martes, 19 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Física! ¿Qué sería de nosotros sin ella?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Incluso las frecuencias de onda cerebrales están estrechamente relacionadas con la actividad fisiológica de nuestro organismo. Esto es algo indudable, puesto que todo lo que conocemos en el mundo físico está compuesto por átomos que vibran a determinadas frecuencias. En las últimas décadas, la física cuántica nos ha revelado información muy importante acerca de nuestra realidad. Fue Richard Feynman el que dijo en cierta ocasión que si tuviera que elegir en una frase el descubrimiento más importante de la Ciencia moderna, elegiría:

El mundo está hecho de átomos”

 

Todo lo que nos rodea es materiaConstruir moléculas "imposibles" átomo a átomo - INVDESLas primeras moléculas en el universo | El Semanario Sin LímitesEstudian el efecto de moléculas naturales en la conciencia humana

 

Átomos y moléculas que se constituyen en la materia que todo lo conforma… ¡También nosotros!

 

 

Muchas son las veces que aquí nos hemos referido a que, 500 años antes de Cristo, ya algunos hablaban de ese hecho cierto de que “el mundo estaba hecho de átomos”. Los filósofos de la Naturaleza (como los llamaban entonces), Leucipo de Mileto y su alumno, Demócrito de Abdera, fueron los encargados de divulgar ese increíble hecho que, según ellos decían: “Todas las cosas estaban hechas de unos objetos invisibles e indivisibles, la parte más pequeña de la materia que llamaban a-tomo o átomos. Aquella historia viene de mucho más lejos y, esos filósofos griegos tomaron prestadas las ideas de los pensadores hindúes que mucho antes que ellos hablaban de átomos y de vacío. Otro filósofo de la Naturaleza, Empédocles, nos decía:

Empedocles de Agrigento, filósofo presocrático  de la antigua Grecia.  Imagen procedente de Thomas Stanley  (1655), The history of philosophy.

“Pues yo he sido a veces un muchacho y una chica,

Un matorral y un pájaro y un pez en las olas saladas.”

 

Tema 2: El origen de la vida. - ppt descargar

 

Esto nos decía Empédocles, el padre de aquellos primitivos elementos formados por Agua, tierra, aire y fuego que, mezclados en la debida proporción, formaban todas las cosas que podemos ver a nuestro alrededor. Claro que, él no podía llegar a imaginar hasta donde pudimos llegar después en la comprensión de la materia a partir del descubrimiento de las partículas “elementales” que formaban el átomo. Pero sí, con sus palabras, nos quería decir que, la materia, una veces está conformando mundos y, en otras, estrellas y galaxias.

Sí, hay cosas malas y buenas  pero todas deben ser conocidas para poder, en el primer caso aprovecharlas, y en el segundo, prevenirlas.

Pero demos un salto en el tiempo y viajemos hasta los albores del siglo XX cuando se hacía cada vez más evidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años después del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de enormes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más sobre los átomos y las estrellas.

   Conseguimos tener los átomos en nuestras manos y, aunque la imagen sea simbólica, nos muestra una realidad, toda vez que, en este mismo instante podemos construir “cosas” átomo a átomo. Hemos llegado a un nivel de manipulación de la materia que ni podíamos imaginar hasta hace tan sólo un siglo. Si aquellos Filósofos Naturales levantarán la cabeza…

Nanotecnología - Wikipedia, la enciclopedia libre

El intento de lograr tal comprensión exigió una colaboración cada vez mayor entre los astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a  resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelaza en la historia atómica y la estelar. En todos estos fenómenos y secretos que nos ocultan la Naturaleza, la Luz está presente y, en el futuro tendrá mucho que decirnos cuando de verdad, la podamos conocer.

Átomo En Manos En Fondo Oscuro Imagen de archivo - Imagen de mezclado,  digital: 115888177Universo en manos - Meme subido por DruizC :) Memedroid

                             ¿Dónde estará el límite? Parece que no hay límites si el Tiempo es ilimitado

La Clave: Fue comprender la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radio-ctividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”).

La soledad es la suerte del espíritu excelenteCulturally dosed: How the Atomic Era shaped our stories

El Premio Nobel de Física de 1903 fue compartido por Henri Becquerel, Pierre Curie y Marie Curie (Fuente).

