sábado, 12 de junio del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Tecnología de Vacío en la simulación Espacial

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

De Jesús Manuel Sobrado y José Ángel Martín-Gago

Resultado de imagen de La Tierra está rodeada de vacío

La Tierra está rodeada, esencialmente, de vacío. Por tanto, una de las formas de profundizar en el conocimiento del espacio es mediante la utilización de equipos de vacío. No sólo se trata de comprender el funcionamiento de los cuerpos celestes o de los procesos que ocurren en el espacio sino también en la superficie de muchos de los planetas, incluyendo las capas altas de la atmósfera terrestre. Un sistema de vacío puede ser un entorno adecuado donde recrear diferentes ambientes espaciales controlando algunos de los parámetros físicos del sistema (como presión total, composición de los gases, radiación, temperatura…). La simulación espacial utilizando equipos de vacío es una poderosa herramienta para preparar misiones espaciales, interpretar datos de las mismas o simplemente para investigar cómo se comporta la materia en esas condiciones.

1. Introducción

Resultado de imagen de el lanzamiento del primer satélite Sputnik

Con el lanzamiento del primer satélite Sputnik [1] comienza una nueva era tecnológica que ha permitido a la humanidad explorar el universo físicamente [2]. Este año se ha cumplido el 40 aniversario de la llegada del hombre a la Luna. Del fruto de este empeño y de otros de la misma naturaleza, como fue el primer la puesta en marcha del proyecto internacional común para la construcción de la estación espacial internacional, la sociedad ha obtenido un elevado beneficio tecnológico.

Resultado de imagen de Neil Armstrong  en la Luna

Podemos afirmar que la frase pronunciada por Neil Armstrong cuando pisó Luna se ha hecho realidad: “Este es un pequeño paso para el hombre, pero un gran paso para la humanidad”.

La ventana abierta hacia el espacio nos acerca al conocimiento que tenemos sobre nosotros mismos. No olvidemos que formamos parte del sistema solar en el planeta Tierra y que estamos, por tanto, rodeados de vacío, en medio de fuerzas gravitatorias y electromagnéticas, que convierten nuestro planeta en una maravillosa perla azul en un vasto territorio negro. (En 1990, en la misión “Voyager”, Carl Sagan, insistió antes de que la sonda abandonase el sistema solar, que tomase fotografías de la tierra vista desde el exterior.

Resultado de imagen de Neil Armstrong  en la Luna

Las imágenes tardaban 5 horas y media en ser recibidas en la Tierra) [3]. Fruto de esta necesidad de conocimiento surge el planteamiento de buscar nuevas formas de conocer el espacio que nos rodea. El espacio está esencialmente vacío.

Parece por tanto evidente, que los avanzados sistemas de vacío actuales puedan ayudarnos a comprender mejor los procesos y mecanismos que ocurren fuera de la atmósfera terrestre.

No sólo en el espacio interestelar, sino también sobre la superficie de muchos de los planetas y objetos celestes en los que su presión atmosférica sea menor que la terrestre. Así, un sistema de vacío puede ser un entorno adecuado donde recrear diferentes ambientes espaciales, controlando algunos de los parámetros físicos del sistema para poder aprender sin necesidad de desplazarnos materialmente.

Ver las imágenes de origen

15 años mostrando la belleza de Marte

“La sonda espacial ha contribuido significativamente en el estudio del planeta rojo; sus hallazgos sentaron las bases para las misiones de detección de signos de vida, como las dos misiones del programa ExoMars de la ESA.”

