lunes, 29 de noviembre del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Por qué es difícil Viajar a Marte? I (Apuntes de la NASA)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Por qué es difícil ir a Marte?

 

 

 Ridley Scott a Matt Damon sobre 'The Martian' l RTVERidley Scott a Matt Damon sobre 'The Martian' l RTVE

 

                     Fotograma de la película ‘The martian’. AIDAN MONAGHAN

El estreno de la película ‘Marte’ (The Martian) ha despertado cierta curiosidad acerca de posibles futuros viajes humanos al planeta rojo. Después de haber ido a la Luna en varias ocasiones hace ya casi cinco décadas, y estando acostumbrados a ver astronautas viajar al espacio casi de forma rutinaria, es tentador pensar que enviar seres humanos a Marte pueda ser algo perfectamente plausible a día de hoy, o tal vez un tanto más complicado que lo hecho hasta ahora. Sin embargo, la realidad es que enviar seres humanos a Marte constituye un desafío de una dificultad y complejidad absolutamente descomunales que se aleja mucho de todo lo que se ha hecho hasta ahora en la historia de la exploración humana del espacio.

En esta y en la siguiente entrada hablaré de las razones por las que esta empresa constituye un desafío inmenso y sobre cómo se plantea en la actualidad una misión tripulada a Marte. Con objeto de ofrecer una perspectiva inicial para entender la dimensión del problema de una forma intuitiva, en esta entrada trataré de la razón principal que hace extremadamente difícil una misión a Marte, la razón de la que prácticamente se derivan casi todas las demás: la distancia.

                      Matt Damon in “The Martian.” Credit Aidan Monaghan/Twentieth Century Fox

 

 

Tres astronautas preparan su regreso a la Tierra desde la ISS – Actualidad  AeroespacialQué hacen los astronautas en la Estación Espacial Internacional? - VIX

Vemos astronautas viajar con frecuencia al espacio, a la Estación Espacial Internacional (ISS), antes a la estación Mir, a bordo de naves Soyuz, o antes a bordo del Transbordador Espacial, etc., y se suele tener la impresión de que el lugar al que se viaja en estas misiones es muy lejano; sin embargo, las altitudes típicas a las que estas estaciones y vehículos espaciales orbitan alrededor de la Tierra son de unos pocos cientos de kilómetros. La ISS, por ejemplo, orbita alrededor de la Tierra a una altitud que es equivalente a la distancia que hay en línea recta entre Madrid y Almería: unos 400 km. Esta región espacial a la que viajan los humanos de forma rutinaria está dentro de la conocida como ‘región de las órbitas bajas de la Tierra’, y técnicamente la llamamos LEO (del inglés Low Earth Orbit).

Por qué es difícil ir a Marte? | Apuntes desde la NASA | Blogs | elmundo.es
ESA - Marte más cercaSistema Solar

Los viajes tripulados lunares implicaron viajar más allá de las órbitas LEO ya que la Luna orbita nuestro planeta a una distancia media de unos 380.000 km, lo que viene a ser unas 1.000 veces más lejos que las altitudes de estas órbitas bajas. Una tripulación y su nave se ponen en órbita alrededor de la Tierra poco después de su lanzamiento, mientras que la distancia a la Luna se cubría en las misiones Apolo en prácticamente 3 días.

Unidad astronómica - Wikipedia, la enciclopedia libreESA - Marte más cerca

En el caso de Marte la situación es muy diferente. Ir a Marte implica pasar de una misión geocéntrica a una centrada en el Sol, o heliocéntrica, lo que supone un salto enorme en las distancias involucradas. Aunque las distancias máxima y mínima entre la Tierra y Marte varían dentro de un cierto rango, la mínima distancia posible es de unos 55 millones de km y la máxima posible es de unos 400 millones de km.

Estas son distancias enormes en comparación a todo lo que se ha volado en misiones tripuladas al espacio hasta ahora. La distancia máxima a Marte viene a ser 1.000 veces mayor que la que hay entre la Tierra y la Luna, lo que viene a ser 1.000.000 de veces mayor que la distancia que separa la superficie terrestre de las órbitas LEO a las que se viaja normalmente.

Foto de la Tierra junto a la Luna tomada desde Marte
La Tierra vista desde Marte

Distancias aproximadas mínima y máxima posibles entre la Tierra y Marte. Como referencia, la distancia media de la Tierra a la Luna es de 380.000 km.

“Marte en oposición: Como es natural, los lanzamientos de sondas espaciales se preparan aprovechando las oposiciones de Marte para que la distancia a recorrer sea menor. Marte entra en oposición con la Tierra una vez cada 1,88 años. Como la órbita de Marte es muy elípticay la de la Tierra prácticamente circular, la distancia entre estas dos órbitas varía. Si la oposición ocurre en el afelio la distancia Tierra-Marte en el momento de la oposición es de 102 millones de kilómetros, si la oposición ocurre en el perihelio la distancia Tierra-Marte en el momento de la oposición es de 59 millones de kilómetros.

(*) En el afelio Marte se encuentra a 249,1 millones de km del Sol.
En el perihelio Marte se encuentra a 206,7 millones de km del Sol.
Afelio: 
punto de la órbita más alejado del Sol.
Perihelio: punto de la órbita más próximo al Sol.”

Sin necesidad de conocer nada más, los datos acerca de la distancia a Marte ya constituyen una buena pista para empezarnos a asomar a la magnitud del problema. Para apreciarlo mejor, y sin entrar en detalles relativos a métodos de propulsión o dinámica orbital, vamos a comparar en números redondos dos misiones tripuladas, una orbital alrededor de la Tierra para un solo tripulante y otra lunar de tres tripulantes, para hacernos una idea de la progresión en la masa necesaria de los cohetes involucrados para llevar a cabo estas misiones y entender el contexto de lo que supondrá una misión a Marte.

Empezamos con la primera misión orbital del Programa Mercury de principios de los ’60: la Mercury 6 de John Glenn. Aquí se precisó de un cohete Atlas de 120 toneladas y 29 metros de altura para poner en una órbita de 200 km de altitud media alrededor de la Tierra una masa útil de 1,2 toneladas formada por una cápsula Mercury con su único tripulante, el cual permaneció en el espacio 5 horas.

Veamos ahora lo que cambia la situación al tener a la Luna como destino unas 1.000 veces más lejos. En el caso del Apolo 17 -la última misión de exploración lunar-, su módulo de mando y servicio más su módulo lunar, sumando todo cerca de 50 toneladas, hubieron de ser lanzados a la Luna por el poderoso cohete Saturno V de unas 3.000 toneladas y de 110 metros de altura para una misión de una duración total de unos 12 días y medio en la que 2 de sus tripulantes permanecieron sobre la superficie lunar algo más de 3 días.

Saturno V - Wikipedia, la enciclopedia libreHermann Oberth, un invitado de honor en Cabo Cañaveral (1969) |  elsecretodelospajaros

Cohete lunar Saturno V junto al cohete Atlas del Programa Mercury para un tripulante (Transbordador Espacial incluido como referencia). Fuente: http://historicspacecraft.com/.

Vemos así el salto cuantitativo necesario cuando queremos ir a otro mundo que está 1.000 veces más allá de las órbitas bajas de la Tierra tanto en la masa útil a lanzar (de 1,2 a 50 toneladas) como en el tamaño del cohete lanzador requerido (de 120 a 3.000 toneladas). Comparemos todo esto con una misión a Marte. Aquí la tripulación constará de 6 astronautas y su duración, tomando como ejemplo la oportunidad en 2037, sería de 174 días para la ida y 201 días para la vuelta, con una estancia de 539 días en Marte. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de centenares de toneladas de combustible. Todo esto supone un total de 914 días, o 2 años y medio.