Pero no se quedó ahí. En 1911 ganó un segundo Premio Nobel, esta vez de Química y en solitario,

“En 1902, miembros de la Academia de Ciencias de Francia escribieron una carta a la Academia Sueca para presentar los descubrimientos en el campo de la radiactividad realizados por Marie y Pierre Curie, así como por Henri Becquerel, para el Premio Nobel de Física. Sin embargo, debido a las actitudes sexistas que prevalecían en la época, no se ofreció ningún tipo de reconocimiento a las contribuciones de Marie.”
Como decimos más arriba, finalmente, la Academia Sueca reconoció, por dos veces, el mérito de Marie
Curie.
Qué es la radioactividad y por qué entraña riesgos? — Cuaderno de Cultura  Científica

La Clave: Fue comprender la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radio-ctividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”).

Aporte colombiano a la comprensión de los quarks - UNIMEDIOS: Universidad  Nacional de Colombia

El átomo de Demócrito era mucho más de lo que él, en un principio intuyó que sería. Hoy sabemos que está conformado por diversas partículas de familias diferentes: unas son bariones que en el seno del átomo llamamos nucleones, otras son leptones que giran alrededor del núcleo para darle estabilidad de cargas, y, otras, de la familia de los Quarks, construyen los bariones del núcleo y, todo ello, está, además, vigilado por otras partículas llamadas bosones intermedios de la fuerza nuclear fuerte, los Gluones que, procuran mantener confinados a los Quarks.

Pero no corramos tanto, la física atómica aún debería recorrer un largo camino para llegar a comprender la estructura que acabamos de reseñar. De los trs principales componentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear” pues ni siquiera se había demostrado la existencia de un núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados, respectivamente, por Thomson en 1913 y James Chawick en 1932.

El experimento de Rutherford inauguró en 1909 la era moderna de la física –  Semillero científico Ceprecyt, STEM desde 1992El experimento de la lámina de oro de Rutherford | Química | Khan Academy  en Español - YouTube

Rutherford era uno de esos individuos poco corrientes que hizo su más importante contribución a la ciencia, él con su experimento al bombardear una plaxa de oro con partículas alfas, descubrió la existencia de un núcleo dentro del átomo y que era 1/100.000 veces menor que éste. Ganó el Nobel de Física por ello.

De importancia capital resultó conocer la existencia del núcleo y que éste, era 1/100.000 del total del átomo, es decir, casi todo el átomo estaba compuesto de espacios “vacíos” y, la materia así considerada, era una fracción infintesimal del total atómico.

Partícula alfa - Wikipedia, la enciclopedia librePartícula alfa - Wikipedia, la enciclopedia libreRadioactivity

Rutherford, Hans Geiger y Ernest Marsden se encontraban entre los “Estrabones y Tolomeos” de la cartografía atómica, en Manchester , de 1909 a 1911, sondearon el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de partículas Alfa se escapaban a través de las laminillas, pero, para sombro de los experimentadores, algunas rebotaban hacia atrás. Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase sobre un pañuelo de papel. Finalmente, en una cena en su casa en 1911, anunció a unos pocos amigos que había dado con una explicación: que la mayoría de la masa de un átomo reside en un diminuto núcleo masivo. Ruthertford pudo calcular la carga y el diámetro máximo del núcleo atómico. Así se supo que los elementos pesados eran más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.

Todos sabemos ahora, la función que desarrollan los electrones en el átomo. Pero el ámbito de los electrones para poder llegar a la comprensión completa, tuvo que ser explorado, entre otros, por el físico danés Niels Bohr, quien demostró que ocupaban órbitas, o capas, discretas que rodean al núcleo. (Durante un tiempo Bohr consideró el átomo como un diminuto sistema solar, pero ese análisis, pronto demostró ser inadecuado; el átomo no está rígido por la mecánica newtoniana sino por la mecánica cuántica.)

Entre sus muchos otros éxitos, el modelo de Bohr revelaba la base física de la espectroscopia. El número de electrones de un átomo está determinado por la carga eléctrica del núcleo, la que a su vez se debe al número de protones del núcleo, que es la clave de la identidad química del átomo. Cuando un electrón cae  de una órbita externa a una órbita interior emite un fotón. La longitud de onda de este fotón está determinada por las órbitas particulares entre las que el electrón efectúa la transición.

Espectroscopia - Wikipedia, la enciclopedia libreAstrodomi

Esta es la razón de que un espectro que registra las longitudes de onda de los fotones, revele los elementos químicos que forman las estrellas u otros objetos que sean estudiados por el espectroscopista. En palabras de Max Planck, el fundador de la física cuántica, el modelo de Bohr del átomo nos proporciona “la llave largamente buscada de la puerta de entrada al maravilloso mundo de la espectroscopia, que desde el descubrimiento del análisis espectral (por Fraunhoufer) había desafiado obstinadamente todos los intentos de conocerlo”.

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

Es un gran triunfo del ingenio humano el saber de qué, están “construidas” las estrellas, de qué materiales están hechas. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.

Joseph von Fraunhofer - Wikipedia, la enciclopedia librea) Arriba, absorción de Fraunhofer; abajo, serie de Balmer; centro,... |  Download Scientific Diagram

       Joseph von Fraunhofer – 

Pero, por maravilloso que nos pueda parecer el haber llegado a la comprensión de que los espectros revelan saltos y tumbos de los electrones en sus órbitas de Bohr, aún nadie podía hallar en los espectros de las estrellas las claves significativas sobre lo que las hace brillar. En ausencia de una teoría convincente, se abandonó este campo a los taxonomistas, a los que seguían obstinadamente registrando y catalogando espectros de estrellas, aunque no sabían hacia donde los conduciría esto.

Henrietta Leavitt, How She Loved the 'Clouds' | Inside Adams: Science,  Technology & BusinessCon un ojo en el cielo y otro en la tierra: astronomía campesina y Henrietta  Leavitt -

                No recibieron el reconocimiento del mérito que tenía su trabajo

En el Laboratorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban delante de “calculadoras”, mujeres solteras en su mayoría y, de entre ellas, Henrietta Leavitt, la investigadora pionera de las estrellas variables Cefeidas que tan útiles serían a Shapley y Hubble.

Imagen de Sirio A, la estrella más brillante del cielo tomada por el Telescopio Hubble  (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.

Los colores de las estrellas y por qué no vemos estrellas verdes |  portalastronomico.comEl papel de las mujeres en la clasificación espectral de las estrellas:  Annie J. Cannon – Astrofísica con sal y pimienta

Fue Cannon quien, en 1915, empezó a discernir la forma en una totalidad de estrellas en las que estaba presente la diversidad, cuando descubrió que en una mayoría, las estrellas, pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación, ahora generalizado en la astronomía estelar, ordena los espectros por el color, desde las estrellas O blanco-azuladas, pasando por las estrellas G amarillas como el Sol, hasta estrellas rojas M. Era un rasgo de simplicidad denajo de la asombrosa variedad de las estrellas.

Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacta danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiamado cuando recorre con el telecopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta un amarillo apagado.

Las Híades

Hertzsprung utilizó los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell.

Clasificación estelar | Astropedia | Fandom

El progreso en física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como barrera de Coulomb, y por un tiempo frustró los esfuerzos de las físicos teóricos para comprender como la fusión nuclear podía producir energía en las estrellas.

La línea de razonamiento que conducía a esa barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. (Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de Hidrógeno consiste en un solo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno. (Recordemos que la masa es igual a la energía: E = mc2.) En el calor de una estrella, los protones son esparcidos a altas velocidades -el calor intenso significa que las partículas involucradas se mueven a enormes velocidades- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. Esta era la base de la conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra que la energía subatómica, la cual, como se sabe, existe en abundancia en toda materia”.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

                                              Plasma en ebullición en la superficie del Sol

Hasta el momento todo lo que hemos repasado está bien pero, ¿Que pasa con la Barrera de Coulomb? Los protones están cargados positivamente; las partículas de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del interior de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromagnéticos y fundirse en un solo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con el rostro radiante, riéndose de las ecuaciones que afirmaban que no podía brillar.

Reflexión y “tunelado” de un electrón dirigido hacia una barrera de potencial. El punto resplandeciente moviéndose de derecha a izquierda es la sección reflejada del paquete de onda. Un vislumbre puede observarse a la derecha de la barrera. Esta pequeña fracción del paquete de onda atraviesa el túnel de una forma imposible para los sistemas clásicos. También es notable la interferencia de los contornos entre las ondas de emisión y de reflexión.

Afortunadamente, en el ámbito nuclear, las reglas de la Naturaleza no se rigen por las de la mecánica de la física clásica, que tienen validez para grandes objetos, como guijarros y planetas, pero pierden esa validez en el reino de lo muy pequeño. En la escala nuclear, rigen las reglas de la indeterminación cuántica.  La mecánica cuántica demuestra que el futuro del protón sólo puede predecirse en términos de probabilidades: la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando, la atravesará. Este es el “efecto túnel cuántico”; que permite brillar a las estrellas.

