Thomas Dietterich, uno de los padres del machine learning como campo de investigación. El experto menciona ejemplos que van desde los algoritmos usados en el mundo de los negocios para identificar posibles compradores de un producto hasta los sistemas utilizados por los gobiernos para solucionar problemas en infraestructuras como autopistas e hidroeléctricas. Otros ejemplos más cercanos son los sistemas de traducción automática en Skype, el reconocimiento facial de las cámaras de los móviles y los asistentes virtuales, apuestas de empresas como Google y Microsoft para aproximar la tecnología al usuario final.
Cortana, el asistente virtual de Microsoft, cuenta con 145 millones de usuarios y la compañía pretende “desarrollarlo hasta el punto en que se comunique directamente con otras IAs para ofrecer al usuario cualquier tipo de información o servicio, desde la compra de un zapato hasta la entrega de una pizza en casa”, según cuenta Ester de Nicolás, líder del equipo de Evangelismo Técnico de la empresa. “Nuestro objetivo es democratizar el acceso al machine learning”, afirma. La principal apuesta en ese sentido es la plataforma de aprendizaje automático en Azure, un servicio de análisis en la nube que permite crear e implementar modelos de máquinas según las necesidades de cada usuario.
Trabajo presentado en la sexta edición del Carnaval de Física
El mundo de la Física tiene planteado un gran problema y los físicos son muy conscientes de ello, conocen su existencia desde hace décadas. El problema es el siguiente:
La relatividad general nos dice que en presencia de masa, se curva el espacio y se distorsiona el Tiempo. Todos los postulados de esta Teoría nos trajo una nueva Cosmología.
Existen dos pilares fundamentales en los cuales se apoya toda la física moderna. Uno es la relatividad general de Albert Einstein, que nos proporciona el marco teórico para la comprensión del universo a una escala máxima: estrellas, galaxias, cúmulos (o clusters) de galaxias, y aún más allá, hasta la inmensa expansión del propio universo.
El otro pilar es la mecánica cuántica, que en un primer momento vislumbro Max Planck y posteriormente fue desarrollada por W. Heisemberg, Schrödinger, el mismo Einstein, Dirac, Niels Bohr y otros, que nos ofrece un marco teórico para comprender el universo en su escala mínima: moléculas, átomos, y así hasta las partículas subatómicas, como los electrones y quarks.
Durante años de investigación, los físicos han confirmado experimentalmente, con una exactitud casi inimaginable, la practica totalidad de las predicciones que hacen las dos teorías. Sin embargo, estos mismos instrumentos teóricos nos llevan a una conclusión inquietante: tal como se formulan actualmente, la relatividad general y la mecánica cuántica no pueden ser ambas ciertas a la vez.
Nos encontramos con que las dos teorías en las que se basan los enormes avances realizados por la física durante el último siglo (avances que han explicado la expansión de los cielos y la estructura fundamental de la materia) son mutuamente incompatibles. Cuando se juntan ambas teorías, aunque la formulación propuesta parezca lógica, aquello explota; la respuesta es un sinsentido que nos arroja un sin fin de infinitos a la cara.
Así que si tú, lector, no has oído nunca previamente hablar de este feroz antagonismo, te puedes preguntar a que será debido. No es tan difícil encontrar la respuesta. Salvo en algunos casos muy especiales, los físicos estudian cosas que son o bien pequeñas y ligeras (como los átomos y sus partes constituyentes), o cosas que son enormes y pesadas (como estrellas de neutrones y agujeros negros), pero no ambas al mismo tiempo. Esto significa que sólo necesitan utilizar la mecánica cuántica, o la relatividad general, y pueden minimizar el problema que se crea cuando las acercan demasiado; las dos teorías no pueden estar juntas. Durante más de medio siglo, este planteamiento no ha sido tan feliz como la ignorancia, pero ha estado muy cerca de serlo.
“… de Estados Unidos (NASA, registraron las ráfagas de viento más rápidas nunca antes detectadas alrededor de un agujero negro.”
No obstante, el universo puede ser un caso extremo. En las profundidades centrales de un agujero negro se aplasta una descomunal masa hasta reducirse a un tamaño minúsculo. En el momento del Bing Bang, la totalidad del universo salió de la explosión de una bolita microscópica cuyo tamaño hace que un grano de arena parezca gigantesco. Estos contextos son diminutos y, sin embargo, tienen una masa increíblemente grande, por lo que necesitan basarse tanto en la mecánica cuántica como en la relatividad general.
Por ciertas razones, las fórmulas de la relatividad general y las de la mecánica cuántica, cuando se combinan, empiezan a agitarse, a traquetear y a tener escapes de vapor como el motor de un viejo automóvil. O dicho de manera menos figurativa, hay en la física preguntas muy bien planteadas que ocasionan esas respuestas sin sentido, a que me referí antes, a partir de la desafortunada amalgama de las ecuaciones de las dos teorías.
Aunque se desee mantener el profundo interior de un agujero negro y el surgimiento inicial del universo envueltos en el misterio, no se puede evitar sentir que la hostilidad entre la mecánica cuántica y la relatividad general está clamando por un nivel más profundo de comprensión.
¿Puede ser creíble que para conocer el universo en su conjunto tengamos que dividirlo en dos y conocer cada parte por separado? Las cosas grandes una ley, las cosas pequeñas otra.
Einstein que con sus trabajos (algunos maravillosos), como el Efecto Fotoeléctrico que le valió el Nóbel, fue uno de los padres de la Mecánica cuántica y, sin embargo, pasó gran parte de su vida combatiéndola, a él no le entraba en la cabeza que aquella teoría de lo muy pequeño, fuese incompatible con la suya de la Relatividad General. Aquellos dons “mundos” de lo muy grande y lo muy pequeño aparecían incompatibles y, cuando los físicos trataban de unirlos, aunque el planteamiento fuese racional y muy bien conformado, el resultado era como una gran explosión de infinitos sin sentido… ¿Por qué sería?
No creo que eso pueda ser así. Mi opinión es que aún no hemos encontrado la llave que abre la puerta de una teoría cuántica de la gravedad, es decir, una teoría que unifique de una vez por todas las dos teorías más importantes de la física: mecánica cuántica + relatividad general.
Allí, en esa lejana región donde dicen que están las cuerdas vibrantes de la Teoría M, según nos dicen, subyace esa teoría cuántica de la Gravedad, toda vez que, ambas teorías, la de Einstein y la de Planck, la de lo muy grande y lo muy pequeño, conviven sin problemas y, no sólo no se rechazan sino que, se complementan en un todo armonioso.
Si es así, la teoría de supercuerdas ha venido a darme la razón. Los intensos trabajos de investigación llevada a cabo durante los últimos 20 años demuestran que puede ser posible la unificación de las dos teorías cuántica y relativista a través de nuevas y profundas matemáticas topológicas que han tomado la dirección de nuevos planteamientos más avanzados y modernos, que pueden explicar la materia en su nivel básico para resolver la tensión existente entre las dos teorías.
En esta nueva teoría de supercuerdas se trabaja en 10, 11 ó en 26 dimensiones, se amplía el espacio ahora muy reducido y se consigue con ello, no sólo el hecho de que la mecánica cuántica y la relatividad general no se rechacen, sino que por el contrario, se necesitan la una a la otra para que esta nueva teoría tenga sentido. Según la teoría de supercuerdas, el matrimonio de las leyes de lo muy grande y las leyes de lo muy pequeño no sólo es feliz, sino inevitable.
Esto es sólo una parte de las buenas noticias, porque además, la teoría de las supercuerdas (abreviando teoría de cuerdas) hace que esta unión avance dando un paso de gigante. Durante 30 años, Einstein se dedicó por entero a buscar esta teoría de unificación de las dos teorías, no lo consiguió y murió en el empeño; la explicación de su fracaso reside en que en aquel tiempo, las matemáticas de la teoría de supercuerdas eran aún desconocidas. Sin embargo, hay una curiosa coincidencia en todo esto, me explico:
Cuando los físicos trabajan con las matemáticas de la nueva teoría de supercuerdas, Einstein, sin que nadie le llame, allí aparece y se hace presente por medio de las ecuaciones de campo de la relatividad general que, como por arte de magia, surgen de la nada y se hacen presentes en la nueva teoría que todo lo unifica y también todo lo explica; posee el poder demostrar que todos los sorprendentes sucesos que se producen en nuestro universo (desde la frenética danza de una partícula subatómica que se llama quark hasta el majestuoso baile de las galaxias o de las estrellas binarias bailando un valls, la bola de fuego del Big Bang y los agujeros negros) todo está comprendido dentro de un gran principio físico en una ecuación magistral.