Como vemos, el salto entre la Luna y Marte es descomunal, ya que doblar la tripulación y extender la duración a cerca de 73 veces la de la misión lunar más larga, supone la necesidad de proveer y transportar cerca de 150 veces más suministros. Por otra parte, una mayor duración de viaje interplanetario supone la necesidad de proveer a la tripulación de mayor protección contra las radiaciones, lo que se consigue en parte añadiendo aún más masa, aunque este problema no está aún resuelto.

Otro problema de la larga duración es que las cosas se rompen a lo largo de tanto tiempo. O bien se tendrá que mejorar sustancialmente la durabilidad de los equipos o estos habrán de poder ser repuestos por recambios que también habrá que transportar, lo que implica una mayor masa. Las naves de carga que visitan la ISS pueden abastecerla de repuestos cuando algo se estropea a bordo pero esta opción no será posible en una misión a Marte.

Despegue de cohete Saturno V... - Astronomía en tu bolsillo | FacebookPor qué no se construye nuevamente el Saturno V? - Robotitus

Una vez dicho todo esto, al igual que cuesta más acelerar y frenar un camión que un turismo por tener el primero más masa, tengamos en cuenta que enviar más masa a Marte implica transportar también más combustible para acelerar toda esa carga hacia Marte, para frenarla a la llegada a ese planeta, y para volver a la Tierra desde allí; y pensemos que todo ese combustible (centenares de toneladas) también hay que lanzarlo al espacio inicialmente.

En total, para una misión a Marte se requerirá lanzar al espacio entre 850 y 1.250 toneladas. Esta es una cantidad enorme si tenemos en cuenta que la Ia ISS tiene una masa de unas 420 toneladas y que una nave con la que estamos familiarizados como el Transbordador Espacial solo podía enviar al espacio entre 15 y 25 toneladas aproximadamente, dependiendo de la altitud de la órbita final. El Ariane 5 es capaz de poner unas 20 toneladas en órbita baja alrededor de la Tierra, al igual que el cohete ruso Protón, por ejemplo.

Así pues, a partir de todo esto, y sin saber mucho más, ya podemos anticipar de forma intuitiva que no se podrá utilizar un único cohete para ir a Marte, sino que se precisarán varios lanzamientos de cohetes -tanto o más poderosos que el Saturno V de los años ’60- para ensamblar en el espacio distintos elementos de propulsión, módulos de combustible, hábitats y naves, que habrán de enviarse a Marte por separado y por anticipado, además de la nave con la tripulación, que sería enviada en último lugar. Entraremos en estos detalles en la siguiente entrada.

Aunque depende de diversos factores, se requerirán, de hecho, del orden de 10 lanzamientos de cohetes con la capacidad del Saturno V o similar; pero recordemos que el número total de cohetes Saturno V que se enviaron a la Luna en todo el Programa Apolo fue de 9. El Saturno V fue retirado de servicio después del Porgrama Apolo pero ostenta el récord, aún a día de hoy, como el cohete operativo más poderoso que haya habido nunca, capaz de poner algo más de 120 toneladas en órbita baja alrededor de la Tierra y de enviar 50 toneladas a la Luna. Tuvo que ser específicamente diseñado y construido en su día para poder alcanzar la Luna, y no existe un lanzador de tanta capacidad en la actualidad. El cohete que se encargaría de la mayor parte de los lanzamientos en una futura misión a Marte se está desarrollando en la actualidad y se llama SLS (Space Launch System), el cual tendrá prestaciones parecidas o acaso un tanto mayores que el Saturno V.

Por otra parte, un tiempo de 174 días de ida en condición de ingravidez afecta profundamente a la fisiología humana, algo especialmente preocupante al llegar a un planeta donde no hay nadie para asistirte. Las naves que se pueden ver en las películas (incluida la película ‘Marte’), con un amplio y confortable habitáculo en forma de donut girando para simular la aceleración de la gravedad, no son realistas en la actualidad.

La Tierra vista desde el espacio 2013 - Primera imagen de la Tierra desde  el espacioLa NASA publica una foto única de la Tierra vista desde Marte | Life -  ComputerHoy.com

                     La Tierra vista desde la Luna y desde Marte Fuente: NASA.

Dos años y medio es un tiempo muy largo también por razones psicológicas. La Tierra será vista por la tripulación como un punto de luz semejante a una estrella durante la mayor parte del viaje y será apenas imperceptible en la noche marciana cuando fuera visible. La tripulación tendrá que convivir en una condición de confinamiento permanente en un espacio reducido en una situación de gran estrés, y con la imposibilidad de mantener conversaciones fluidas con los seres queridos en la Tierra debido al tiempo de viaje de la señal.

Después de todo esto, y aunque no se han mencionado todas las dificultades técnicas, tecnológicas y operativas, creo que ahora puede apreciarse un poco mejor a lo que nos enfrentamos en una misión a Marte. A partir de aquí, y una vez expuesta esta perspectiva para contextualizar el problema y entrar en materia, en la siguiente entrada explicaré cómo se plantea en la actualidad una misión humana a Marte y cómo se relaciona con lo que se ve en la película ‘Marte’ (The Martian).

sigue en la II parte

Fuente: NASA

¿Por qué es difícil viajar a Marte? II (Desde la NASA)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Película Marte (The Martian) - crítica Marte (The Martian)Premios Oscar 2016: 'Marte' | Cultura | EL PAÍS

                                     FotogramaS de la película ‘Marte’ (‘The Martian’). EM

¿Por qué es difícil ir a Marte? (II)

 

 

En la pasada entrada contextualizamos el problema de una misión humana a Marte para apreciar la dimensión del desafío que supone. Como vimos, la principal razón que la hace difícil es la enorme distancia que nos separa de ese planeta, lo que implica que la misión tendría una duración total de aproximadamente 2 años y medio. En esta entrada vamos a concretar cómo se plantea hoy en día esta misión, tomando como ejemplo la oportunidad para el año 2037.

Según está propuesto en la actualidad, para completar una misión humana a Marte serán necesarias 3 naves: dos de carga y una para la tripulación. Una de las naves de carga transportará a Marte el hábitat que albergará a la tripulación durante su estancia de 539 días en la superficie marciana. Este hábitat se denomina SHAB (Surface Habitat), y es ahí donde Mark Watney, el protagonista de ‘Marte’ The Martian, trata de sobrevivir en solitario.

 

 

 

 

La otra nave de carga es el denominado ‘vehículo de descenso y ascenso’, o DAV (Descent and Ascent Vehicle). El DAV es la nave a bordo de la que la tripulación, una vez acabada su estancia en Marte, abandonará este planeta, y es, por tanto, la nave que utiliza la tripulación al principio de la película para abortar su estancia en la superficie marciana en medio de una feroz tormenta de arena.

La nave con la tripulación es conocida como ‘vehículo de transferencia para Marte’, o MTV (Mars Transfer Vehicle), y es la que se encargará de transportar a la tripulación en sus dos trayectos interplanetarios: el de ida a Marte y el de regreso a la Tierra (las naves de carga solo tienen tiques de ida).

 

Por qué es difícil ir a Marte? (II) | Apuntes desde la NASA | Blogs |  elmundo.esPor qué es difícil ir a Marte? (II) | Ingeniería y exploración desde la NASA  | SciLogs | Investigación y Ciencia

 

 

Concepto de vehículo de transferencia de tripulación para Marte. Fuente: NASA.

 

Estas tres naves habrán de ensamblarse en una órbita baja alrededor de la Tierra antes de ser enviadas por separado a Marte, pero estos ensamblajes y envíos se harán en tiempos distintos. Las naves de carga (SHAB y DAV) serán las primeras en ser ensambladas, y serán lanzadas al planeta rojo dos años antes que el MTV con la tripulación. ¿Por qué dos años? Porque es aproximadamente cada dos años que se da la posición relativa precisa entre Marte y la Tierra que permite que entre ambos planetas se pueda volar una trayectoria por la que se minimiza la cantidad de combustible a utilizar. Esto es de gran importancia porque son muchas las toneladas de combustible que se necesitan para hacer posible una misión así, como veremos luego.

 

 

Es realista el plan de Elon Musk para colonizar Marte? | EL MUNDO

 

Concepto de nave de carga para Marte. Fuente: NASA.

 

Una vez ensamblada cualquiera de estas tres naves en órbita alrededor de la Tierra, cada una de ellas es lanzada desde ahí hacia Marte a través del encendido de sus motores durante un corto espacio de tiempo. La nave es así acelerada hasta adquirir la velocidad necesaria para abandonar la influencia gravitatoria terrestre y dirigirse hacia Marte a lo largo de una trayectoria interplanetaria que es, en realidad, una órbita elíptica alrededor del Sol y cuyo punto más lejano intersectará con el paso de Marte por ese punto en el momento preciso. Cuando la velocidad deseada ha sido alcanzada, los motores se apagan y permanecen así durante toda la travesía (se encenderán en algún momento para hacer alguna corrección en la trayectoria). A pesar de encender los motores durante un corto espacio de tiempo, del orden de pocos minutos o decenas de minutos, la cantidad de combustible que se utiliza es enorme (decenas de toneladas).

Este lanzamiento hacia Marte desde una órbita baja alrededor de la Tierra se denomina ‘inyección transmarciana’, y nos referimos a él como TMI (Trans-Mars Injection). Nótese que al regreso de la tripulación desde Marte, el mismo proceso ocurrirá desde allí en sentido inverso: desde una órbita alrededor de Marte, la nave encenderá sus motores por un corto espacio de tiempo en lo que se denomina ‘inyección transterrestre’, o TEI (Trans-Earth Injection).

 

 

 

 

Una vez llegada una nave a las proximidades de Marte, esta debe frenarse para quedar capturada en una órbita alrededor de ese planeta desde donde acometer las siguientes operaciones. Esta maniobra de frenado se denomina ‘inserción en órbita marciana’, o MOI (Mars Orbit Insertion). El MOI puede hacerse de forma propulsada, encendiendo los motores otro corto espacio de tiempo, o de forma aeroasistida, utilizando la atmósfera marciana para frenar la nave en una maniobra llamada ‘aerocaptura’. Esta última opción se ha propuesto solo para las naves de carga de forma que sería mucho el combustible que se ahorraría en la misión. El problema es que nunca se ha volado una aerocaptura hasta la fecha, con lo que esta capacidad habría de ser demostrada antes. El SHAB (la nave portando el hábitat) permanecerá en órbita alrededor de Marte a la espera de la tripulación, pero el DAV (vehículo de descenso y ascenso) descenderá a la superficie marciana de forma autónoma.

El DAV será la nave de ascenso que utilizará la tripulación en su día para despegar de la superficie al acabar su estancia en el planeta rojo. Con objeto de ahorrar el combustible necesario para ese lanzamiento, se propone que el DAV no porte el combustible con él, sino que lo produzca en Marte, in situ. Y es que sería prohibitiva la masa de una nave que descendiera a la superficie de Marte con el combustible para el lanzamiento posterior de 6 personas al finalizar su estancia allí. De hecho, se propone que el DAV no solo produzca in situ el combustible, siendo el metano/oxígeno la opción preferida, sino que también produzca el oxígeno, nitrógeno y el agua necesarios para la tripulación. Esta es otra área que precisa investigación y desarrollo tecnológico.

Dos años después de haber enviado las dos naves de carga, y después de comprobar que los consumibles (combustible, aire, agua) hayan sido producidos en Marte y de que todo allí funcione correctamente, la tripulación será lanzada finalmente al planeta rojo desde la Tierra. Una vez en órbita alrededor de Marte, el MTV (la nave en la que viaja la tripulación) se encontrará con el SHAB, que lo espera en órbita alrededor de Marte. Los astronautas pasarán al SHAB y procederán a bordo de esta nave al descenso a la superficie, donde aterrizarán a una corta distancia del DAV.

 

Journal Global Affaires 2 FEB'20.inddEric Berger na Twitteru: "This is a new-ish version of the Lunar Gateway,  via NASA's Marshall Smith. "It's not a station, it's a spacecraft."… "
                Ejemplo de misión a Marte propuesta para la oportunidad de 2037. Fuente: NASA.

El descenso a Marte de naves de tanta masa es a día de hoy un problema no resuelto. Hasta la fecha se han enviado a Marte vehículos exploradores y aterrizadores de muy poca masa. El principal problema reside en que la atmósfera marciana es muy tenue y no consigue frenar una nave de reentrada lo suficiente sin necesidad de emplear retropropulsión supersónica o enormes superficies de frenado si la nave es lo suficientemente masiva. La tecnología a día de hoy permite como máximo aterrizar en Marte masas de alrededor de una tonelada, un valor muy lejano de las naves de varias decenas de toneladas que habrá que poder aterrizar en una misión humana, por lo que nuevas técnicas y tecnologías deberán también ser desarrolladas para este propósito, un área de investigación en el que personalmente trabajo parcialmente en la actualidad.

Después de los 539 días de estancia en Marte, la tripulación será lanzada en la etapa de ascenso del DAV al encuentro del MTV, que habrá permanecido en órbita alrededor de Marte todo ese tiempo. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de ingentes cantidades de combustible. Una vez transferidos al MTV, se procederá a la inyección transterrestre por la que los astronautas regresarán a casa unos 200 días después, para acabar haciendo una reentrada en la atmósfera de la Tierra a bordo de una cápsula Orion, la cual está siendo desarrollada en la actualidad.

Cuánto falta para llegar a Marte? ~ TEDAEAsí sería la vida en Marte

Dubai diseña la primera ciudad extraterrestre del mundo donde vivir como en  Marte | AsiaLa ciudad futurista que busca prepararnos para vivir en Marte mientras nos  ayuda a sobrevivir al cambio climático en nuestro planeta

                                                    La vida en Marte no sería nada placentera

Muchas personas me preguntan si sería posible reducir la estancia en Marte. Efectivamente, la estancia podría reducirse a tiempos de entre 30 y 90 días; pero, en ese caso, los tránsitos interplanetarios habrían de ser muy largos, de mas de 200 días de ida y de unos 400 días de vuelta; requiriendo, además, maniobras de asistencia gravitatoria en el camino; de otra manera, el coste sería prohibitivo. Se favorece la opción de viajes cortos y estancias largas para reducir la exposición de la tripulación a la radiación. Estando en Marte, el mismo planeta bloquea el 50% de la radiación a la que estarían expuestos los astronautas, ademas de que ciertas medidas de protección serian mas fáciles de implantar.

Como se ha dicho constantemente, las masas involucradas en una misión humana a Marte son enormes. Un elemento que contribuye significativamente a esto es el combustible, y es por esta razón que se ha propuesto la opción de utilizar propulsión nuclear-térmica en lugar de propulsión química, tal y como ha sido el caso en todas las misiones tripuladas hasta la fecha. Esta no es una decisión baladí ya que el ahorro en combustible entre una opción y otra es de unas 400 toneladas; esto es, aproximadamente la masa de una Estación Espacial Internacional (ISS). Para poner esto en perspectiva, apuntemos que se precisaron 10 años para ensamblar la ISS y algo más de una treintena de lanzamientos (aunque de menor capacidad que el Saturno V).

Según se estima en la actualidad, para llevar a cabo una única misión a Marte habrá que lanzar al espacio desde la Tierra un total de 850 toneladas en caso de que se utilice propulsión nuclear-térmica, o 1.250 toneladas en caso de utilizar propulsión química. Esto son 2 o 3 Estaciones Espaciales Internacionales. Asumiendo que un cohete lanzador de prestaciones similares al Saturno V de las misiones lunares puede emplazar 120 toneladas en una órbita baja alrededor de la Tierra, el número de lanzamientos requeridos en una sola misión humana a Marte sería aproximadamente de 7 u 11, dependiendo del tipo de combustible, y asumiendo que todos los elementos necesarios puedan ponerse en órbita con un lanzador así. El envió de la tripulación precisaría de un lanzamiento especifico a bordo de un cohete de menor capacidad, por ejemplo, y es posible que ciertas tareas de ensamblaje puedan requerir asistencia humana también.