2018 marzo 11 : Blog de Emilio Silvera V.

George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb. Esta historia es mucho más extensa y nos llevaría hasta los trabajos de Hans Bethe, Edward Teller y otros, así como, al famoso Fred Hoyle y su efecto Triple Alfa y otras maravillas que, nos cuentan la historia que existe desde los átomos a las estrellas del cielo.

Una cuestión que no debemos olvidar nunca es que la simetría subyace en las leyes del Universo. Muchos han sido los cambios que en los últimos tiempos se han producido en la disciplina científica de la física y otras áreas del saber humano. Sin embargo, en todos ellos, en todos esos cambios ha estado siempre presente una característica esencia: La Simetría que es aquella propiedad que permanece invariable a pesar de los cambios. Los físicos fijándose en esa simetría han podido descubrir cuestiones importantes que permanecían profundamente escondidas en las entrañas de la Naturaleza.

Los que hemos trillado el camino de la Física y de la Astronomía, hemos podido llegar a comprender la importancia de la simetría en la comprensión del “mundo” (una manera en la que los victorianos expresaban su parecer sobre el universo). En todos los aspectos misteriosos y sutiles que encontramos en la naturaleza, la simetría nos arroja una luz sobre ellos que hace posible que lleguemos a comprender lo que antes no entendíamos. Muchos Físicos como Einstein, por ejemplo, con la Simetría en su cabeza llegó a comprender “su mundo” y se dio cuenta de qué cosas en el Universo no cambian a pesar de todo.

Índice de las eras del Universo

 

 

NASA-HS201427a-HubbleUltraDeepField2014-20140603.jpgTema 1. El origen del universo. El sistema solar.

El Universo no msiempre fue como en el Presente lo podemos observar, y pasó, por distintas eras

No hace mucho hemos hablado aquí de las eras por las que pasó el Universo primitivo hasta que, al enfriarse, se pudo estabilizar y hacerse mayor, es decir, el Universo que hoy conocemos y en los que están presentes una serie de simetrías o constantes que lo hacen reconocible para nosotros. Una de esas constantes, como tantas veces hemos podido referir aquí, es la de la Luz. El amigo Einstein supo “ver” que aquella simetría luminosa hecha de fotones, era invariable y, sin importar cual fuere la fuente ni a que velocidad pudiera moverse ésta o incluso estar parada, la luz, sin importarle nada de todo eso, seguía su camino a la misma velocidad siempre, es decir, a 299.972.458 metros por segundo cuando corría por el vacío interestelar, y, nada podría nunca sobrepasar de esa velocidad que era una constante de la Naturaleza.

Experimento CMS del LHC. / CERN</p>
<p>” width=”572″ height=”380″ /></p>
<p style=Hemos tenido que construir máquinas inmensas para poder comprobar los efectos que se producen en un cuerpo cuando éste quiere ir más rápido que la luz. Lo predijo la teoría de la relatividad especial de Einstein y se ha comprobado despuès en los aceleradores de partículas: Nada va más rápido que la luz en nuestro Universo.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

La única respuesta que podemos dar hoy es que así es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacío es una muestra.

Por qué nada puede superar la velocidad de la luz?

Nada puede superar la velocidad de la luz en el vacío

La teoría de la relatividad. Albert Einstein |

Contracción de la longitud del objeto que viaja a velocidad relativista

Dilatación del Tiempo/length contraction

Dilatación del Tiempo del que viaja a velocidad relativista

Velocidad de deformación GIF - Descargar & Compartir en PHONEKYFísica Relativista : Blog de Emilio Silvera V.

Haces de muones lanzados en el LHC a velocidades cercanas a c (la velocidad de la luz en el vacío), aumentaron diez veces sus masas. Al ser la velocidad de la Luz en el vacío un límite impuesto por el Universo, cuando el objeto se acerca a esa velocidad se va frenando y, la energía cinética se convierte en masa en virtud de E=mc.

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio. A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad.

Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

Vivir bajo el marLas insólitas casas que te permiten vivir bajo el mar - BBC News Mundo

En el futuro, grandes estaciones sumergidas en el océano y ciudades en otros mundos rodeadas de campos de fuerza que impedirán la radiación nociva mientras tanto se va consiguiendo terra-formar el planeta. La tecnología habrá avanzado tanto que nada de lo que hoy podamos imaginar estará fuera de nuestro alcance y, viajar a mundos situados a decenas de años-luz de la Tierra será para entonces, lo cotidiano

Eso es lo que imaginamos pero… ¿Qué maravillas tendremos dentro de 150 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Qué planetas habremos colonizado? ¿Habrá sucedido ya ese primer contacto del que tanto hablamos? ¿Cuántas “Tierras” habrán sido encontradas? ¿Qué ordenadores utilizaremos? ¿Será un hecho cotidiano el viaje espacial tripulado? ¿Estaremos explotando las reservas energéticas de Titán? ¿Qué habrá pasado con la Teoría de Cuerdas? Y, ¿Habrán aparecido las dichosas teorías de la Gravedad – Cuántica, las Súper-Cuerdas, o, el enigma de la “materia oscura” Haciendo todas estas preguntas de lo que será o podrá ser, nos viene a la memoria todo lo que fue y que nos posibilita hacer estas preguntas.

http://4.bp.blogspot.com/_4FNQ5M5FnsQ/TNB34uRv8UI/AAAAAAAAACY/rF-VVLCpPfc/s1600/ciencias1.jpg

Una cosa nos debe quedar bien clara, nada dentro de 250 años será lo mismo que ahora. Todo habrá cambiado en los distintos ámbitos de nuestras vidas y, a excepción del Amor y los sentimientos que sentiremos de la misma manera (creo), todo lo demás, habrá dado lugar a nuevas situaciones, nuevas formas de vida, nuevas sociedades, nuevas maneras y, podríamos decir que una Humanidad nueva, con otra visión y otras perspectivas.

Las leyes físicas! A veces sorprendentes : Blog de Emilio Silvera V.Ilustración De Líneas Abstractas Foto de stock y más banco de imágenes de  Abstracto - iStocklínea figura fondo luz-arte diseño abstracto fondo de pantalla Avance |  10wallpaper.comRelatiovidad Especial : Blog de Emilio Silvera V.

                                  Nuevas maneras de sondear la Naturaleza y desvelar los secretos

Pero echemos una mirada al pasado. Dejando a un lado a los primeros pensadores y filósofos, como Tales, Demócrito, Empédocles, Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:

AULA PARA EL DESARROLLO DE CAPACIDADES: ¿ASTRÓNOMOS Y ASTRÓNOMAS?Ptolomeo, coprnico, tycho, kepler y galileo astronomía del renacimien…

Nuestra Física actual está regida y dominada por dos explosiones cegadoras ocurridas en el pasado: Una fue aquel artículo de 8 páginas que escribiera Max Planck, en ese corto trabajo dejó sentados los parámetros que rigen la Ley de la distribución de la energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de en una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.

Cuál es la ecuación matemática más hermosa del mundo? - BBC News MundoRelatividad General cumple 100 años | Conexión causal

ecuacion euler - Buscar con Google | MatheProponen nuevo enfoque de Ecuación de Euler | Boletín BoCES

Para los entendidos tienen una gran belleza que, con tan pocos signos, puedan decir tanto. El neófito, la mira asombrado y nada entiende de un lenguaje que, según dicen es el que utilizan los físicos cuando la explicación no se puede dar con palabras.

Un amigo físico me decía: cuando escribo un libro, procuro no poner ecuaciones, cada una de ellas me quita diez lectores. Siguiendo el ejemplo, procuro hacer lo mismo (aunque no siempre es posible) pero, en esta ocasión dejaremos el desarrollo de la energía de Planck del que tantas veces se habló aquí, y, ponernos ahora a dilucidar ecuaciones no parece lo más entretenido, aunque el lenguaje de la ciencia, no pocas veces es el de los números.

En cualquier evento de Ciencia, ahí aparecen esos galimatías de los números y letras que pocos pueden comprender, dicen que es el lenguaje que se debe utilizar cuando las palabras no pueden expresar lo que se quiere decir. Y, lo cierto es que, así resulta ser.

Teoría cuántica | Radiación del cuerpo negro - YouTubeRadiación del Cuerpo Negro Obs Max Karl Ernst Ludwig Planck Berlin  University Berlin, Germany b d Radiación del cuerpo negro. Cuando. - ppt  descargar

Después de lo de Planck y su radiación de cuerpo negro, cinco años más tarde, irrumpió en escena otra  revolución de la Física se produjo en 1.905, cuando Albert relatividad/Einstein con su relatividad/relatividad especial nos dio un golpecito  en nuestras cabezas para despertar en ellas nuestra comprensión de las leyes que gobiernan el Universo.