Esta nueva teoría requiere conceptos nuevos y matemáticas muy avanzados y nos exige cambiar nuestra manera actual de entender el espacio, el tiempo y la materia. Llevará cierto tiempo adaptarse a ella hasta instalarnos en un nivel en el que resulte cómodo su manejo y su entendimiento. No obstante, vista en su propio contexto, la teoría de cuerdas emerge como un producto impresionante pero natural, a partir de los descubrimientos revolucionarios que se han realizado en la física del último siglo. De hecho, gracias a esta nueva y magnifica teoría, veremos que el conflicto a que antes me refería existente entre la mecánica cuántica y la relatividad general no es realmente el primero, sino el tercero de una serie de conflictos decisivos con los que se tuvieron que enfrentar los científicos durante el siglo pasado, y que fueron resueltos como consecuencia de una revisión radical de nuestra manera de entender el universo.
El primero de estos conceptos conflictivos, que ya se había detectado nada menos que a finales del siglo XIX, está referido a las desconcertantes propiedades del movimiento de la luz.
Isaac Newton y sus leyes del movimiento nos decía que si alguien pudiera correr a una velocidad suficientemente rápida podría emparejarse con un rayo de luz que se esté emitiendo, y las leyes del electromagnetismo de Maxwell decían que esto era totalmente imposible. Einstein, en 1.905, vino a solucionar el problema con su teoría de la relatividad especial y a partir de ahí le dio un vuelco completo a nuestro modo de entender el espacio y el tiempo que, según esta teoría, no se pueden considerar separadamente y como conceptos fijos e inamovibles para todos, sino que por el contrario, el espacio-tiempo era una estructura maleable cuya forma y modo de presentarse dependían del estado de movimiento del observador que lo esté midiendo.
La velocidad de la luz es una constante universal y, cuando es emitida por un cuerpo celeste de forma isotrópica, corre en todas las direcciones a la misma velocidad de 299.792.458 metros por segundo. No importa si la fuente emisora está en movimiento o en reposo, la velocidad es invariante.
El escenario creado por el desarrollo de la relatividad especial construyó inmediatamente el escenario para el segundo conflicto. Una de las conclusiones de Einstein es que ningún objeto (de hecho, ninguna influencia o perturbación de ninguna clase) puede viajar a una velocidad superior a la de la luz. Einstein amplió su teoría en 1915 – relatividad general – y perfeccionó la teoría de la gravitación de Newton, ofreciendo un nuevo concepto de la gravedad que estaba producida por la presencia de grandes masas, tales como planetas o estrellas, que curvaban el espacio y distorsionaban el tiempo.
Tales distorsiones en la estructura del espacio y el tiempo transmiten la fuerza de la gravedad de un lugar a otro. La luna no se escapa y se mantiene ahí, a 400.000 Km de distancia de la Tierra, porque está influenciada por la fuerza de gravedad que ambos objetos crean y los mantiene unidos por esa cuerda invisible que tira de la una hacia la otra y viceversa. Igualmente ocurre con el Sol y la Tierra que, separados por 150 millones de kilómetros, están influidos por esa fuerza gravitatoria que hace girar a la Tierra (y a los demás planetas del Sistema Solar) alrededor del Sol.
Así las cosas, no podemos ya pensar que el espacio y el tiempo sean un telón de fondo inerte en el que se desarrollan los sucesos del universo, al contrario; según la relatividad especial y la relatividad general, son actores que desempeñan un papel íntimamente ligado al desarrollo de los sucesos.