Marte | Tag | Plataforma Arquitectura

Existen muchas variaciones en las arquitecturas propuestas para misiones tripuladas a Marte pero lo expuesto aquí refleja lo que viene a ser la arquitectura de referencia que se considera hoy en día. En cualquier caso, la envergadura de una misión humana a Marte es sobrecogedora. Espero que estas dos ultimas entradas hayan ayudado a entender un poco mejor la magnitud de una empresa tan ambiciosa y compleja. Las dificultades técnicas, operativas y tecnológicas que encierra no son para nada triviales, y resulta imposible siquiera mencionarlas todas en una entrada de un blog. Se requiere aún el desarrollo de tecnologías inexistentes en la actualidad para llevar a cabo una misión así, y muchas de las cuestiones planteadas no están aún resueltas. Aún estamos lejos de poder enviar seres humanos a Marte, pero también hace un siglo se estuvo muy lejos de alcanzar el espacio y la Luna. Estoy seguro de que el ser humano llegará a Marte algún día si así lo desea, pero creo, y esta es una opinión estrictamente personal, que ese día está más lejos de lo que muchos puedan pensar.

Fuente: NASA

Rumores del saber del Mundo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Las ideas? ¡Qué peligro!

 

 

Galileo (III): el conflicto con la Iglesia — Cuaderno de Cultura Científica

El juicio a Galileo

 

“Debe abandonar por completo la opinión de que el Sol se detiene en el centro del espacio y la Tierra se mueve a su alrededor, y de ahora en adelante no sostener, enseñar, o defender de cualquier manera esta doctrina, ya sea de forma oral o por escrito”.

Este fue el dictamen del Santo Oficio que el cardenal Roberto Belarmino leyó de forma particular a Galileo Galilei por orden del papa Paulo V el 26 de febrero de 1616.

Galileo: la sabia venganza del científico

 

Con una advertencia añadida: si no cumplía estos preceptos, dictados dos días antes, la Iglesia actuaría contra él. Belarmino no hablaba por hablar: él mismo había dirigido el proceso que acabó con el filósofo Giordano Bruno en la hoguera.

Galileo Galilei. BiografíaGalileo Galilei, telescopio — Astronoo

 

En ese momento, Galileo era un reconocido matemático y astrónomo de la Universidad de Padua, en la República de Venecia, que no solo había publicado numerosas obras ampliamente difundidas en las que había llegado a completar con sus observaciones las teorías de Nicolás Copérnico sobre su teoría heliocéntrica, sino que se había ganado una gran fama por sus observaciones con un curioso artefacto, un anteojo de nueve aumentos.

Satélites Galileanos: Todo Lo Que Deberías Saber Sobre EllosConferencia Virtual: Galileo el Astrónomo | IICTA

Con tan sorprendente invento, el científico había descubierto que la perfección esférica de los astros que propugnaba el aristotelismo no era exacta, que al menos cuatro lunas orbitaban alrededor de Júpiter y que Venus presentaba unas fases similares a las lunares, aunque en su caso circundando el sol.

No siempre tener ideas y, sobre todo, expresarlas en alta voz, ha resultado conveniente. Galileo podría dar fe de ello. Fue juzgado por sus ideas y escritos por la Iglesia y se vio confinado en su domicilio los últimos años de su vida.

Es la única libertad que nos podemos permitir.  El pensar libremente y para nosotros mismos, otra cosa es el exponer nuestros pensamientos a los demás.  Unas veces por inconveniente, otras por pudor, otras por temor a las críticas, y otras por parecernos a nosotros mismos indignas de ser conocidas…,  así se pierden grandes ideas.

En alguna oportunidad os he comentado sobre el Laboratorio Cavendish, y me viene a la memoria que fue allí, donde Thomson, en 1.897, realizó el descubrimiento que vino a coronar anteriores ideas y trabajos de Benjamín Franklin, Eugen Goldstein, Wilhelm Röntgen, Henri Becquerel y otros.  El descubrimiento del electrón convirtió a la física moderna en una de las aventuras intelectuales más fascinantes e importantes del mundo contemporáneo.

 

 

http://3.bp.blogspot.com/_zHbX_aaJEfA/TLclaPKIGNI/AAAAAAAAAIo/Dku4Qz_AW1M/s1600/Imagen2.png

 

 

Los “corpúsculos”, como Thomson denominó inicialmente a estas partículas, hoy conocidas como electrones, condujo de forma directa al trascendental avance realizado una década después por Ernest  Rutherford, quien concibió el átomo como una especie de “sistema solar” en miniatura, con los electrones diminutos orbitando alrededor de un núcleo masivo como hacen los planetas alrededor del Sol.  Rutherford demostró experimentalmente lo que Einstein  había descubierto en su cabeza y revelado en su famosa ecuación, (1905), esto es que la materia y la energía eran esencialmente lo mismo.

 

El núcleo atómico y la naturaleza de la materia : Blog de Emilio Silvera V.

El átomo de Rutherford con el núcleo central rodeado de electrones

 

Todo aquello fue un gran paso en la búsqueda del conocimiento de la materia.  El genio, la intuición y la experimentación han sido esenciales en la lucha del ser humano con los secretos  bien guardados  de la Naturaleza que, es donde para nosotros está el ámbito de la Ciencia.

En otros ámbitos, y, a lo largo de los tiempos, se aposentaron otros senderos que idearon las clases dominantes para manejar las mentes del pueblo llano y confundir, la ya de por sí endeble preparación que poseían.

 

 

Si pudiera iría en busca del Alma etérea, y, hablaría con ella, le haría esas grandes preguntas que nadie ha sabido nunca contestar. Claro que, la primera pregunta que habría que contestar sería: ¿Existe en realidad el Alma, o, por el contrario, es un invento interesado del hombre?

Aspectos filosóficos sobre el alma – Filosofía para la vida

Hume concluyó: “Cuando muere el cuerpo, muere también el alma.”

 

Es verdad que, nosotros, los Humanos, nos aferramos a las vivencias de nuestra niñez, las enseñanzas que recibimos en la infancia en el Colegio y, a lo que nos decían nuestros educadores, y, siendo así, no pocas veces he podido “sentir” el Alma en los ojos brillantes de mis hijos, en cuyos profundos e infinitos senderos, he podido vislumbrar el Universo entero.

 

Tipos de miradas5 pruebas de que los niños son pura inocencia - VIX

Los pulsares originados por la explosi&oacuten de supernovas,  descubrimiento de pulsaresLas nebulosas más espectaculares del universo - Nebulosa DumbbellLos 50 mejores paisajes del mundo - LocuraViajes.comBello paisaje | Hermosa fotografía de paisaje, Paisaje de fantasía,  Hermosos paisajesBello paisaje | Paisaje de fantasía, Hermosos paisajes, Paisaje para pintar

 

También, en una dulce mirada, he podido sentir el Alma. En un bello paisaje, en una hermosa y brillante Galaxia, en las nubes que forman figuras arabescas y siempre cambiantes, en la hermosa fronda de un verde bosque, en el trinar de las aves y en su hermosos plumajes, en las Nebulosas cargadas de estrellas brillantes, en el pulso de una estrella de Neutrones, en… en… en… ¿Puede estar el Alma en tantos lugares?

 

http://4.bp.blogspot.com/-TU1Yx6zytK8/ThCDAqLc0GI/AAAAAAAAGAA/S_4WH7NdN-M/s1600/fugacesfoto4ru0.jpg

 

¿Será el Alma, si acaso, una ráfaga de luz que habita dentro de nosotros y nos deja cuando nos llega el final? Bueno, esa fue la idea original del filósofo, y, desde luego, el invento del Alma dejó pingües beneficios a muchos que la explotaron. ¡El Alma! Posiblemente sea la idea más luminosa desde que el hombre existe.