 

Las misiones espaciales presentan un número elevado de inconvenientes. Una de las principales críticas que han recibido siempre es su elevado coste. Por ejemplo, una misión “económica” a Marte, como pudo ser la Mars Express, tuvo un costo aproximado de unos 1000 millones de euros. Otro inconveniente es el largo tiempo necesario para realizarlas, ya que desde que una misión se concibe en los despachos hasta que se concluye pasa más de una década. Parece por tanto necesario asegurar todos los parámetros y, para ello, probar y calibrar lo mejor posible y en las mismas condiciones de operación, la instrumentación de la misión. Este es el marco en el que hay que entender la simulación en sistemas de vacío. Como una plataforma que nos permita reproducir condiciones planetarias e interestelares. Esta simulación tiene, por tanto, un doble objetivo. Por una parte preparar las misiones espaciales y, por otra, ayudar a entender los resultados obtenidos por las mismas.

Resultado de imagen de Cámara de vacíoVer detalle de imagen relacionada

La simulación de un problema complejo permite acotar y separar de forma controlada las variables relevantes de un sistema aislado. Es una manera de resolver pequeños problemas obteniendo valiosa información sobre el funcionamiento de sistemas en condiciones muy especificas. De este modo se van creando parámetros o esquemas de comportamiento que son fácilmente reproducibles, si se respetan todas las variables iníciales. Es importante conocer las limitaciones de la simulación. Al realizar la simulación en la Tierra, son dos normalmente los factores limitantes, las dimensiones de la cámara de vacío y la gravedad [4]. Este último es el menos relevante, ya que en la simulación de atmósferas o superficies planetarias, la gravedad es un factor existente que no determina las condiciones climatológicas de la atmósfera.

Ver detalle de imagen relacionada

Sin embargo las dimensiones si son importantes, ya que limitan las diferentes gradientes de presión y temperatura, así como los niveles de radiación en función de la altura a la superficie. El volumen interno de una cámara así como la superficie interna limitan la transferencia de energía (calor), y por tanto la homogeneidad del sistema. En este trabajo vamos a describir como recrear distintos ambientes espaciales y planetarios mediante el uso de entornos de vacío. Daño del ADN por la radiación espacial, estabilidad de fases cristalinas de minerales en la superficie de Marte, comportamiento de sensores frente al polvo marciano o supervivencia de esporas en un viaje especial o superficie planetaria, son algunos ejemplos de una interminable lista de temas interdisciplinar que se pueden estudiar en equipos de simulación.

Ver las imágenes de origen

Veremos cuáles son los parámetros importantes para reproducir una atmósfera planetaria en un laboratorio, o para poder estudiar los hielos que se forman en el medio interestelar denso. Estas ideas se han materializado en la creación de una serie de máquinas de vacío que describiremos y que están operativas dentro de la unidad de simulación de ambientes planetarios y microscopía del Centro de Astrobiología [5]. 2. La simulación espacial y de atmósferas planetarias Planetas con atmósferas singulares, residuos de explosión de estrellas, espacio profundo o la entrada de meteoritos en una atmósfera planetaria, son algunos de los objetos y procesos que ocurren en el espacio. Un entorno espacial se puede caracterizar en función de muchos parámetros, que cruzados dan como resultado la recreación de un sistema concreto. Las principales variables que definen un sistema de simulación en un entorno espacial son la presión total, la composición de gases, la temperatura local o en la superficie de objetos planetarios, la temperatura ambiental, y la radiación recibida.

Resultado de imagen de Cámara de Gravedad

Estas variables son muy generales. Para poder implementar una instrumentación adecuada que responda a un determinado problema, es necesario conocer su rango de variación [6]. A partir de este dato se desarrolla la tecnología necesaria para poder controlar y monitorizar estas variables en un entorno de vacío. Vamos a hacer un repaso de los rangos de cada una de ellas y del tipo de instrumentación que deberíamos utilizar en cada caso.

Planetas con atmósferas singulares, residuos de explosión de estrellas, espacio profundo o la entrada de meteoritos en una atmósfera planetaria, son algunos de los objetos y procesos que ocurren en el espacio. Un entorno espacial se puede caracterizar en función de muchos parámetros, que cruzados dan como resultado la recreación de un sistema concreto. Las principales variables que definen un sistema de simulación en un entorno espacial son la presión total, la composición de gases, la temperatura local o en la superficie de objetos planetarios, la temperatura ambiental, y la radiación recibida.