Nos dijo que la velocidad de la luz es la máxima alcanzable en nuestro universo, que la masa y la energía son la misma cosa, que si se viaja a velocidades cercanas a la de la luz, el tiempo se ralentiza pero, el cuerpo aumentará su masa y se contraerá en el sentido de la misma…Y, todo eso, ha sido una y mil veces comprobado. Sin embargo, muchas son las pruebas que se realizan para descubrir los fallos de la teoría, veamos una:

Una explosión estelar ilumina una galaxia lejana y desvela su existencia |  Sociedad | EL PAÍSProgenitores de brotes de rayos gamma - Wikiwand

Los científicos que estudian la radiación gamma de una explosión de rayos lejanos han encontrado que la velocidad de la luz no varía con la longitud de onda hasta escalas de distancia por debajo de la relatividad/longitud de Planck. Ellos dicen que esto desfavorece a algunas teorías de la gravedad cuántica que postulan la violación de la invariancia de Lorentz.

La invariancia de Lorentz se estipula que las leyes de la física son las mismas para todos los observadores, independientemente de dónde se encuentren en el universo. relatividad/Einstein utilizó este principio como un postulado de la relatividad/relatividad especial, en el supuesto de que la velocidad de la luz en el vacío, no depende de que se esté midiendo, siempre y cuando la persona esté en un sistema inercial de referencia. En más de 100 años la invariancia de Lorentz nunca ha sido insuficiente.

 http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

El mundo moderno de la física se funda notablemente en dos teorías principales, la relatividad/relatividad general y la mecánica cuántica, aunque ambas teorías parecen contradecirse mutuamente. Los postulados que definen la teoría de la relatividad/relatividad de relatividad/Einstein y la teoría del quantum están incuestionablemente apoyados por rigurosa y repetida evidencia empírica. Sin embargo, ambas se resisten a ser incorporadas dentro de un mismo modelo coherente.

La Teoría de cuerdas nos habla de las vibraciones que éstas emiten y que son partículas cuánticas. En esta teoría, de manera natural, se encuentran las dos teorías más importantes del momento: La Gravedad y la Mecánica cuántica, allí, subyacen las ecuaciones de campo de la teoría de la relatividad de Einstein que, cuando los físicas de las “cuerdas” desarrollan su teoría, aparecen las ecuciones relativista, sin que nadie las llame, como por arte de magia. Y, tal aparición, es para los físicos una buena seña.

Sin embargo, los físicos siguen sometiendo a pruebas cada vez más rigurosas, incluyendo versiones modernas del famoso experimento interferométrico de Michelson y Morley. Esta dedicación a la precisión se explica principalmente por el deseo de los físicos para unir la mecánica cuántica con la relatividad/relatividad general, dado que algunas teorías de la gravedad cuántica (incluyendo la teoría de cuerdas y la gravedad cuántica de bucles) implica que la invariancia Lorentz podría romperse.

Brote de rayos gamma - Wikipedia, la enciclopedia libreBrote de rayos gamma - Wikipedia, la enciclopedia libre

Granot y sus colegas estudiaron la radiación de una explosión de relatividad/rayos gamma (asociada con una explosión de gran energía en una galaxia distante) que fue descubierto por la NASA relatividad/Fermi Gamma-Ray Space Telescope, el 10 de mayo de este año. Se analizó la radiación en diferentes longitudes de onda para ver si había indicios de que los relatividad/fotones con energías diferentes llegaron a los detectores de relatividad/Fermi en diferentes momentos.

Tal difusión de los tiempos de llegada parece indicar que la invariancia Lorentz efectivamente había sido violada, es decir que la velocidad de la luz en el vacío depende de la energía de la luz y no es una constante universal. Cualquier dependencia de la energía sería mínima, pero aún podría resultar en una diferencia mensurable en los tiempos de llegada de relatividad/fotones debido a los miles de millones de años luz de a la que se encuentran las explosiones de relatividad/rayos gamma.

    Cuando nos acercamos a la vida privada del genio… ¡también, como todos, era humano!