 

 

La censura en la Edad MediaSombras y Luces de la Edad Media - elprofebastias

La Iglesia en la Edad Media ofrecía la salvación del “Alma” a cambio de dádivas

A los que expresaban pensamientos “impuros” los quemaban en la hoguera

 

Un pensamiento difuso y confuso que nos inculcaron y subyace dentro de nuestras mentes…vagando por algún rincón del cerebro alguna vocecilla nos dice…”Alma” Alma” para que no olvidemos las palabras de aquellos “santones” que, a nuestros ancestros le inculcaban la idea para obtener sus rentas a cambio de la salvación en el más allá.

 

 

Historia de la Iglesia Edad Media: 6. CONTROVERSIAS, HEREJIAS E INQUISICIONLa comunicación escrita en la Edad Media | Heródoto & Cía

 

Es verdaderamente meritoria la idea del Alma, una idea poderosa que hace posible la esperanza en el “más allá” (posibilitando que otros vivieran mejor en el más acá), la vida después de la muerte.  Todos podemos ver como el cuerpo se destruye cuando se muere, sin embargo, el Alma invisible, puede dejar el cuerpo y etérea flotar hasta los cielos (si hemos sido buenos) o a los infiernos (si hemos sido malos).

Mirando la Historia y lo que ahora mismo nos rodea, si eso es así ¿Cómo tendría que ser de grande el Infierno? ¡Si todos vivieran acorde a lo que predican! Sin embargo no es así, y, tal verdad, nos lleva a desconfiar cuando se dice una cosa y se hace la contraria.

 

Resultado de imagen de La Iglesia rentabilizó la salvación del AlmaLas indulgencias, pasaportes para llevar el alma al Paraíso - Historias de  la Historia

 

Las indulgencias, pasaporte para llevar las Almas al Paraíso. Los primeros antecedentes de la práctica de las indulgencias se remontan al siglo III, cuando las penitencias impuestas a los pecados considerados especialmente graves eran muy severas. Así que, para recuperar a la oveja descarriada, se fue reduciendo la duración y la gravedad de las penas impuestas, sólo a determinadas personas recuperables para la causa y que, a cambio de esa reducción, realizasen determinadas acciones (peregrinación, mortificación, ayuno…) o entrega de parte de sus bienes, una buena bolsa de monedas de oro…

La Iglesia, al ver que no podía salvar el cuerpo, se inventó “la salvación del Alma” y de ello, ha venido obteniendo grandes beneficios. Los creyentes de buena fe, los que creen en el más allá después de la muerte, por el temor a esa Eternidad, han entregado sus fortunas a la Iglesia y, los menos pudientes, contribuyeron con lo que podían.

 

Bienes de la IglesiaProyecto Ley: Más recortes y que la iglesia Católica inscriba sus bienes  como los demás

Archivo:Ubeda - Capilla del Salvador 42.jpg - Wikipedia, la enciclopedia  libreBasílica de San Pedro: el mejor artePropiedades de la Iglesia: Por qué el patrimonio histórico no debe ser  propiedad privada de la Iglesia | Público

 

 

La rentabilidad obtenida por la Idea ha sido grande. En el tema de las religiones, aparte de lo que particularmente pueda creer o no creer, siempre he sido respetuoso con la elección que los demás hayan podido hacer. Todos, sin excepción, debemos tener la libertad de escoger el camino que estimemos más adecuado para todos los ámbitos de nuestras vidas, y, la religión, para muchos, es importante en sus vidas y eso, hay que respetarlo. Pero, también quiero que se respete lo que yo pienso de ciertas cuestiones.

Verdaderamente, la noción de “Alma” podría ser considerada como una de las ideas más grandes de la Humanidad, ha sido muy bien manejada por las religiones para poder dirigir y atemorizar a los pueblos que, ignorantes, estaban a merced de la amenaza divina que en boca de los sacerdotes del momento, fustigaban sin piedad sus conciencias llevadas, a un callejón sin salida de una culpabilidad inexistente que las hacía vulnerables.

Sí, algunos dirán que es más poderosa la idea de Dios que también es más universal, y,  algunos se preguntarán si ambas ideas no se sobreponen.  Y así es, la idea de Dios ha sido una idea poderosísima  a lo largo de la Historia, y continúa siéndolo en gran parte del planeta.  Al mismo tiempo, sin embargo, hay dos buenas razones para pensar que el Alma ha sido (y sigue siendo) una idea más influyente y fecunda que la idea misma de la divinidad.

 

Mahatma Gandhi y la no violencia

Gandhi decía que si no existe otra vida, ésta es un timo al que todos queremos aferrarnos.

 

Una razón es que, con la invención de la otra vida (una idea que no todas las religiones comparten, pero sin la cual una entidad como el Alma tendría mucho menos sentido), se abrió el camino – como antes comentaba- para que las religiones organizadas controlaran las mentes de los hombres para su propio beneficio, hay que tener presente que, por ejemplo la Iglesia, sólo nos da bendiciones, sin embargo, siempre está dispuesta a coger todo lo que pueda.

 

Catholic.net - 2.- Los Sacramentales - Las bendicionesTEMA CENTRAL: “UNA IGLESIA POBRE PARA LOS POBRES” – Revista Umbrales Uruguay

Bendiciones todas las que queramos pero… Hay situaciones que la Iglesia no puede explicar

 

Si el  pueblo llano conociera las posesiones y riquezas de la Iglesia, el boato y suntuosidad de sus grandes representantes que, impasibles, ven morir a miles y decenas de miles de criaturas en los distintos lugares de la Tierra, sin mover ni un dedo para remediarlo, sin conocieran esto digo, muchos de ellos no pisarían más una iglesia. Y, por otra parte, esa misma Iglesia despiadada y fría, tiene representantes que vagan por los lugares más inhóspitos y necesitamos del mundo y, no pocas veces, han dado su vida por los demás. ¿Cómo entendemos eso?

 

 

 

Resultado de imagen de Los que están cerca de la muerte y regresan dicen haber visto un tunel de inmensidad claridad al finalImagen relacionada

 

 

Ese túnel que finaliza en un luz blanca cegadora que muchos que han estado cercanos a la muerte dicen haber podido ver…¿Qué será? Seguramente una ilusión de la Mente que, en un estado traumático, puede, representar escenas apacibles que vengan a relajar el momento y el dolor.

Durante la antigüedad tardía y la Edad Media, la tecnología del Alma, dio un juego excelente para sacerdotes y religiones. Su relación con la “otra vida”, con la divinidad y, en especial, con el clero, permitió a las autoridades religiosas ejercer un poder extraordinario.

No se puede negar que, la idea del Alma, enriqueció inmensamente la mente de los seres humanos a lo largo de los siglos, pero tampoco se puede negar que también es cierto que durante ese mismo tiempo mantuvo a raya el pensamiento y la libertad. ¿Os acordáis de Galileo, o, de Giordano Bruno? Aquellos hechos fueron los detonantes del retrasó el progreso y contribuyó a mantener al pueblo (en su mayor parte) ignorante y sometido al clero educado y culto.

 

[monedas+argentinas.jpg]

 

Otro invento que se las trae, ¿de cuántas maneras se puede representar el mal del mundo?

 

Sólo tenemos que pensar en la desfachatez con que el fraile Tetzel afirmaba que era posible comprar indulgencias para las “Almas” del purgatorio, y que estas saldrían volando al cielo tan pronto como las monedas golpearan el plato.  Los abusos como estos, aún persisten hoy en día, nada más claro como ejemplo el ver la cantidad de ancianos y viudas que solos en la vida y enfermos, dejan sus fortunas a la Iglesia que, por cierto, tienen situadas sus propiedades en los mejores enclaves de las ciudades.

