sábado, 20 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Misterios de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Por qué la materia no puede moverse más deprisa que la velocidad de la luz? Porque cuando se acerca a las velocidades relativistas, es decir, la velocidad de la luz en el vacío, c, la energía inercial se convierte en masa y, al llegar a c (299.792,458 m/s), sería infinita.

                                 Fotones que salen disparados a la velocidad de c. ¿Qué podría seguirlos?

Para contestar esta pregunta hay que advertir al lector que la energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otra manera, energía de movimiento. Si el martillo golpea sobre un clavo, cuya punta está apoyada en una madera dura e incapaz de moverse, el clavo seguirá ganando energía, pero esta vez en forma de calor por rozamiento al ser introducido a la fuerza dentro de la madera.

Earth to Sun - luz es.pngImagen relacionada

“La velocidad de la luz en el vacío es por definición una constante universal de valor 299 792 458 metros por segundo (aproximadamente 186 282,397 millas/s ​(suele aproximarse a 3·108m/s), o lo que es lo mismo 9,46·1015m/año; la segunda cifra es la usada para definir la unidad de longitud llamada año luz.

Resultado de imagen de lA LUZ LA MÁS RÁPIDA DEL UNIVERSO

Se simboliza con la letra c, proveniente del latín celéritās (en español celeridad o rapidez). Parece que en nuestro Universo nada puede ir más ráìdo que la luz. Si alguna cosa le pudiera ganar serían los pensamientos. Sin embargo, están más allá de lo físico.

El valor de la velocidad de la luz en el vacío fue incluido oficialmente en el Sistema Internacional de Unidades  el como constante el 21 de octubre de 1983, pasando así el metro a ser una unidad derivada de esta constante.

La rapidez a través de un medio que no sea el “vacío” depende de su permitividad eléctrica, de su permeabilidad magnética, y otras características electromagnéticas. En medios materiales, esta velocidad  es inferior a “c” y queda codificada en el índice de infracción. En modificaciones del vacío más sutiles, como espacios curvos, efecto Casimir, poblaciones térmicas o presencia de campos externos, la velocidad de la luz depende de la densidad de energía de ese vacío.”

Resultado de imagen de Masa y energía es la misma cosa

Albert Einstein demostró en su teoría de la relatividad especial que la masa cabía contemplarla como una forma de energía (E = mc2.) Al añadir energía a un cuerpo, esa energía puede aparecer en la forma de masa o bien en otra serie de formas.

En condiciones ordinarias, la ganancia de energía en forma de masa es tan increiblemente pequeña que sería imposible medirla. Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).

                No un pulsar tampoco puede ser más rápido que la luz

La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

  1. En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
  2. En forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).

Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

 Resultado de imagen de La gracias de la bailarina en imágen GIFs

En gracia quizás podamos superarla pero, en velocidad…no creo, c es el tope que impone el Universo para la velocidad y desplazarse entre las estrellas, ya que, en el ámbito material alejado del vacío interestelar la velocidad decrece.

Al aumentar aún más la velocidad y acercarse a los 299.792’458 Km/s, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa que, llegado a cierto límite, podría ser infinita y, como infinito no hay nada, nos quedamos con que nunca, nada, podrá sobrepasar esa velocidad.

El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.

Todo esto no es pura teoría, sino que tal como ha sido comprobado, es la realidad de los hechos.

¿Que velocidad podría ser la de la luz en otros mundos paralelos que pudieran existir fuera de nuestro universo?

            Ninguna nave, por los medios convencionales, podrá nunca superar la velocidad de la luz

La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intente sobrepasarla adquiriría una masa infinita, y, siendo así (que lo es), nuestra especie tendrá que ingeniarse otra manera de viajar para poder llegar a las estrellas, ya que, la velocidad de la luz nos exige mucho tiempo para alcanzar objetivos lejanos, con lo cual, el sueño de llegar a las estrellas físicamente hablando, está lejos, muy lejos. Es necesario encontrar otros caminos alejados de naves que, por muy rápida que pudieran moverse, nunca podrían transpasar la velocidad de la luz, el principio que impone la relatividad especial lo impide, y, siendo así, ¿cómo iremos?

La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.