De la calidad de relatividad/Einstein como persona nos habla un detalle: Cuando el Presidente Chaim Weizmann de Israel murió en 1952, a relatividad/Einstein se le ofreció la presidencia, pero se negó, diciendo que no tenía “ni la habilidad natural ni la experiancia para tratar con seres humanos.” Luego escribió que se sentía muy honrado por el ofrecimiento del estado de Israel, pero a la vez triste y avergonzado de no poder aceptarla.

Pero sigamos con la segunda revolución de su teoría que se dio en dos pasos: 1905 la teoría de la relatividad/relatividad especial y en 1.915, diez años después, la teoría de la relatividad/relatividad general que varió por completo el concepto del Cosmos y nos llevó a conocer de manera más profunda y exacta la Gravedad de relatividad/Newton.

Cien años de Relatividad General: Fundamentos y Cosmología | Cosmología de  precisión | SciLogs | Investigación y CienciaEspacio-tiempo curvo y los secretos del Universo : Blog de Emilio Silvera V.

      Einstein nos decía que el espacio se curva en presencia de grandes masas

En la Teoría Especial de la Relatividad, relatividad/Einstein se refirió a sistemas de referencias inerciales (no acelerados). Asume que las leyes de la física son idénticas en todos los sistemas de referencia y que la velocidad de la luz en el vacío, c, es constante en el todo el Universo y es independiente de la velocidad del observador.

La teoría desarrolla un sistema de matemáticas con el fin de reconciliar estas afirmaciones en aparente conflicto. Una de las conclusiones de la teoría es que la masa de un cuerpo, aumenta con la velocidad (hay una ecuación que así lo demuestra), y, tal hecho, ha sido sobradamente comprobado en los aceleradores de partículas donde un relatividad/muón, ha aumentado más de diez veces su masa al circular a velocidades cercanas a la de la luz. Y el relatividad/muón que tiene una vida de dos millonésimas de segundo, además, al desplazarse a velocidades relativistas, también ven incrementado el tiempo de sus vidas.

El Acelerador de Partículas LHC es una Obra inmensa que ha construido el SER Humano para saber sobre la Naturaleza de la materia y…

Todos esos impulsos son llevados a procesadores electrónicos de datos a través de cientos de miles de cables. Por último, se hace una grabación en carrete de cinta magnética codificada con ceros y unos. La cinta graba las violentas colisiones de los protones y antiprotones, en las que generan unas setenta partículas que salen disparadas en diferentes direcciones dentro de las varias secciones del detector.

El LHC es un esfuerzo internacional, donde participan alrededor de siete mil físicos de 80 países. Consta de un túnel en forma de anillo, con dimensiones interiores parecidas a las del metro subterráneo de la Ciudad de México, y una circunferencia de 27 kilómetros. Está ubicado entre las fronteras de Francia y Suiza, cerca de la ciudad de Ginebra, a profundidades que van entre los 60 y los 120 metros debido a que una parte se encuentra bajo las montañas del Jura

La ciencia, en especial la física de partículas, gana confianza en sus conclusiones por duplicación; es decir, un experimento en California se confirma mediante un acelerador de un estilo diferente que funciona en Ginebra con otro equipo distinto que incluye, en cada experimento, los controles necesarios y todas las comprobaciones para que puedan confirmar con muchas garantías, el resultado finalmente obtenido. Es un proceso largo y muy complejo, la consecuencia de muchos años de investigación de muchos equipos diferentes.

Relatividad/Einstein también concluyó que si un cuerpo pierde una energía L, su masa disminuye en L/c2. relatividad/Einstein generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con la ecuación m=E/c2 ( o la más popular E=mc2).

Otras de las conclusiones de la teoría de relatividad/Einstein en su modelo especial, está en el hecho de que para quien viaje a velocidades cercanas a c (la velocidad de la luz en el vacío), el tiempo transcurrirá más lento. Dicha afirmación también ha sido experimentalmente comprobada.

Todos estos conceptos, por nuevos y revolucionarios, no fueron aceptados por las buenas y en un primer momento, algunos físicos no estaban preparados para comprender cambios tan radicales que barrían de un plumazo, conceptos largamente arraigados.

http://4.bp.blogspot.com/_zBAdWxgEeX0/R87vhcBGPII/AAAAAAAACI4/MCE-Wi6d2v0/s320/galatomo.jpg

       Todo lo grande está hecho de cosas pequeñas

Fue Max Planck, el Editor de la Revista que publicó el artículo de Albert relatividad/Einstein, quien al leerlo se dió cuenta de la enorme importancia de lo que allí se decía. A partir de aquel momento, se convirtió en su valedor, y, en verdad, relatividad/Einstein, reconoció públicamente tal ayuda.