Estas variables son muy generales. Para poder implementar una instrumentación adecuada que responda a un determinado problema, es necesario conocer su rango de variación [6]. A partir de este dato se desarrolla la tecnología necesaria para poder controlar y monitorizar estas variables en un entorno de vacío. Vamos a hacer un repaso de los rangos de cada una de ellas y del tipo de instrumentación que deberíamos utilizar en cada caso.

La presión atmosférica
Resultado de imagen de Simulación de la presión atmósferica

Puesto que vamos a utilizar para la simulación sistemas de vacío, la presión total debe de ser menor que la presión atmosférica. Esta es la primera limitación, que excluye automáticamente el estudio de planetas como Venus, cuya presión en la superficie es unas 90 veces mayor que la de la Tierra [7]. Estos planetas, así como el interior de océanos y mares de hielo que puedan existir en objetos planetarios como Europa (luna de Júpiter), deben de estudiarse mediante cámaras de alta presión, que incorporan una tecnología completamente distinta.

Es muy difícil dar valores precisos para la presión total en diferentes entornos planetarios o interestelares, y de hecho se encuentra frecuentemente bibliografía contradictoria. No obstante intentaremos dar algunas estimaciones y sobre todo, los rangos aproximados de estos parámetros para algunos entornos espaciales.

El espacio interplanetario

Resultado de imagen de El Espacio interplanetario

En el espacio interplanetario, por ejemplo, la presión viene determinada por el viento solar y por moléculas provenientes de las atmósferas de los distintos cuerpos celestes que lo pueblan, como cometas, o planetas. En física del espacio se suele utilizar la presión dinámica, que se define como:

P = densidad en partículas por cm
Resultado de imagen de El viento solar

Esta fórmula, aplicada para el viento solar en las inmediaciones de la Tierra, que tiene un número de partículas aproximadas de 4 por cm como del orden de vacío es el Pascal, 1 mbar se empleaba el Torr, como homenaje a Evangelista Torricelli. 1 mbar = 0,75 Torr [mm Hg]. Nosotros en este trabajo utilizaremos el mbar, que aunque no es la unidad en el sistema internacional, es la utilizada mayoritariamente por la comunidad científico-tecnológica en equipos de alto y ultra alto vacío).

Ver las imágenes de origen

El viento solar lo forman protones, partículas alfa, iones pesados y electrones, que fluyen desde la superficie del Sol con velocidades de hasta 800 Km/s. Como el viento solar es un plasma, este lleva consigo parte del campo magnético solar, por lo que las partículas de viento solar que son atrapadas en el campo magnético terrestre provocan entre otras cosas las auroras boreales y australes cuando chocan con la atmósfera terrestre cerca de los polos. Sabemos que el borde del sistema solar lo forma la burbuja del viento solar en el medio interestelar.

Resultado de imagen de El Borde más exterior del Sistema solar

En el punto en el que el viento solar no ejerce presión para desplazar el medio interestelar, se considera que es el borde más exterior del sistema solar [8].

Si nos acercamos a algún cuerpo celeste, es la emisión de gases del mismo la que limita la presión total. Así, por ejemplo, cerca de la estación espacial internacional la presión viene determinada por los propios gases de la estación y otras partículas atrapadas por el campo gravitatorio de la misma, siendo esta del orden de Fuera del espacio interplanetario, en donde las temperaturas son muy bajas y la densidad molecular prácticamente inexistente, el concepto de presión deja de tener sentido. Sin embargo, encontramos zonas del espacio interestelar, las llamadas nubes de polvo, en las que se detecta acumulación de material.

Resultado de imagen de Medio interestelar difusoVer las imágenes de origen

Así, en el llamado medio interestelar difuso, (aquel cuya densidad es menor que el principal componente gaseoso es el hidrógeno atómico.