Pasar el cepillo en misa. Las mil y una variantesLas tarjetas bancarias salvan ofrendas en misas en Venezuela | La Opinión

 

 

Los abusos a que se prestaba lo que algunos llaman “tecnologías del alma” fueron uno de los principales factores que condujeron a la Reforma, la cual, a pesar de lo ocurrido con Juan Calvino en Ginebra, fundamentalmente despojó al clero del control de la fe e impulsó la duda y el descreimiento.

Alma o aura stock de ilustración. Ilustración de constelaciones - 189970676
Uno se puede quedar pasmado cuando puede leer: “Según fuentes y estudios religiosos el alma existe por si sola e independiente de la materia que  conforma al ser humano”. Al parecer, no importa el tiempo transcurrido desde que se inventó el Alma, y, se sigue persistiendo en la misma idea…¡Fue tan buena! que, ¿Quién la quiere dejar? Mientras deje beneficios… ¡Adelante!

Las diversa transformaciones del alma (la idea de que estaba contenida en el semen en la Grecia de Aristóteles,  el alma tripartita del Timen platónico, la concepción medieval y renacentista del Homo duplex, la idea del alma como mujer, o como ave, el diálogo entre el alma y el cuerpo de Marvell, “las monadas” de Leibniz) pueden resultar hoy bastante pintorescas, pero en su época fueron cuestiones muy serias, y constituyeron importantes etapas en la ruta hacia la idea moderna del ser.

En un anterior trabajo os hablé de manera bastante extensa sobre estas cuestiones del ser, el alma, la conciencia y, en definitiva, del cerebro que es habitad natural de todas estas cuestiones.  La filosofía y la metafísica están presentes haciendo compañía a lo que entendemos por ser conscientes. Las profundidades del ser (nuestro complejo de interioridad) se manifestó en la llamada Era Axial, en términos aproximados, entre los siglos VII y IV a. de C.

 

 

Resultado de imagen de Sacerdotes Hindúes con privilegios

Santones en el propio beneficio

Por aquella época, más o menos de manera simultánea, ocurrió algo similar en Palestina, la India,  China, Grecia y muy posiblemente también en Persia.  En cada uno de estos casos, la religión establecida se había vuelto en extremo ritualista y exhibicionista.  En particular, en todas partes habían surgido sacerdotes que se habían adjudicado una posición de altísimos privilegios, con lo cual, Vivian de manera totalmente opuesta a lo que predicaban.

 Catedral de San Juan el Divino y San Patricio Nueva York - Viajes El Corte  Inglés

 

Vivían y siguen viviendo en los mejores Edificios, mientras sus semejantes mueren de frío teniendo por único techo las estrellas. Aquella casta privilegiada, controlaba el acceso a Dios o a los dioses (según los casos), y se beneficiaba de su elevado estatus que, sobre todo, ponían al servicio de los poderosos de turno. Pero en todas estas culturas, surgieron profetas molestos que, al pregonar la salvación del Alma desde otro prisma distinto, dejaban al descubierto las mentiras interesadas de estos sacerdotes y falsas religiones.

 

http://2.bp.blogspot.com/-PXoJ6WB-cKE/TkPrKnix7FI/AAAAAAAAAT4/B4Q_U4abrFM/s1600/upanishads.bmpTat Tvam Asi, el yoga de los Upanishads - Chandra Ibiza | AARTI La guía  sana de IbizaLos Upanishad… (algunos fragmentos) – Tras el Velo de Isis

Los Upanishads

Surgieron profetas (en Israel) u hombres sabios (Buda y los autores de los Upanishads en la India, Confucio en China,  etc.)  Que denunciaron al clero y recomendaron la introspección, a sostener que la ruta hacia la auténtica santidad implicaba algún tipo de abnegación y de estudio íntimo.  Platón sentó las bases de la supremacía de la mente sobre la materia.

Todos estos hombres mostraron el camino a través del ejemplo personal, y su mensaje es muy similar al que más tarde predicaron Jesús y,  más tarde, San Agustín y algún otro. No siempre los representantes de las religiones resultaban ser “falsos profetas”, muchos de ellos fueron un ejemplo de honestidad y vivieron haciendo honor a sus palabras.

 Bhagabad Gita – sanjay

Los Upanishads Hindús | Gran Hermandad Blanca

De acuerdo a la tradición, existen más de doscientos Upanishads, pero se consideran solo a once como los principales, debido a que estos son los comentados por Shankara, el maestro y filósofo responsable de consolidar las bases de la escuela de pensamiento no dualista Vedanta, o Advaita Vedanta.

De éstos auténticos hombres buenos  que incluso sacrificaron sus vidas para dedicar todo su esfuerzo al bien de los demás, se han aprovechado, desde tiempos inmemoriales, la legión de espabilados que amparados y enmascarados en las distintas religiones han utilizado toda esa bondad para el propio lucro, engañando a los fieles de buena fe de manera inmisericorde y en ausencia total de conciencia, moral y ética. ¡Que gentuza!

 

8 ejemplos de injusticia social en el mundo (con imágenes) - Significados

El grupo corrupto no admite la honradez

 

Prefiero no seguir por este camino y dejo aquí el comentario, ya que, de seguir este sendero espinoso estaría recorriendo un escabroso historial lleno de barbaridades e injusticias del ser humano y, todo ello, en el nombre de Dios. Y, como mi intención no es molestar a nadie ni herir sensibilidades, digamos que la religión, las religiones, siempre han tenido sus controversias que, principalmente han sido causadas por sus profetas al no saber mostrar (no demostrar) aquello que pretendían predicar, sus comportamientos diferían de sus palabras.

emilio silvera

Nebulosas Moleculares Gigantes… ¡Y mucho más!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

La familia de las Nebulosas es bastante amplia y de distintas configuraciones, composiciones, emisiones y reflexiones que tienen que ver con su masa y densidad, con las estrellas que allí están presentes y la radiación que emiten para ionizar algunas regiones con el ultravioleta… etc. Existen nebulosas bipolares, brillantes, de absorción, de emisión, de reflexión, difusas, filamentarias, oscura, planetaria y protoplanetaria que es la etapa de formación de aquella.

 

20130121-092526.jpg

 

Una nebulosa solar es aquella nube de gas y polvo a partir de la cual se forma un sistema planetario. Arriba podemos contemplar. El telescopio ALMA ha fotografiado por primera vez los incios de la formación de un sistema planetario alrededor de una estrella. El astro es HD 142527 y está situado a unos 450 años-luz de la tierra. Alrededor de él podemos observar un anillo de gas y polvo cósmico que con el paso del tiempo dará lugar a un sistema planetario.

De las Nebulosas y de sus diferentes tipos hemos hablado aquí de manera amplia habiendo explicado en qué consistía cada una de ellas y, de qué materiales estaban formadas en función de las distintas circunstancias que en cada una de ellas estaba presente. Hoy estaremos con las Nebulosas moleculares gigantes.

 

 

Rho Ophiucus Widefield.jpg

La nube de Rho Ophiuchi es una nube molecular gigante compuesta de hidrógeno ionizado y en gran parte del polvo oscuro; debe su nombre a la estrella ρ Ophiuchi, ubicada a tres grados al norte de Antares (estrella amarilla), en la constelación de Ofiuco. Es una de las regiones de la formación estelar más cercanas en el Sistema solar; se encuentra a tan sólo 130 parsecs (420 años luz).

La vía láctea: El nacimiento de las estrellasNube molecular - EcuRed

Nebulosas Moleculares Gigantes : Blog de Emilio Silvera V.Nebulosas moleculares gigantes - Ciencia y educación en Taringa!Lo que esconden las nubes de Orión

Los astrónomos tienen localizadas una buena variedad de Nubes Moleculares Gigantes. Son Nubes masivas de gas y polvo interestelar compuesto fundamentalmente por moléculas. Su diámetro típico es de más de 100 años-luz y las masas varían entre unos pocos cientos de miles hasta diez millones de masas solares. Las NMGs (Nebulosas moleculares gigantes) consisten mayoritariamente  en moléculas de Hidrógeno (H2, 73% en masa), átomos de Helio (He, 25%), partículas de polvo 1%, Hidrógeno atómico neutro (H I, menos del 1%) y un rico cóctel de moléculas interestelares (menos  del 0,1 %).

http://4.bp.blogspot.com/-_-GM3dYLW1c/UUnJUPRQPuI/AAAAAAAAMII/-egqkBd1Do8/s1600/m42_wittich_960.jpg

Arriba podemos contemplar la grandiosa Nebulosa Molecular Orión. Nuestra Galaxia contiene más de 3 000 NMGs, estando las más masivas situadas cerca de la radiofuente Sagitario B2 en el Centro Galáctico. Comprenden la mitad de la masa de toda la materia interestelar, aunque ocupan menos del 1% de su volumen. La densidad de gas promedio es de unas pocas miles de moléculas por cm3.

Las Nebulosas Moleculares Gigantes se encuentran mayoritariamente en los Brazos Espirales de las galaxias de disco,  y son el lugar de mayor nacimiento de estrellas masivas. Este tipo de Nebulosas perduran durante más de 30 millones de años, tiempo durante el cual, sólo una pequeña fracción de su masa es convertida en estrellas. La Nebulosa Molecular Gigante más próxima a nosotros se encuentra en Orión, y está asociada a la Nebulosa de Orión que más arriba podéis ver con sus claros y llamativos colores rojo, azulado y el espeso marrón oscuro molecular, todo ello, adornado por estrellas que brillan ionizando extensas regiones con sus potentes radiaciones ultravioletas.

Arriba una  de  NGC 7822 que se asemeja a una gran boca abierta llena de estrellas nuevas. Dentro de la nebulosa, bordes brillantes y formas oscuras se destacan en este paisaje colorido. Oxígeno atómico, hidrógeno y azufre en tonos azul, verde y rojo. Aquí se forman estrellas de manera continuada y van transformando el lugar con los fuertes vientos solares y la radiación de estrellas masivas. Con un diametro de 60 años-luz, la Nebulosa perdura en el espacio interestelar como si de un laboratorio natural se tratara, creando nuevos objetos y transformando la materia. Ahí se mezclan los gases Hidrógeno, Helio, Carbono, Nitrógeno, Oxígeno y otras pequeñas porciones de otros elementos que, forman moléculas que, a veces, alcanzar el nivel necesario para convertirse en los ladrillos necesarios para la vida.

http://www.caelumobservatory.com/mlsc/sh2136.jpg

Hermosa Nube Molecular en la Constelación de Cefeo donde ya se han creado cientos de miles de estrellas. Las Nebulosas son el producto residual de las estrellas gigantes y masivas cuando llegan al final de sus vidas y explotan en Súper-Novas, las capas exteriores de la estrella salen eyectadas hacia el espacio interestelar para formar la Nebulosa mientras que, la parte principal de la masa, implosiona, es decir, se contrae sobre sí misma bajo el peso de su propia masa para formar una estrella de neutrones o un agujero negro.

Descubren más de 300 discos protoplanetarios en las nubes de Orión - El  IndependienteSinc

               Más de 300 discos proto-planetarios – sistemas planetarios en formación

Nebulosas : Blog de Emilio Silvera V.Astrónomos encuentran moléculas de azúcar alrededor de una estrella joven  similar al Sol | SinEmbargo MX

Descubren objetos de masa planetaria en Orión. Particularmente interesantes son las moléculas orgánicas que se encuentran de manera generalizada en las nubes interestelares densas de nuestra Vía Láctea. Alcoholes, éteres, e incluso algún azúcar simple (como el glicoaldehído) poseen abundancias significativas en tales nubes. La detección de la glicina, un aminoácido simple,  en el espacio interestelar se viene intentando desde hace varios años. Pero aunque se tienen indicios muy positivos sobre su presencia en el espacio -algunos meteoritos la tienen presente-, su detección todavía ha de ser confirmada de manera inequívoca. La posibilidad de que existan aminoácidos en el espacio puede tener consecuencias de gran importancia para nuestra comprensión del origen de la vida. Aminoácidos simples, como la glicina, son los ladrillos con los se construyen las cadenas de proteínas y éstas, a su vez, son los constituyentes del ADN.

Membrana plasmática

… Y surgieron las membranas plasmáticas que…

Lo cierto es que es una maravilla que a partir de esa materia “inerte” la Naturaleza haga posible que evolucione hasta los pensamientos al llegar a formarse el protoplasma vivo que dará lugar a células replicantes que con el paso de miles millones de años se conforman en cerebros generadores de ideas y de consciencia. Y, a todo esto, el Carbono es el elemento que hace todo eso posible. No podemos olvidar la importancia que tiene el Carbono para la presencia de la Vida en nuestro planeta y, seguramente, en otros muchos también, y, ese elemento está abundantemente presente en esas Nebulosas moleculares gigantes.

Moléculas De Red Molecular De Dna De Seres Vivos Stock de ilustración -  Ilustración de brillante, extracto: 185885322ENP_No7_Biología_curso_2017-2018: Practica No. 2 Las moléculas de la vida  Biología IV Mtra. Biciego

Sólo por esto ya deberíamos asombrarnos por sus extraordinarias características. Pero esta es sólo una cara de las muchas que tiene este elemento fundamental de la tabla periódica. Dependiendo de cómo se distribuyan los átomos y formen diferentes estructuras, obtendremos resultados portentosos en cuanto a las peculiaridades que presenta el material. Si lo sometemos a enormes presiones y altas temperaturas, conseguimos diamantes. Si los átomos se unen en láminas planas, formando un panal de abejas hexagonal con un átomo en cada vértice y si colocamos muchos panales unos sobre otros, se tiene grafito (su uso más popular son las minas de los lápices).
El espacio está lleno de buckyesferas
Las buckyesferas, también conocidas como fullerenos, son moléculas con forma de balón de fútbol formadas por 60 átomos de carbono unidos. Y el espacio está lleno de ellas. Así lo han determinado los astrónomos mediante el Telescopio Espacial Spitzer de la NASA. Se han localizado estas pequeñas esferas de carbono por toda la Vía Láctea. Spitzer también detectó bucky-esferas alrededor de una cuarta estrella moribunda, conocidas como nebulosas planetarias, y en cantidades ingentes (el equivalente en masa a 15 lunas como la nuestra).
Un algoritmo matemático simplifica el control de los fullerenos cargados
Fullereno - Wikipedia, la enciclopedia libreEl Grafeno: propiedades, características y aplicaciones | Blog SEASGrafeno by lisandro.orellano on emaze

Como decíamos antes si se enrolla una porción de una de esas láminas en forma de esfera, como un balón de fútbol, se producen fullerenos, unas moléculas de tan gran interés que a sus descubridores se les concedió el Nobel de Química del año 1996. Finalmente, si se enrolla una lámina de esas en forma de cilindro, lo que obtenemos son los famosos nanotubos de carbono.  El grafeno sería una de esas láminas extendida, con un espesor de sólo un átomo, siendo casi bidimensional, como una hoja de papel infinitamente delgada y de una dureza inimaginable en contraste con su densidad.

La nanotecnología puede servir de fuente de energía limpia después de los últimos adelantos científicos. El novedoso procedimiento de generación energética verde llega a producir baterías diez veces más pequeñas que las conocidas. El avance ha venido de la mano de un grupo de científicos de la Universidad del Instituto Tecnológico de Massachusetts, el famoso MIT. Gracias al uso de la nanotecnología, los científicos tienen al alcance reducir el universo diminuto de las baterías que hacen funcionar los equipos electrónicos. El método consiste en un  de nanotubos o cables de  carbón que, envueltos en una pátina de combustible, canalizan ondas termoeléctricas, útiles abastecer de energía a  electrónicos como los ordenadores o los teléfonos móviles.

Otra vez, como siempre me pasa, me desvío del tema principal, se ha cruzado una idea por mi mente y la sigo sin que caiga en la cuenta de que estaba en otros menesteres. A veces, cuando ocurren cosas así, uno se da cuenta de que muchas son las cosas que están relacionadas y, esas conexiones te llevan de lugar a otro sin sentir.