El descubrimiento de la relatividad general, aunque resuelve un conflicto, nos lleva a otro. Durante tres décadas desde 1.900, en que Max Planck publicó su trabajo sobre la absorción o emisión de energía de manera discontinua y mediante paquetes discretos a los que él llamo cuantos, los físicos desarrollaron la mecánica cuántica en respuesta a varios problemas evidentes que se pusieron de manifiesto cuando los conceptos de la física del siglo XIX se aplicaron al mundo microscópico. Así que el tercer conflicto estaba servido, la incompatibilidad manifiesta entre relatividad general y mecánica cuántica.
La forma geométrica ligeramente curvada del espacio que aparece a partir de la relatividad general, es incompatible con el comportamiento microscópico irritante y frenético del universo que se deduce de la mecánica cuántica, lo cual era sin duda alguna el problema central de la física moderna.
Las dos grandes teorías de la física, la relatividad general y la mecánica cuántica, infalibles y perfectas por separado, no funcionaban cuando tratábamos de unirlas resulta algo incomprensible, y, de todo ello podemos deducir que, el problema radica en que debemos saber como desarrollar nuevas teorías que modernicen a las ya existentes que, siendo buenas herramientas, también nos resultan incompletas para lo que, en realidad, necesitamos.
La arqueología (un término que se uso por primera vez en la década de 1860) amplió y profundizó el trabajo de la filología, al ir más allá de los textos y confirmar que, en efecto, los hombres tenían un pasado distante anterior a la escritura, una prehistoria.
En 1802, el maestro de escuela Georg Friedrich Grotefend (1775 – 1853) envió tres artículos a la Academia de Ciencias de Gotinga en los que revelaba que había descifrado la escritura cuneiforme de Persépolis, algo que había conseguido principalmente reorganizando los grupos de cuñas (similares a las huellas de los pájaros sobre la arena) y añadiendo espacios entre grupos de letras, y relacionando luego su forma con el sánscrito, una lengua (geográficamente) cercana.
Grotefend consideraba que algunas de las inscripciones eran listas de reyes y que el nombre de algunos de estos era conocido. Las demás formas de cuneiforme, incluida la babilónica, se descifraron algunos años más tarde. En la década de 1820, Champollion descifró los jeroglíficos egipcios, en 1847 sir Austen Layrd excavó Nínive y Ninrud, en lo que hoy es Irak, y descubrió las maravillosos palacios de Assurnasirpal II, rey de Asira (885 – 859 a.c.), y Sennacherib (704 – 681 a.c.). Los enormes guardianes de las puertas encontrados allí, semitoros y leones de dimensiones mucho más grandes que las reales, causaron sensación en Europa, todo aquello popularizó la Arqueología.
Estas excavaciones condujeron finalmente al descubrimiento de una tablilla en cuneiforme en la que estaba escrita la epopeya de Gilgamesh, notable por dos razones: en primer lugar, era mucho más antigua que los poemas homéricos y la Biblia; en segundo lugar, diversos episodios del relato, como el de la gran inundación, eran similares a los que recogía el Antiguo Testamento.
Cada uno de aquellos descubrimientos aumentaba la edad de la Humanidad y arrojaba nueva luz obre las Sagradas Escrituras. Sin embargo, con excepción de la epopeya de Gilgamesh, ninguno de ellos aportaba nada realmente nuevo en términos de datación, en el sentido de que no contradecían de forma significativa la cronología bíblica.
Cueva de Feldhofer (Alemania) ubicada en la ladera sur del Valle de Neander. (Fuente: www.tareaalinstante.blogspot.com.es)
Todo aquello empezó a cambiar hacia 1856 cuando se empezó a limpiar a fondo una pequeña cueva en un costado del valle Neander (Neander Thal en alemán), a través del cual el río Düssel desemboca en el Rin. En ella se encontró un cráneo, enterrado bajo más de un metro de barro, así como algunos otros huesos.
Aquellos huesos fueron a parar a manos del profesor de anatomía de la Universidad de Bonn, Schaaffhausen que, identificó la parte superior de un cráneo, dos fémures, parte de un brazo izquierdo, parte de una pelvis, y algunos otros vestigios de menor tamaño.