A causa de la gran cantidad de fotones y rayos cósmicos la temperatura típica del polvo en el medio interestelar difuso es de 100 K y sus principales componentes, según se deduce de las observaciones por absorción en el infrarrojo, son el hidrógeno, silicatos amorfos y carbono amorfo hidrogenado.

Ver las imágenes de origen

Su presión, puede ser estimada entonces  como del orden de medio denso (nubes moleculares con densidades entre 103 – 106 partículas $ cm-3), cuyo principal componente gaseoso es el hidrógeno molecular. Aunque la densidad molecular en este caso es mucho mayor, la temperatura es muy baja en su interior, hasta unos 10 K, debido al apantallamiento de la radiación UV en las capas externas de la nube.
Las partículas de polvo, como las presentes en el medio difuso, se cubren de mantos de hielo con espesores del orden de 0.01 micras. Por tanto la presión total puede ser del orden de 10 -12 - 10 -18 mbar.

Resultado de imagen de La presión de vacío del espacio en el Laboratorio

Laboratorio de presión de alto vacío

Se ha dicho en algunas ocasiones que las presiones del medio interestelar no son alcanzables en un laboratorio. Esto no es del todo cierto. En realidad no son medibles. En algunas líneas criogénicas de He líquido, se estima que la presión residual puede ser de 10-30 mbar, y es debida exclusivamente a la desorción por rayos cósmicos de los gases de las paredes del recipiente. El problema reside en que no existe actualmente tecnología para medir el vacío por debajo de 10-14 - 10-15 mbar. En el CERN, con manómetros modificados del tipo Bayard-Alpert se han podido medir presiones de hasta 2 $ 10-14 mbar [9].

En el caso de la mayor parte de los planetas la presión si es una magnitud alcanzable y con sentido físico. Así la presión media en la superficie de Marte es de unos 7 mbar, o en Tritón de 10-2 mbar. Las atmósferas planetarias de la mayoría de los cuerpos del sistema solar son conocidas por observaciones de IR. Sin embargo, no hay que olvidar que la presión total en un planeta depende de la altura. Por ejemplo, en la tierra a 86.000 m de altura la presión es de 10-2 mbar. (100.000 veces menor que la atmosférica). Por tanto debemos tener en cuenta esta dependencia cuando queramos simular la presión en la atmósfera marciana o la superficie marciana.

Existen gráficas en la que se resumen los distintos rangos del vacío junto con las bombas necesarias para alcanzarlos. En la figura vemos que las presiones interplanetarias y del medio interestelar son sólo reproducibles en sistemas trabajando en las llamadas de vacío extremo (XHV-del inglés, extreme high vacuum). Sin embargo, experimentos que se realicen en la estación espacial internacional, pueden simularse utilizando una bomba turbo molecular.

Resultado de imagen de  tipos de sensores, desde el Pirani y el piezoresistivo, para vacío bajo,

No sólo es necesario elegir el tipo de bombas adecuado para llegar a una u otra presión. También es necesario contar con distintos tipos de sensores, desde el Pirani y el piezoresistivo, para vacío bajo, capacitivo para vacíos medios y terminando en sensores tipo Penning o Bayard-Alpert para alto vacío y ultra alto vacío y vacío extremo.

La composición atmosférica

Ver las imágenes de origen

El siguiente parámetro relevante para controlar en una cámara de simulación es la composición de los gases de la atmósfera. De nuevo la primera división es entre composición de gases en medio interestelar denso y superficies planetarias. La principal fuente de información para la composición atmosférica son espectros de infrarrojo tomados por telescopios orbitales o por satélites. Por ejemplo en el caso de Marte la atmósfera es muy compleja. Se han detectado composiciones medias de 95% CO2, 2,7% N2, 1.6% Ar y 0.6% H2O.
En el caso de otros planetas como Europa, luna Galileana de Júpiter, la presión está formada en más de un 95% de O2 y en el caso del interior de una cámara de vacío a 10-11- mbar en el laboratorio, casi el 100% es hidrógeno.