Aquí tenemos la Nube molecular de Orión que es como un motor precursor de la Vida. En un lugar llamado Universitán he podido leer que:

Descubierto un cúmulo camuflado entre la Tierra y la nebulosa de Orión

“La Nebulosa de Orión, también conocida como M42, es una de las nebulosas más brillantes y más famosos en el cielo. La de estrellas brillantes, nubes de gas y una región de estrellas jóvenes y calientes están en la foto izquierda en este mosaico marco de fuerte colorido, que incluye a la nebulosa M43 cerca del centro de la polvorienta y azulada nebulosa de reflexión NGC 1977. Situado en el borde de una gigantesca e invisible nube molecular compleja, los astrónomos han identificado lo que parecen ser numerosos sistemas solares bebé.

La imagen más profunda y completa de la nebulosa Orión | Ciencia Home | EL  MUNDOM42 Nebulosa de Orión | portalastronomico.com

Orión es un zoológico cósmico, con discos protoplanetarios, enanas marrones, movimientos intensos y turbulentos de gas, y los efecto de foto-ionización de estrellas masivas cercanas, así como “balas” supersónicas  -diez veces el diámetro de la órbita de Plutón y con átomos de hierro al rojo vivo de color azul brillante, que se cree que se han formado hace unos mil años de un hecho violento desconocido.

Más de 13 millones de años por lo menos en uno de los ámbitos de la vida pudo haber comenzado en nubes nebulares. Si se restringe a la Vía Láctea, que es de 13,6 mil millones de años, las combinaciones químicas primero habrían pasado miles de millones de años para convertirse en un organismo auto-replicante, con un genoma de ADN mucho antes de la existencia de la Tierra.”

El Universo nunca dejará de asombrarnos.

emilio silvera

¿Las estrellas? ¡Sin ellas no estaríamos aquí!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

La región de formación estelar S106

 

Es cierto que cuando vemos las cosas con cierta asiduidad y de forma permanente, esa cotidianidad nos hace perder la perspectiva y no pensamos en lo que realmente esas cosas pueden ser y, con las estrellas nos ocurre algo similar, ya que son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

 

 

fotos

 

Muchos son los ejemplos de estrellas masivas (más de 100 masas solares) que, para no morir, eyectan material al espacio interestelar y siguen viviendo.

Estrellas masivas que expulsan gases, ya que, cuando la masa es muy grande, su propia radiación las puede destruir y, de esta manera, descongestionan la tensión y evitan un final anticipado. Arriba tenéis una estrella super-masiva que ha expulsado gases formando una nebulosa para evitar su muerte, Eta Carinae ha hecho lo mismo. Estas son estrellas que están congestionadas y, sólo la expulsión de material la puede aliviar y conseguir que siga brillando como estrella evitando explotar como supernova.

Se calcula que la masa máxima de una estrella es de unas 120 masas solares, por encima de la cual sería destruida por su propia radiación. La masa mínima es de 0,08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno, y se convertirían en enanas marrones.

 

 

De la misma forma que al calentar una pieza de metal cambia de color, al principio rojo, luego amarillo hasta llegar al blanco, el color de una estrella varia según su temperatura superficial. Las estrellas más frías son las rojas, y las mas calientes las azules. Estos colores suelen percibirse a simple vista, como por ejemplo Antares (la estrella principal de Scorpius) que es de color rojo, o Rigel (en Orión) de color azul. En astronomía se utiliza la escala Kelvin para indicar temperaturas, donde el cero absoluto es -273 grados Celsius.

 

 

 

El diagrama de Hertzsprung-Russell proporcionó a los astrónomos un registro congelado de la evolución de las estrellas, el equivalente astrofísico del registro fósil que los geólogos estudian en los estratos rocosos. Presumiblemente, las estrellas evolucionan de algún modo, pasan la mayor parte de su tiempo en la serie principal (la mayoría de las estrellas en la actualidad, en el brevísimo tiempo que tenemos para observar, se encuentran allí), pero empiezan y terminan su vida en alguna otra parte, entre las ramas o en el mantillo. Por supuesto, no podemos esperar para ver que esto sucede, pues el tiempo de vida, aún de estrellas de vida corta, se mide en millones de años. Hallar la respuesta exigirá conocer la física del funcionamiento estelar.

El progreso en física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como la Barrera de Coulomb, y por un tiempo frustró los esfuerzos de los físicos teóricos para comprender cómo la fusión nuclear podía producir energía en las estrellas.

 

Coulomb Barrier for Nuclear FusionLas estrellas? Sin ellas no estaríamos aquí : Blog de Emilio Silvera V.

 

“La barrera de Coulomb, denominado a partir de la ley de Coulomb, nombrada así del físico Charles-Augustin de Coulomb (1736–1806), es la barrera de energía debida a la interacción electrostática que el núcleo atómico debe superar para experimentar una reacción nuclear. Esta barrera de energía es proporcionada por la energía potencial electrostática:

 

U_{coul} = k {{q_1\,q_2} \over r}={1 \over {4 \pi \e<a href=

donde:

k  es la constante de Coulomb = 8.9876×109 N m² C−2;
ε0  es la permeabilidad en el vacío;
q1q2  son las cargas de las partículas que interactúan;
r  es el radio de interacción.”

Un valor positivo de U es debido a una fuerza de repulsión, así que las partículas que interactúan están a mayores niveles de energía cuando se acercan. Un valor negativo de la energía potencial U indica un estado de ligadura, debido a una fuerza atractiva. La línea de razonamiento que conducía a esta barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de hidrógeno consiste en un sólo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford explicados aquí en otra ocasión). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno.

 

Ráfagas de partículas subatómicas disparadas desde el sistema estelar de  Eta Carinae y capaces de alcanzar la Tierra | Noticias de la Ciencia y la  Tecnología (Amazings® / NCYT®)Cadena protón-protón - Proton–proton chain - qaz.wiki

 

 

(Recordemos que la masa es igual a la Energía: E = mc2. (En el calor de una estrella los protones son esparcidos a altas velocidades -el calor significa que las partículas involucradas se mueven rápidamente- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben de tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. esta era la base de conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra cosa que energía subatómica, la cual, como se sabe, existe en abundancia en toda la materia”.

 

Las estrellas! : Blog de Emilio Silvera V.

 

 

Fusión de deuterio con tritio,  por la cual se producen helio 4,   se liberan un neutrón y se generan 17,59 MeV de energía, como cantidad de masa apropiada convertida de la energía cinética de los productos, según la fórmula E = Δm c2.

Hasta ese punto, todo iba bien, la ciencia estaba cerca de identificar la fusión termonuclear como el secreto de la energía solar. Pero aquí era donde intervenía la Barrera de Coulomb. Los protones están cargados positivamente; las partículas de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande  para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del centro de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromágnéticos y fundirse en un sólo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con su rostro radiante y sonriente al ver el esfuerzo y las ecuaciones que decían que no podía brillar.

tunnel

Dejemos aquí este proceso y digamos que, realmente, la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando la atravesará. Este es el “Efecto Túnel Cuántico”; que permite brillar a las estrellas. George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb, o casi. El efecto túnel cuántico se hizo cargo de los cálculos de la desalentadora predicción clásica, que establecía la fusión de los protones a sólo una milésima de la tasa necesaria para explicar la energía liberada por el Sol, y la elevó a una décima de la tasa necesaria. Luego se tardó menos de un año para dar cuenta del deficít restante: la solución fue completada en 1929, cuando Robert Atkinson y Fritz Houterman combinaron los hallazgos de Gamow con lo que se ha llamado teoría maxwelliana de la distribución de velocidades. En la distribución maxwelliana hay siempre unas pocas partículas que se mueven mucho más rápidamente que la media y, Robert Atkinson y Fritz Houterman hallaron que estas pocas part