En el artículo que escribió sobre aquello, Schaaffausen llamaba la atención sobre el grosor de los huesos, el gran tamaño de las marcas dejadas por los músculos que estuvieron unidos a ellos, el pronunciamiento de los arcos supraorbitales, y la frente pequeña y estrecha.
Concluyo el profesor diciendo que:
“Hay indicios racionales suficientes para sostener, que el hombre coexistió con los animales descubiertos en el diluvio; y muchas razas bárbaras quizá hayan desaparecido antes de todo el tiempo histórico, junto a los animales del mundo antiguo, mientras que las razas cuya organización mejoró continuaron el género.”
El profesor concluyó proponiendo que el espécimen “probablemente perteneciera al pueblo bárbaro original que habitaba el norte de Europa antes de los Germanos.”
Esto no es exactamente lo mismo que hoy entendemos por hombre Neandertal, pero en cualquier caso el hallazgo supuso un gran avance para el conocimiento de nosotros mismos.
Escribiendo sobre estos temas de la antigüedad y de los hechos pasados en los distintos lugares y épocas a distintas culturas, he caído en la cuenta de que el futuro estuvo antes del pasado, me explico:
Real Conservatorio de Música de Madrid
Lo que pretendo decir es que cada uno tenemos nuestro propio pasado, presente y futuro. Si retrocedo unos años en el tiempo, imaginarme a mi hija Maria estudiando en el Conservatorio Superior de Música en Madrid, era el futuro. Sin embargo, cuando escribí todo esto era presente y, ahora es el pasado. Todo esto nos lleva de nuevo a lo que escribí en otro trabajo: Pasado, Presente y Futuro. Una ilusión llamada tiempo.
El tiempo es una abstracción de nuestra mente. Algún científico ha dicho (quiero recordar que el Nobel de Física de 2.004 Frank Wilczek) que el tiempo no pasa, es algo que está ahí. Sin embargo, como me ocurre con la luz y con otras cosas, a mí el TIEMPO me llama la atención y despierta mi curiosidad. ¿Cuando comenzó a discurrir el Tiempo? ¿”Nació con el Big Bang? ¿Por qué no se deja ver y, sin embargo, sí podemos contemplar los estragos que producen su inexorable transcurrir? Ni se compra, ni se puede prestar, todo en nuestro Universo tiene su Tiempo asignado. ¿Por qué estamos confinados en un eterno Presente que se inmediato se convierte en Pasado y vamos camino de un Futuro que nunca podremos alcanzar?
Sigamos con el tema que estaba comentando. Por aquella época, la palabra “ciencia” había empezado a adquirir su significado moderno. (El término “científico” fue acuñado por William Whewell en 1833.) Hasta finales del siglo XVIII, se había preferido el uso de las expresiones “filosofía natural” e “historia natural”. De manera natural y gradual, a medida que diversas disciplinas especializadas fueron surgiendo, primero en Alemania y después en otros lugares, la palabra “ciencia” empezó a ser el término preferido para designar a estas nuevas actividades.
Es curioso ver como, por aquella época también (finales de S.XVIII), algunos empezaron a cuestionar los fundamentos básicos del cristianismo, aunque la mayoría de los hombres de ciencia no se apresuraron a apoyar la idea. Por lo general, los biólogos, químicos y fisiólogos de la época eran todavía hombres religiosos y devotos.
El caso de Linneo es en este sentido ejemplar. Pese a ser una de las figuras de la ilustración (figuras principales) y uno de los padres de la biología moderna, cuyos aportes forman parte de los antecedentes de la teoría de la evolución, Linneo era muy diferente de, por ejemplo, Voltaire. El naturalista John Ray (1627 – 1705) ya había advertido que no todas las especies (miles de las cuales se había encontrado en el Nuevo Mundo y África) podían ordenarse en una jerarquía significativa, y que las formas de la vida variaban de muchas maneras diferentes, una concepción que suponía la ruptura temprana con la idea de una gran cadena del ser.
Me he salido del tema, de Linneo os hablaré otro día.