La composición atmosférica según el medio interestelar denso es esencialmente hidrógeno tanto en forma molecular como gaseosa. En estos medios existen también una densidad no despreciable de otras moléculas, de composición orgánica y mineral, que se recombinan entre ellas dando lugar a lo que se conoce como Astro-química. Por ejemplo, en el interior de la nube situada tras la nebulosa de Orión, el gas adquiere la densidad suficiente y la baja temperatura necesaria para que los átomos se enlacen y formen moléculas, en las que predomina el hidrógeno molecular y hay trazas de monóxido de carbono, cianógeno y amoniaco [10], entre otras moléculas.

Resultado de imagen de Detectores de masa cuadrupolaresResultado de imagen de Detectores de masa cuadrupolares

El control de la composición de gases en el sistema de simulación se realiza mediante la inclusión de detectores de masa cuadrupolares. Estos detectores ionizan el gas separando cada molécula según su relación carga/masa.Sabiendo la masa molecular podemos, identificarla en muchos casos y cuantificar su número. Este instrumento, mediante bombeo diferencial, puede operarse desde presión atmosférica. Sin embargo, a presiones inferiores de 10-5 mbar puede utilizarse con mayor resolución.

Para estar seguros de la composición de la atmósfera es preciso primero hacer el mejor vacío posible, y luego introducir la composición de gases deseada. Es por tanto importante controlar la composición de la presión residual en el sistema de simulación. En un sistema de alto-vacío con cierres KF, y bombeado con una bomba turbomolecular la presión residual parcial de cada uno de los gases está determinada por la velocidad efectiva de bombeo de la bomba turbomolecular (es distinta para cada composición gaseosa), y por la tasa de fugas en cierres de juntas de vitón (KF y LF), situándose en 10-8 mbar. Por tanto, planetas como Europa no pueden simularse utilizando este tipo de cierres. En un sistema con cierres de UHV (ultra alto vacío), la presión mínima está determinada por la permeabilidad del hidrogeno en cámaras de vacío de acero inoxidable 316 L o aluminio, que está en el orden de 10-13- mbar.

El detector SQ 2 es compatible con UPLC, UPC<sup>2</sup>, HPLC, GC, HPLC preparativo y SFC preparativo, así como con análisis directos con la sonda ASAP.” /></p>
<blockquote><p> </p>
<h2>Compatibilidad cromatográfica versátil</h2>
<p>“El detector SQ 2, diseñado para una compatibilidad óptima con múltiples técnicas de separación cromatográfica, está indicado para ayudarle a obtener más conocimiento a partir de sus análisis.</p>
<p>El detector SQ 2 es compatible con UPLC, UPC2, HPLC, GC, HPLC preparativo y SFC preparativo, así como con análisis directos con la sonda ASAP.”</p>
<p> </p></blockquote>
<p style=Para introducir atmósferas complejas, como por ejemplo la de Marte, en el interior de las cámaras de vacío o sistema de simulación, se han desarrollado mezcladores (y evaporadores para el caso del agua) en los que se controla la presión parcial de cada uno de ellos mediante un espectrómetro de masas cuadrupolar antes de introducirlos en el sistema. Estos mezcladores pueden incorporar caudalímetros para experimentos en los que se requiera un control más preciso sobre alguno de los componentes atmosféricos. La mezcla de los gases en los sistemas de simulación se realiza mediante válvulas de fugas o sistemas de capilar controlados por válvulas de aguja. Las válvulas de fuga permiten una entrada de gas controlada hasta 2 $ 10-10 mbar litro/s, mediante el ajuste cónico de dos piezas metálicas una de cobre (metal blando) y la otra de acero (metal duro), de este modo la pieza de cobre se garantiza la estanqueidad ya que recupera su forma original después de cada cierre. En cuanto a los capilares permiten, o bien introducir o extraer gas desde el punto exacto donde comienza el capilar, esto permite además generar flujos en el interior de la cámara de simulación.

La temperatura

Resultado de imagen de La temperatura en sistemas termodinámicos