En la segunda parte de su teoría, la Relatividad General, relatividad/Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y, también la que hace posible la existencia de las Galaxias.

 Image of the sky in the region of the centre of the Milky Way

¡La Gravedad! Siempre está presente e incide en los comportamientos de la materia. La gravedad presente en un agujero negro gigante hace que en ese lugar, el tiempo deje de existir, se paralice y el espacio, se curve en una distorsión infinita. Es decir, ni espacio ni tiempo tienen lugar en la llamada singularidad.

Nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el Universo y que crear esta distorsión en función de su masa. Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de relatividad/Einstein (sin olvidar a Riemann ) sobre la distorsión del espacio-tiempo.

Confirmado: una estrella puede 'arrastrar' el espacio-tiempo a su alrededorElaboran un plan para detectar los agujeros de gusano en el espacio-tiempo  - RT

Confirmado: una estrella puede ‘arrastrar’ el espacio-tiempo a su alrededor

Un relatividad/agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de relatividad/Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del relatividad/agujero negro.

DIVULGACIÓN CIENTÍFICA. Cuestionando fundamentos, los 100 años de la Relatividad  General de EinsteinEl desarrollo teórico del universo en expansión. | •Ciencia• Amino

           Las ecuaciones de campo de la relatividad general de Einstein… ¡Nos dicen tantas cosas! Nos muestra el desarrollo teórico del Universo, en una explosión intelectual difícil de igualar. Ahí comenzó la verdadera Cosmología

Confirmado: una estrella puede 'arrastrar' el espacio-tiempo a su alrededor

Si tuviéramos un relatividad/agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m.: л = 3,14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿ Cómo puede ser esto ? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.

 

    Con Einstein llegó la cosmología moderna, otra manera de mirar el Universo

Con esta teoría de la Relatividad General, entre otros pasos importantes, está el hecho de que dió lugar al nacimiento de la Cosmología que, de alguna manera, era como mirar con nueva visión a lo que l Universo podía significar, Después de relatividad/Einstein, el Universo no fue el mismo.

El análisis de la Gravitación que aquí se muestra interpreta el Universo como un continuo espacio-tiempo de cuatro dimensiones en el el que la presencia de una masa (como decía antes) curva el espacio para crear un campo gravitacional.

De la veracidad y comprobación de las predicciones de ésta segunda parte de la Teoría Relativista, tampoco, a estas alturas cabe duda alguna, y, lo más curioso del caso es que, después de casi un siglo (1.915), aún los físicos están sacando partido de las ecuaciones de campo de la teoría relativista en su versión general o de la Gravedad.

Tan importante es el trabajo de relatividad/Einstein que, en las nuevas teorías, en las más avanzadas, como la Teoría M (que engloba las cinco versiones de la Teoría de Cuerdas), cuando la están desarrollando, como por arte de magia y sin que nadie las llame, surgen, emergen, las ecuaciones de relatividad/Einstein de la Relatividad General.

El principio de constancia de la velocidad de la luz — Cuaderno de Cultura  Científica

Los fotones son Bosones emisarios de las radiaciones electromagnéticas y se mueven por el espacio vacío a una velocidad de 299.792.458 metros por segundo es decir, redondeando a 300.000 Km/s.).

La luz se propaga en cualquier medio pero en el vacío, mantiene la mayor velocidad posible en nuestro Universo, y, hasta el momento, que se sepa, nada ha corrido más que la luz en ese medio. Algunos han publicado ésta o aquella noticia queriendo romper la estabilidad de la relatividad especial y han publicado que los neutrinos o los taquiones van más rápidos que la luz. Sin embargo, todo se quedó en eso, en una noticia sin demostración para captar la atención del momento.

La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir:

3×1010 × 3×1010, ó 9×1020.

Por tanto, c2 es igual a 900.000.000.000.000.000.000. Así pues, una masa de un gramo puede convertirse, en teoría, en 9×1020 ergios de energía.

Trabajo y nergia

El ergio es una unida muy pequeña de energía que equivale a: “Unidad de trabajo o energía utilizado en el sistema c.g.s y actúa definida como trabajo realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de nombre quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2×1010 (22 millones) de kilocalorías.  Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco para la vida de un hombre.

Emilio Silvera