Resultado de imagen de La Galaxia más lejanaResultado de imagen de Telescopio de Hawai

De momento sólo con los Telescopios podemos llegar tan lejos. A´hí han captado la galaxia más lejana del Universo. Cada día se construyen telescopios más poderosos que nos llevan hasta los confines del Universo

Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian y los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales. Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

Resultado de imagen de La velocidad del sonido

Sí, la Naturaleza nos habla, simplemente nos tenemos que parar para poder oír lo que trata de decirnos y, entre las muchas cosas que nos dice, estarán esos mensajes que nos indican el camino por el que debemos coger para burlar a la velocidad de la luz, conseguir los objetivos y no vulnerar ningún principio físico impuesto por la Naturaleza.

La única respuesta que podemos dar hoy es que así, es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio.

A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad. Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

File:Military laser experiment.jpg

                                      Fotones emitidos por un rayo coherente conformado por un láser

Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada. Hace no muchos días se habló de la posibilidad de que unos neutrinos hubieran alcanzado una velocidad superior que la de la luz en el vacío y, si tal cosa fuera posible, o, hubiera pasado, habríamos de relagar parte de la Teoría de la Relatividad de Einstein que nos dice lo contrario y, claro, finalmente se descubrió que todo fue una falsa alarma generada por malas mediciones. Así que, la teoría del genio, queda intacta.

¡La Naturaleza! Ahí residen todas las respuestas, hay que observarla para saber.

emilio silvera

 

  1. 1
    Pedro
    el 28 de agosto del 2019 a las 8:13

    Resulta que cuanto más próximo a c, viaje una partícula mayor es su aumento de masa. Los muones es en los aceleradores, etc Bien
    Se me ocurre, si las partículas tienen cierto dirección de  spin.osea arriba abajo intrinseco, si aumentamos su velocidad hasta el extremo, c, que impediría que cambiremos su dirección sentido de spin, al igual que se produce un aumento de masa. Y si cambiamos su dirección supongo que esto también afectaría a las propiedades de dichas partículas. Por ejemplo, infinidad de partículas comportarse como un solo atomo, superfluidos, materia condensados de 
    Hay algo que no entra en mi cabeza, ¿como una partícula que no tiene masa puede tener spin? ¿En donde se sustenta dicho spin u el resto de propiedades? O mas inquietante aún, que pueda interactuar siquiera. Osea ¿Que diferencia hay entre un foton y una idea delirante? Si ambos carecen de masa física, no así las consecuencias de sus interacciones. 
    Y ya para más inrri, me imagino cientos de partículas alrededor de la tierra todas con muy distintas velocidades relativistas o no  unas respecto de otras, todas con su correspondiente reloj, un observador desde la luna.o en la mismisima tierra preguntándose de todas las lecturas de los distintos relojes ¿Cuál es la más risoria de todas? 
    Si damos por hecho que el tiempo es real, osea un fenómeno con su impronta, con consecuencias propias ¿En que clase de tiempo me corresponde  a mi como sujeto delirar o no? . Para más inrri, al igual que se entrelazar unas partíulas con otras, es  posible entrelazar distintas partícula cuyas ritmos de clases de tiempo es tan dispar, cuando no contrapuesto, por muy esperpentico que resulte si quiera imaginar el mismo. . 
    En resumen, los relojes aparte de medir tiempos o supuestos risorios, ¿subyace algún otro componente, en los mismo? , como por ejemplo cierto ímpetu energético.
    Saluditos

     

    Responder
    • 1.1
      Emilio Silvera
      el 29 de agosto del 2019 a las 11:16

      La energía, los fotones llevan también asociado un momento lineal y tienen una polarización. Siguen las leyes de la mecánica cuántica. lo que significa que a menudo estas propiedades no tienen un valor bien definido para un fotón dado. En su lugar se habla de las probabilidades de que tenga una cierta polarización, posición o momento lineal. Por ejemplo, aunque un fotón puede excitar una molécula, a menudo es imposible predecir cuál será la molécula excitada.

      Del fotón, esa partícula maravcillosa responsable de la luz, no lo sabemos todo, esconde algunos secretos que debemos desvelar, y, tus dudas, son con otras muchas que tienen los físicos. lo que se quiere dilucidar para de una vez por todas saber, a ciencia cieta, lo un dotón es.

      Sabemos que es pura energía y que la energía (según la famosa fórmula) es también una manera del estado de la materia. Es decir, todo esto, nos da mucho en que pensar.

      Saludos.

      Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting