Ago
30
Imparables hacia el Futuro
por Emilio Silvera ~
Clasificado en El futuro tecnológico ~
Comments (0)
China planea la mayor máquina del mundo para entender el universo
Japón propone reducir a la mitad el futuro Colisionador Lineal Internacional ante la falta de presupuesto
El detector Atlas es unos de los que registran las colisiones en el acelerador de particulas (LHC), en Ginebra CERN
Hechos aparentemente aislados, como la llegada al poder de Donald Trump, el brexit o la preparación de los próximos Juegos Olímpicos en Japón, se han aliado para trastocar el avance en nuestra comprensión del universo.
Desde hace décadas, un comité internacional facilita los contactos entre países para crear los aceleradores de partículas del futuro. La mayor de estas máquinas, el LHC de Ginebra, ha permitido descubrir el bosón de Higgs, la partícula que completa la definición de la materia convencional, de la que está hecha todo cuanto vemos y tocamos en nuestro día a día, las proteínas y los genes que nos mantienen vivos, así como los billones de planetas y estrellas que hay en el universo. Pero toda esa materia supone menos del 5% de todo el cosmos. Para conocer de qué está hecho el resto hay que construir nuevos aceleradores de partículas más potentes y caros.
Uno de los proyectos más avanzados es el Colisionador Lineal Internacional (ILC), que se construiría en Japón. En su concepción original podría producir partículas de materia oscura, que supone el 24% del universo y nunca ha sido observada, pero el proyecto afronta importantes recortes.
En la última reunión del comité de futuros aceleradores ICFA, celebrada la semana pasada en el Instituto de Física Corpuscular de Valencia, Masanori Yamauchi, director general del laboratorio de física de partículas de Japón (KEK), ha presentado al resto de países miembros un plan para recortar la potencia del nuevo acelerador a la mitad y ahorrar en torno a un 40% de su coste, de unos 8.000 millones de euros. Japón cree que esta es la forma de salvar el proyecto y comenzar las negociaciones con otros países para pagar su construcción, aunque aún hay muchas dudas. “Los japoneses pensamos que la comunidad internacional debe pagar la mayor parte del acelerador y la comunidad internacional piensa justo lo contrario”, reconoce Yamauchi.
China es un País a tener en cuenta en el futuro del mundo
En su país, el mismo ministerio financia la ciencia y el deporte, además de la cultura y la educación, lo que ha tenido un impacto directo en las investigaciones del KEK. El organismo está recortando el tiempo de operación de sus aceleradores en torno a un 10% al año para ahorrar debido a los Juegos Olímpicos de Tokio en 2020, explica Yamauchi con resignación. Esta situación “está afectando negativamente a la investigación de física de partículas” en el país, reconoce, pero el problema se ve con optimismo, dado que se espera que, pasado el evento deportivo, el ILC se convierta en el buque insignia del ministerio y reciba una fuerte inyección de dinero.
“No se sabe cómo va afectar el ‘brexit’ a la ciencia en Reino Unido
El ILC reducido funcionaría a la mitad de potencia, 250 GeV, y sería una “fábrica de Higgs”. Su objetivo principal no sería tanto la materia oscura como producir los bosones ya conocidos, eso sí, con mucha más limpieza que el LHC para profundizar en el conocimiento de sus propiedades, ya que aún queda por determinar si es una partícula fundamental o compuesta o si hay más de un bosón de Higgs. En un futuro indeterminado, el acelerador podría ampliarse para alcanzar el doble de potencia.
Sería el proyecto más avanzado para un aceledor lineal
Europa y EE UU esperan a que Japón haga un anuncio oficial de que pretende construir el acelerador, lo que se espera para 2018 o 2019, explica Grahame Blair, director de programas del Consejo de Instalaciones de Ciencia y Tecnología de Reino Unido. Blair afronta una situación no menos paradójica que su colega nipón, pues preside el organismo internacional que aglutina a las agencias financiadoras de cara a nuevos aceleradores lineales en representación de Europa, justo cuando su país planea abandonar la Unión Europea. El británico admite que “aún no se sabe cómo el brexit va a afectar a la ciencia en Reino Unido”. El Gobierno de Theresa May aún debe “nombrar muchos cargos y simplemente no sabemos lo que va a pasar”, reconoce.
China quiere construir un acelerador de partículas de 100 kilómetros de circunferencia
En una incertidumbre similar está Abid Patwa, del Departamento de Energía de EE UU. El pasado miércoles participó en la reunión a puerta cerrada de las agencias financiadoras, donde se exploró cómo “acomodar unos presupuestos planos en casi todos los países, con el proyecto de diseñar” el ILC y otros aceleradores futuros, explica. Donald Trump ha arremetido contra la ciencia del cambio climático y ha agitado bulos sobre las vacunas, pero sus planes en la exploración de los grandes enigmas del universo son aún un misterio. En 2014, un panel de científicos que asesoraba al Gobierno de Obama estableció cinco grandes prioridades para los próximos 10 años. La primera era seguir investigando en bosón de Higgs. Además, se pretende aclarar el misterio de la masa de los neutrinos, estudiar la materia oscura y aclarar la aceleración del universo, probablemente empujado por la energía oscura. Por ahora, el equipo de transición de Trump no ha dicho nada sobre este plan, ni cuál será su estrategia para este campo del conocimiento, reconoce Patwa.
La envergadura de este aceledor es impresionante y, si finalmente es una realidad… ¿Hasta donde llegará?
Entre tantas dudas, China sigue adelante con un ambicioso plan que amenaza con arrebatarle al CERN Europeo el liderazgo mundial en física de partículas. Jie Gao, del Instituto de Física de Altas Energías, explica que su país planea construir un acelerador de partículas de 100 kilómetros de circunferencia, unas cuatro veces mayor que el LHC, y que abarcaría en su circunferencia un territorio superior a la ciudad de Madrid. El proyecto rivaliza con otro casi idéntico del CERN. La primera fase del proyecto, un colisionador circular de electrones y positrones, también se solapa con el ILC. Empezaría a funcionar en 2030, explica Gao. Después usarán el mismo túnel subterráneo para albergar un colisionador de protones de 100 kilómetros que estaría listo en 2050, explica el físico chino, cuyas explicaciones ejemplifican la forma de hacer las cosas en la primera economía del mundo, según algunos baremos. “En el último Plan Quinquenal hay una frase que dice que China debe promover y sostener un gran proyecto internacional en ciencia, sin mencionar cuál”, explica Gao. El nuevo acelerador “encaja muy bien” con esa directriz, añade el chino. En el país más poblado de la Tierra, construir la mayor máquina de la Tierra sería en realidad muy asequible. “El coste per cápita es incluso más barato que el primer colisionador de partículas que se construyó en China en los ochenta”, explica. Gao espera que el Gobierno comprometa fondos para su diseño detallado a partir del próximo año. El físico resalta que este tiene que ser un proyecto en el que participe la comunidad internacional. “Creo que China puede hacerse cargo del 70% del proyecto”, asegura.
Queremos re-construir la creración – Acaso queremos llegar más allá de los Quarks
Mientras, el CERN sigue adelante con sus propios estudios “de aceleradores lineales y circulares”, asegura Fabiola Gianotti, directora general del laboratorio, que se muestra muy diplomática sobre los amenazadores planes chinos. “Es muy agradable ver que en varias regiones del mundo hay interés por los aceleradores de partículas”, señala.
La última esperanza de Europa en esta carrera será su capacidad de innovación. El veterano físico Lynn Evans, director de colisionadores lineales del CERN y uno de los padres del LHC, es muy escéptico de que la potencia asiática pueda desarrollar por su cuenta las nuevas tecnologías necesarias para cuadruplicar la potencia de los aceleradores actuales. “Nos llevó 15 años construir el LHC”, y “puede que se tarde 50 años” en construir un acelerador de 100 kilómetros, “nosotros no lo veremos funcionando”, sentencia.
Noticia de Prensa.
Ago
30
No siempre la Física se puede explicar con palabras
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
Se dice que un agujero negro (una masa M concentrada en un volumen menor que el dictado por su radio de Schwarzschild rs = 2GM/c2) absorbe todo lo que cae sobre él. Sin embargo, Beckenstein y Hawking determinaron que el agujero negro posee entropía (proporcional al área del horizonte) y por ello temperatura, y Hawking concluye (1975) que la temperatura le hace radiar como un cuerpo negro; por tanto, eventualmente el agujero se evapora.
Aquí viene la paradoja. Si formamos el agujero negro arrojando materia en forma concreta (por ejemplo, un camión), la masa del camión acabaría eventualmente escupida como radiación del cuerpo negro, perdiéndose la preciosa información sobre el camión. Pero se supone que la evolución de “todo” es cuántica, y por ello unitaria. Ahora bien, la evolución unitaria mantiene la información (estados puros van a estados puros, no mezcla…); he ahí la paradoja.
Estaría bien poder entrar en un agujero negro para recabar información
Fue Hawking quien primero presentó la paradoja de “pérdida de información” en contra de otros que, como Gerard’t Hooft y Susskind, quienes mantienen que la información no se puede perder, y que por ello debe haber sutiles correlaciones en la radiación emitida, de las que en principio sería posible extraer la información original sobre que el agujero negro tragó un camión…
Paradogicamente, ha sido, durante el desarrollo de la “Teoría de Cuerdas” cuando se ha podido dilucidar el problema planteado hace veinticinco años por Beckenstein y Hawking que, han resultado llevar razón.
Recientemente S. Hawking ha cambiado de opinión y admite ahora que no hay pérdida de información, al respetarse el sentido unitario de la evolución del sistema, de acuerdo con la mecánica cuántica.
La gravitación y dimensiones extra
Esas hipotéticas dimensiones extra, necesarias para la existencia de la teoría de cuerdas, muchas las están buscando pero, de momento, nadie las pudo encontrar. Claro que, como para todo en este mundo, se necesita…¡Tiempo! dejemos que transcurra y…¡veremos!
“… la línea tiene magnitud en una dirección, el plano en dos direcciones y el sólido en tres direcciones; a parte de éstas, no hay ninguna magnitud porque las tres son todas…”
En nuestro Universo sólo podemos ver tres dimensiones y la temporal
Eso nos dijo Aristóteles alrededor de 350 años antes de Cristo, y la verdad, es que desde la experiencia cotidiana es difícil refutarlo. Más aún, la existencia de dimensiones extra podría tener consecuencias desastrosas para la estabilidad de las órbitas atómicas y planetarias, sobre todo en el caso de que dichas dimensiones fuesen de un tamaño comparable al del sistema estudiado. En concreto, Paul Ehrenfest en 1917 demostró que la ley del inverso del cuadrado de la distancia para la fuerza electrostática o gravitatoria se modificaría si hubiera N dimensiones espacial extra, de forma que F ≈ r-2 π. De hecho, ningún experimentado físico realizado hasta la fecha ha revelado la existencia de más de tres dimensiones espaciales, y dicho sea de paso, tampoco más de una dimensión temporal.
Sin embargo, aunque la experiencia ordinaria no necesitase de más de tres más una dimensiones, desde Riemann, Gauss, Ricci y algún otro, el punto de vista matemático permite estudiar de forma consistente la geometría de espacion de dimensión arbitraria que, como digo, lo debemos en gran parte a Bernhard Riemann sobre variedades n-dimensionales (1854), y ello a pesar de que Ptolomeo propusiera una “demostración” de que una cuarta dimensión espacial no tiene magnitud ni definición posibles (Tratado sobre la distancia, 150 a. C.).
La formulación de la Relatividad Especial de Einstein en 1905 supuso una revolución en nuestra concepción del espacio y del tiempo, y planteó la cuestión de la dimensionalidad desde una perspectiva completamente nueva. En efecto, en la interpretación geométrica que llevó a cabo Herman Minkowski en 1909, la teoría de Einstein podía entenderse de forma simple en términos de una variedad espacio-temporal de cuatro dimensiones, en la que a tres dimensiones espaciales se le añadía en pie de igualdad una cuarta, el tiempo, en la forma itc. El espacio y el tiempo pasaron de entenderse como conceptos independientes a formar un entramado único 4-dimensional, en el que las distancias se miden a través de la métrica de Minkowski:
Por su parte, Einstein, lejos de considerar el espacio-tiempo de Minkowski como una mera descripción matemática, lo elevó a la categoría de entidad física con su Teoría General de la Relatividad (RG) de 1.915 al considerarlo como objeto dinámico, cuya geometría, dada por la métrica de Riemann gμυ(x), depende de tener en cuenta en cada punto de su contenido de materia y energía. La curvatura del espacio-tiempo determina la trayectoria de las partículas de prueba que se mueven en él, y por tanto, la teoría proporciona una interpretación geométrica de la interacción gravitatoria.
La unificación del electromagnetismo y la gravitación, mencionada por mí en anteriores trabajos, fue la primera de las teorías con dimensiones extra. Se la envi´ço un oscuro matemático desconocido a Einstein, en una carta manuscrita en la que, le presentaba la teoría de 5 dimensiones en la que, era posible unificar, las dos teorías más grandes del momento (relatividad y electromagnetismo). Einsten la leyó varias veces y la volvía a guardad y, por fin, después de dos años, se decidió a enviarla para su publicación. Allí nació la teoría primera de más altas dimensiones: la de Kaluza-Klein (este último la mejoró más tarde).
Está claro que a comienzos del siglo pasado, nuestro conocimiento de las interacciones fundamentales se reducía a dos teorías de campos bien establecidas, el electromagnetismo de Maxwell, en pie desde 1873, y la novedosa Teoría General de la Relatividad para la gravitación, que Einstein comenzara a gestar en 1907 y publicara en 1915. No es por tanto de extrañar que el atractivo de la teoría de Einstein provocara en muchos, incluido el propio Einstein, el impulso de buscar una generalización de la misma, que incluyera también a la teoría de Maxwell, en una descripción geométrica unificada.
Con ese único objetivo, se tomaron varios caminos que, si bien no llegaron al destino deseado, permitieron realizar descubrimientos trascendentales que marcaría la evolución de la física teórica hasta nuestros días. (En aquellos tiempos se desconocían las fuerzaas nucleares débil y fuerte).
Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.
El primero de estos caminos fue propuesto por Hermann Weyl en 1918. En la Relatividad General, el espacio-tiempo se considera como una variedad pseudo-Riemanniana métrica, esto es, en la que, aunque la orientación de un vector transportado paralelamente de un punto a otro depende del camino seguido, su norma es independiente del transporte. Esta independencia de la norma disgustaba a Weyl que propuso reemplazar el tensor métrico gμυ por una clase de métricas conformemente equivalentes [gμυ] (esto es, equivalentes bajo cambios de escala gμυ → λ gμυ), y el transporte paralelo por otro que respetara esa estructura conforme. Esto se conseguía introduciendo un nuevo campo, Aμ, que al cambiar de representante de la clase de equivalencia [gμυ], se transformaba precisamente como el potencial vector de la teoría de Maxwell:
Aμ → Aμ + ∂μλ
Hermann Weyl
Este tipo de transformación es lo que Weyl denominó trasformación de “gauge”, en el sentido de cambio de longitud. En propias palabras de Weyl en una carta dirigida a Einstein en 1.918, con su teoría había conseguido “… derivar la electricidad y la gravitación de una fuente común…“. La respuesta de Einstein no se hizo esperar:
“Aunque su idea es muy elegante, tengo que declarar francamente que, en mi opinión, es imposible que la teoría se corresponda con la naturaleza.”
La objeción de Einstein se basaba en el hecho de que en la propuesta de Weyl, el ritmo de avance de los relojes también dependería del camino seguido por éstos, lo cual entraría en contradicción, por ejemplo, con la estabilidad de los espectros atómicos.
Aunque la teoría de Weyl fue abandonada rápidamente, en ella se introducía por primera vez el concepto de simetría gauge. Varias décadas más tarde, con el desarrollo de las teorías gauge no abelianas por Yang Mills (1954), y del Modelo Estándar de las partículas elementales, se comprobó que la misma noción de invarianza subyacía en la descripción del resto de interacciones fundamentales (electrodébiles y fuertes).
La teoría de cinco dimensiones de Kaluza Klein fue la precursora de la de cuerdas
El segundo camino en la búsqueda de la unificación comenzó un año antes de la publicación de la Relatividad General. En 1914 Gunnar Nordström propuso una teoría en cinco dimensiones que unificaba el electromagnetismo con la gravitación de Newton. La aparición de la Teoría de la Relatividad General hizo olvidar la teoría de Nordström, pero no la idea de la unificación a través de dimensiones extra.
Kaluza
Así estaban las cosas cuando en 1.919 recibió Einstein un trabajo de Theodor Kaluza, un privatdozent*en la Universidad de Königsberg, en el que extendía la Relatividad General a cinco dimensiones. Kaluza consideraba un espacio con cuatro dimensiones, más la correspondiente dimensión temporal y suponía que la métrica del espacio-tiempo se podía escribir como:
Donde con μ,υ = 1, 2, 3, 4, corresponde a la métrica 4-dimensional del espacio-tiempo de la RG, Aμproporciona el campo electromagnético, Φ es un campo escalar conocido posteriormente como dilatón, y α = √2k es la constante de acoplo relacionada con la constante de Newton k. Kaluza demostró que las ecuaciones de Einstein en cinco dimensiones obtenidas de esta métrica y linealizadas por los campos, se reducían a las ecuaciones de Einstein ordinarias (en cuatro dimensiones) en vacío, junto con las ecuaciones de Maxwell para Aμ, siempre que se impusiera la condición cilíndrica, esto es, que la métrica
no dependiera de la quinta coordenada.
El trabajo de Kaluza impresionó muy positivamente a Einstein: “Nunca había caído en la cuenta de lograr una teoría unificada por medio de un cilindro de cinco dimensiones… A primera vista, su idea me gusta enormemente…” (carta de Einstein a Kaluza en 1919, en abril).

Este hecho resulta sorprendente si consideramos que el trabajo de Nordström fue publicado cinco años antes. Por motivos desconocidos, en el mes de mayo de 1919, Einstein rebajó su entusiasmo inicial: “Respeto en gran medida la belleza y lo atrevido de su idea, pero comprenderá que a la vista de las objeciones actuales no pueda tomar parte como originalmente se planeó“. Einstein retuvo el trabajo de T. Kaluza durante dos años, hasta que en 1.921 fue presentado por él mismo ante la Academia Prusiana. Hasta 1.926 Einstein guardó silencia acerca de la teoría en cinco dimensiones.
Ese mismo año, Oskar Klein publicaba un trabajo sobre la relación entre la teoría cuántica y la relatividad en cinco dimensiones. Uno de los principales defectos del modelo de Kaluza era la interpretación física de la quinta dimensión. La condición cilíndrica impuesta ad hoc hacía que ningún campo dependiera de la dimensión extra, pero no se justificaba de manera alguna.
Klein propuso que los campos podrían depender de ella, pero que ésta tendría la topología de un círculo con un radio muy pequeño, lo cual garantizaría la cuantización de la carga eléctrica. Su diminuto tamaño, R5 ≈ 8×10-31 cm, cercano a la longitud de Planck, explicaría el hecho de que la dimensión extra no se observe en los experimentos ordinarios, y en particular, que la ley del inverso del cuadrado se cumpla para distancias r » R5. Pero además, la condición de periodicidad implica que existe una isometría de la métrica bajo traslaciones en la quinta dimensión, cuyo grupo U(1), coincide con el grupo de simetría gauge del electromagnetismo.
Oskar Benjamin Klein (1894-1977). Fotografía tomada para el Göttingen Bohr-Festspiele, junio de 1922.
Por último, imponiendo que el dilaton es una constante, Klein demostró que las ecuaciones de movimiento reproducen las ecuaciones completas de Einstein y Maxwell. Esta forma de tratar la dimensión extra, bautizada posteriormente como el paradigma de la compactificación, había logrado superar los obstáculos iniciales: “… parece que la unión de la gravitación y la teoría de Maxwell se consigue de una forma completamente satisfactoria con la teoría de cinco dimensiones” (carta de Einstein a Lorentz en 1927), y de hecho, ha sido la única forma consistente de introducir dimensiones extra hasta fechas más recientes.
El propio Einstein había comenzado a trabajar en la teoría de Kaluza con su ayudante Jacob Grommer y en 1.922 publicó un primer trabajo sobre existencia de soluciones esféricamente simétricas, con resultado negativo. Más tarde, en 1927 presentó ante la Academia Prusiana dos trabajos en los que reobtenía los resultados de Klein. Su infructuosa búsqueda de una teoría de campo unificada le haría volver cada pocos años a la teoría en cinco dimensiones durante el resto de su vida. Los resultados de Klein sobre la cuantización de la carga eléctrica pueden entenderse fácilmente considerando el desarrollo en modos de Fourier de los campos con respecto a la dimensión periódica:
La ecuación de ondas en cinco dimensiones puede reescribirse como:
Donde Dμ es una derivada covariante con respecto a transformaciones generales de coordenadas y con respecto a transformaciones gauge con una carga qn = nk/R5. Vemos por tanto que el campo en cinco dimensiones se descompone en una torre infinita de modos 4-dimensionales Ψn(x) con masas , en unidades naturales ћ = c = 1, y carga qn (modos de Kaluza-Klein).
Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck). Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.
Puesto que el radio de compactificación es tan pequeño, el valor típico de las masas será muy elevado, cercano a la masa de Planck Mp = k-12 = 1’2 × 1019 GeV*, y por tanto, a las energías accesibles hoy día (y previsiblemente, tampoco en un futuro cercano – qué más quisieran E. Witten y los perseguidores de las supercuerdas -), únicamente el modo cero n = 0 será relevante. Esto plantea un serio problema para la teoría, pues no contendría partículas ligeras cargadas como las que conocemos.
¿Y si llevamos a Kaluza-Klein a dimensiones superiores para unificar todas las interacciones?
La descripción de las interacciones débiles y fuertes a través de teorías gauge no abelianas mostró las limitaciones de los modelos en cinco dimensiones, pues éstas requerirían grupos de simetría mayores que el del electromagnetismo. En 1964 Bryce de UIT presentó el primer modelo de tipo Kaluza-Klein-Yang-Mills en el que el espacio extra contenía más de una dimensión.
El siguiente paso sería construir un modelo cuyo grupo de isometría contuviese el del Modelo Estándar SU(3)c × SU(2)l × U(1)y, y que unificara por tanto la gravitación con el resto de las interacciones.
Edward Witten demostró en 1981 que el número total de dimensiones que se necesitarían sería al menos de once. Sin embargo, se pudo comprobar que la extensión de la teoría a once dimensiones no podía contener fermiones quirales, y por tanto sería incapaz de describir los campos de leptones y quarks.
Por otra parte, la supersimetría implica que por cada bosón existe un fermión con las mismas propiedades. La extensión supersimétrica de la Relatividad General es lo que se conoce como supergravedad (supersimetría local).
Joël Scherk (1946-1980) (a menudo citado como Joel Scherk) fue un francés teórico físico que estudió la teoría de cuerdas y supergravedad [1] . Junto con John H. Schwarz , pensaba que la teoría de cuerdas es una teoría de la gravedad cuántica en 1974. En 1978, junto con Eugène Cremmer y Julia Bernard , Scherk construyó el lagrangiano y la supersimetría transformaciones para supergravedad en once dimensiones [2] , que es uno de los fundamentos de la teoría-M .
Unos años antes, en 1978, Cremmer, Julia y Scherk habían encontrado que la supergravedad, precisamente en once dimensiones, tenía propiedades de unicidad que no se encontraban en otras dimensiones. A pesar de ello, la teoría no contenía fermiones quirales, como los que conocemos, cuando se compactaba en cuatro dimensiones. Estos problemas llevaron a gran parte de los teóricos al estudio de otro programa de unificación a través de dimensiones extra aún más ambicioso, la teoría de cuerdas.
No por haberme referido a ella en otros trabajos anteriores estará de más dar un breve repaso a las supercuerdas. Siempre surge algún matiz nuevo que enriquece lo que ya sabemos.
El origen de la teoría de supercuerdas data de 1968, cuando Gabriela Veneziano introdujo los modelos duales en un intento de describir las amplitudes de interacción hadrónicas, que en aquellos tiempos no parecía provenir de ninguna teoría cuántica de campos del tipo de la electrodinámica cuántica. Posteriormente, en 1979, Yaichiro Nambu, Leonard Susskind y Holger Nielsen demostraron de forma independiente que las amplitudes duales podían obtenerse como resultado de la dinámica de objetos unidimensionales cuánticos y relativistas dando comienzo la teoría de cuerdas.
En 1971, Pierre Ramona, André Neveu y otros desarrollaron una teoría de cuerdas con fermiones y bosones que resultó ser supersimétrica, inaugurando de esta forma la era de las supercuerdas.
Sin embargo, en 1973 David Gross, David Politzer y Frank Wilczek descubrieron que la Cromodinámica Cuántica, que es una teoría de campos gauge no abeliana basada en el grupo de color SU(3)c, que describe las interacciones fuertes en términos de quarks y gluones, poseía la propiedad de la libertad asintótica. Esto significaba que a grandes energías los quarks eran esencialmente libres, mientras que a bajas energías se encontraban confinados dentro de los hadrones en una región con radio R de valor R ≈ hc/Λ ≈ 10-13 cm.
Dicho descubrimiento, que fue recompensado con la concesión del Premio Nobel de Física a sus autores en 2.004, desvió el interés de la comunidad científica hacia la Cromodinámica Cuántica como teoría de las interacciones fuertes, relegando casi al olvido a la teoría de supercuerdas.
John Henry Schwarz
A pesar de todo, en 1974 Joel Scherk y John Schwarz hicieron la observación de que la teoría de cuerdas podía ser también una teoría cuántica de la gravitación. Sin embargo, este hecho pasó desapercibido durante casi una década. Además, las teorías de cuerdas tenían extrañas propiedades. Su versión más simple, la cuerda bosónica, sólo estaba definida en 26 dimensiones, y por si esto fuese poco, también presentaba un estado taquiónico, es decir, con masa al cuadrado negativa. Por otra parte, las supercuerdas parecían estar plagadas de anomalías (obstrucciones a la cuantización de la teoría que hacían altamente improbable que se los pudiera dar alguna explicación útil para la física fundamental.
Todo cambió, sin embargo, cuando en 1984 Michael Green y John Schwarz demostraron que las teorías de supercuerdas cerradas basadas en los grupos SO(32) y E8 × E8 estaban libres de anomalías si se definían en un espacio-tiempo de 10 dimensiones.
Ese mismo año, Gross, Harvey, Martinec y Rohm encontraron otro tipo de teorías de cuerdas consistentes denominadas heteróticas.
Como resultado de esos y otros muchos trabajos emergieron cinco teorías de cuerdas consistentes denominadas tipo I, tipo IIA, tipo IIB, heterótica SO(32) (HO) y heterótica E8 × E8 (HE). Todas consistentes exclusivamente en 10 dimensiones y estaban libres de taquiones.
David Jonathan Gross
El de más edad de los cuatro, David Gross, hombre de temperamento imperativo, es temible en los seminarios cuando al final de la charla, en el tiempo de preguntas, con su inconfundible vozarrón dispara certeros e inquisidoras preguntas al ponente. Lo que resulta sorprendente es el hecho de que sus preguntas dan normalmente en el clavo.
La posibilidad de construir teorías realistas de las interacciones entre partículas fundamentales (incluyendo la gravitación) a partir de la teoría de supercuerdas surgió del trabajo seminal de Candelas, Strominger, Horowitz y Witten de 1985 donde se proponía el uso de la supercuerda heterótica E8 × E8 y la compactificación de las 6 dimensiones extra para dar lugar a espacios de Calabi-Yan (un tipo especial de propiedades o variedades compactas con tres dimensiones complejas). La idea era que mediante la elección apropiada de la variedad compactificada, el límite de la teoría a bajas energías sería similar al Modelo Estándar definido en las cuatro dimensiones ordinarias; es decir, la teoría cuántica de campos actualmente aceptada como la teoría correcta de las interacciones fuertes y electrodébiles basada en el grupo gauge SU(3)C × SU(2)L × U(1)Y, que incluye la cromodinámica cuántica (grupo de color SU(3)C) y la teoría de las interacciones electrodébiles basada en el grupo conocido como SU(2)L × U(1)Y, desarrollada en 1967 por Steven Weinberg, Abdus Salam y Sheldon Glashow y por la que se les concedió el Premio Nobel de Física en 1979.
De esta forma, durante los años ochenta se estudiaron con gran detalle numerosos espacios compactificados B de dimensión 6, tipo Calabi-Yan, junto con otros espacios, como por ejemplo, los llamados orbifoldios (variedades diferenciables cocientadas por grupos discretos) en un intento de tomas contacto con la fenomenología de bajar energías accesibles a los experimentos actuales. Además, las posibilidades podían aumentarse incluyendo campos gauge que podían estar definidos sobre B, dando lugar a diferentes líneas de flujo que se enrollarían y enlazarían de infinidad de formas dentro de B, sacando partido de su habitualmente intrincada topología.
En todo caso, el tamaño típico de espacio B era del orden de la longitud de Planck, Lp = 1’6 × 10-33 cm*, que en unidades naturales es la inversa de la masa de Planck. Este hecho situaba fuera de las posibilidades reales el estudio experimental de sus propiedades. Además, a cada espacio B, ataviado de sus líneas de flujo, correspondería un posible vacío (estado fundamental o de menor energía) de la teoría. Sin embargo, en la medida que ésta sólo se podía determinar perturbativamente, es decir, en el régimen de interacción débil, no era posible seleccionar el verdadero vacío de la teoría a partir de primeros principios, sino tan sólo buscar aquellos que podían tener más posibilidades de establecer contacto con el mundo que observamos a nuestro alrededor.
emilio silvera
Profesor sin plaza ni salario, salvo honorarios según las clases impartidas.
del orden de 10-8 Kg = 1011 GeV; es la masa de una partícula cuya longitud de onda compton es igual a la longitud de Planck.
Ago
28
Tratamos de desvelar lo que el Universo es
por Emilio Silvera ~
Clasificado en El Universo misterioso ~
Comments (1)
¡El complejo Universo! Los fractales.
Es curioso los enunciados matemáticos que pueden pertenecer al mundo de Platón sean precisamente aquellos que son objetivamente verdaderos. Se podría considerar que la objetividad matemática es precisamente el objeto del platonismo matemático. Decir que una afirmación matemática tiene una existencia platónica es sencillamente decir que es verdadera en un sentido objetivo. Un comentario similar es aplicable a las nociones matemáticas -tales como el concepto del 7, por ejemplo, o la regla para la multiplicación de números enteros, o la idea de que cierto conjunto contiene infinitos elementos-, todas las cuales tienen una existencia platónica porque son nociones objetivas. Es decir, la existencia platónica, es simplemente una cuestión de objetividad y, en consecuencia, , no debería verse como algo “místico” o “acientífico”, pese a que así la consideran algunos.
WASHINGTON – La NASA anunció el descubrimiento histórico de un sistema de seis planetas, el primero con un número tan elevado que orbita en torno a una estrella, de una forma similar a giran la Tierra y el resto de planetas del Sistema Solar.
El Universo, la Vida…y, el Azar
En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Miden la edad del Universo gracias al efecto de lente gravitacional con una precisión sin precedentes. Frecuentemente es difícil para los expertos distinguir entre una luz brillante lejana y otra más cercana pero más débil. El efecto de lente gravitacional soluciona este problema al proporcionar múltiples pistas. Según la Relatividad General la presencia de masa-energía hace que el espacio-tiempo se curve a su alrededor. De este modo, los rayos de luz que pasen cerca de esa región no seguirán líneas rectas, sino geodésicas, que son el equivalente a las rectas en espacios curvos. Hasta no hace tanto tiempo, no podíamos decir, con cierta precisión, que edad tenía el Universo. Pues bien, se acaba de conocer que un equipo internacional de científicos ha realizado recientemente una serie de comprobaciones que les han llevado saber que el universo, como todo en él, tiene una edad de nacimiento.
Para realizar este estudio se han valido de lentes gravitatorias galácticas y han llegado a una edad del Universo cifrada en 13750 millones de años con un error de 170 millones de años
Es cierto que no hace tanto tiempo que los astrónomos y cosmólogos desconocían la edad del Universo. Lo más que se nos decía era que el Universo tenía una edad comprendida entre los 10.000 mil y los 20.000 millones de años. Así que se asumía que su edad debía de andar por los 15.000 millones de años.
Obviamente el WMAP no apunta a una región de cielo en donde está escrita la edad del Universo, sino que ésta se infiere indirectamente a partir de Tenemos que ser conscientes de que el Universo tiene la edad apropiada para que nosotros podamos estar aquí, y, aunque nos parezca mucho un período de 13.700 millones de años, en realidad es el “tiempo” necesario para crear la bioquímica que, producida por las estrellas de las galaxias y en la que al final de sus vidas explosionaran como supernovas que sembraron el espacio de los materiales complejos necesarios para que, más tarde, surgiera la vida en el planeta Tierra y,probablemente, en otros muchos lejos de aquí en la nuestra y en otras galaxias.
Objetos que habitan en el Universo y que son energía congelada que más tarde o más temprano, aparece con la destrucción de su agujeros negros, estrellas de neutrones, galaxias y desconocidos planetas; la verdad es que casi todo el universo está vacío y sólo en algunas regiones tiene agrupaciones de materia en forma de estrellas y otros objetos estelares y cosmológicos; muchas de sus propiedades y características más sorprendentes (su inmenso tamaño y su enorme edad, la soledad y oscuridad del espacio) son
El universo visible contiene sólo:
1 Estrella por (103 años luz)3
1 Galaxia por (107 años luz)3
1 “Universo” por (1010 años luz)3
El cuadro expresa la densidad de materia del universo de varias maneras diferentes que muestran el alejamiento que cabría esperar entre los planetas, estrellas y galaxias. No debería sorprendernos que encontrar vida extraterrestre sea tan raro. ¡Está todo tan lejos! Como no podemos ir físicamente a esos lejanos mundos, nuestras mentes viajan sin cesar hacia ellos y, de alguna manera, sentimos que “ellos” están ahí pensando, de la misma manera que nosotros lo hacemos, que en un Universo cuajado de inmensas galaxias de estrellas que están rodeadas por infinidad de mundos… ¡La Vida pulula por ingentes lugares, como lo hace aquí, en la Tierra!
Karl Theodor Jasper (1883-1969)
El filósofo existencialista de arriba, se sintió provocado por los escritos de Eddintong al considerar el significado de nuestra existencia en un lugar particular en una época particular de la historia cósmica. En su influyente libro “Origen y meta de la Historia”, escrito en 1040, poco después de la muerte de Eddintong, pregunta:
“¿Por qué vivimos y desarrollamos nuestra historia en este punto concreto del espacio infinito, en un minúsculo grano de polvo en el universo, un rincón marginal? ¿Por qué precisamente El hecho fundamental de nuestra existencia es que parecemos estar aislados en el cosmos. Somos los únicos seres racionales capaces de expresarse en el silencio del universo. En la historia del Sistema Solar se ha dado en la Tierra, durante un periodo de tiempo infinitesimalmente corto, una situación en la que los seres humanos evolucionan y adquieren conocimientos que incluye el ser conscientes de sí mismos y de existir… Dentro del Cosmos ilimitado, en un minúsculo planeta, durante un minúsculo periodo de tiempo de unos pocos milenios, algo ha tenido lugar como siel universo supiera que nosotros, teníamos que venir?
Planeta Tierra
Aquí se han expuesto algunos trabajos en los que quedaron reflejadas todas las respuestas a estas preguntas. Nada sucede porque si, todo es consecuencia directa de la causalidad. Cada suceso tiene su razón de ser en función de lo que antes sucedió.
El primer signo de vida en nuestro planeta data de 3.850 millones de años. Son simples formas fósiles encontradas en Groenlandia. En otros muchos lugares han aparecido fósiles que nos datan la aparición de la vida en la Tierra unos 500 millones de años después de que la misma Tierra “naciera” y, en aquella época lejana, su corteza aún no se habría enfriado totalmente…¡La Vida! ¿Quién Con la vida en nuestro planeta, ocurrió igual. Una atmósfera primitiva evolucionada, la composición primigenia de los mares y océanos con sus compuestos, expuestos al bombardeo continuo de radiación del espacio exterior que llegaba en ausencia de la capa de ozono, la temperatura ideal en relación a la distancia del Sol a la Tierra y otra serie de circunstancias muy concretas, como la edad del Sistema Solar y los componentes con elementos complejos del planeta Tierra, hecho del material estelar evolucionado a partir de supernovas, todos estos elementos y circunstancias especiales en el espacio y en el tiempo, hicieron posible el nacimiento de esa primera célula que fue capaz de reproducirse a sí misma y que, miles de años después, hizo posible que evolucionara hasta lo que hoy es el hombre que, a partir de materia inerte, se convirtió en un ser pensante que…
La atmósfera primitiva de la Tierra de nitrógeno, metano y dióxido de carbono resultaba hostil para la vida tal como la conocemos, pero amistosa para las primeras bacterias amantes del metano. Los astrónomos modelaron la historia de la Tierra para comprender qué signos indicadores buscar en otros mundos. Esta representación artística muestra la Tierra de hace 4 000 mil millones de años atrás, antes de que se hubieran formado los continentes y mientras nuestro planeta sufría todavía el bombardeo de los asteroides y cometas que habían quedado de la formación del sistema solar.
+
Durante todo el eón Arcaico (1.300 millones de años) todos los océanos eran verdes, pero el oxígeno marino transformó los mares de verde a azul. La Tierra, como todo en el Universo, ha ido evolucionando hacia lo que hoy conocemos y, nada impedirá que siga cambiando conforme lo exijan las condiciones que, no pocas veces, nosotros mismos imponemos con nuestro quehacer del día a día.
El entorno cambiante en un universo en expansión entropía) es posible que se formen átomos, moléculas, galaxias, estrellas, planetas y organismos vivos. En el futuro, las estrellas agotaran su combustible nuclear y morirán todas. En función de sus masas serán estrellas enanas blancas (como nuestro Sol), estrellas de neutrones (a partir de 1’5 masas solares) y agujeros negros a partir de 3 masas solares.
¿El destino final? Seguro no podemos estar de nada pero… ¡La muerte térmica, parece ser el final más probable!
No podemos saber cuándo, pero sí tenemos una idea muy clara de cómo será dicho final. El universo es todo lo que existe, incluyendo el espacio, el tiempo y la materia. El estudio del universo es la cosmología, que distingue Dicen que existe una evidencia creciente de que el espacio está o materia oscura”, que puede constituir muchas veces la masa total de las galaxias visibles (materia bariónica). Sabemos que el origen más probable del universo está en al teoría conocida como del Big Bang que, a partir de una singularidad de una densidad y energía infinita, hace surgir lo que hoy se conoce como universo. Sin embargo, eso es, sólo una creencia que otros datos más fiables no han podido ser encontrados todavía para mejorar la teoría de la gran explosión que, no a todos satisface.
La física de Einstein revela una verdad profunda: el espacio y el tiempo son tan sólo hilos diferentes de una fabrica sin costuras llamada espacio-tiempo. Aunque todavía existe una diferencia obvia entre los dos. Ponemos en principio, viajar en una dirección de las tres dimensiones del espacio, pero únicamente en una dirección en el tiempo: hacia delante El Big Bang. En el proceso, nació el tiempo y el espacio, surgieron las primeros quarks que pudieron unirse protones y electrones que formaron los primeros núcleos y, electrones, nacieron los átomos que evolucionando y juntándose hicieron posible la materia; todo ello, interaccionado por cuatro fuerzas fundamentales que, desde entonces, por la rotura de la simetría original divididas en cuatro parcelas distintas, rigen el universo. La fuerza nuclear fuerte responsable de mantener unidos los nucleones, la fuerza nuclear débil, responsable de la radiactividad natural desintegrando elementos
Pero hemos llegado a saber que el universo podrá ser abierto o cerrado. Un universo que siempre se expande y densidad crítica.
El universo cerrado es el que es finito en tamaño, tiene una vida finita y en el que el espacio está curvado positivamente. Un universo de Friedman con la densidad mayor que la densidad crítica.
El universo en expansión es el que el espacio entre los objetos está aumentando continuamente. En el universo real, los objetos vecinos como los pares de galaxias próximas entre sí no se separan debido a que su atracción gravitatoria mutua supera los efectos de la expansión cosmológica (el caso de la Vía Láctea y Andrómeda). No obstante, la distancia entre dos galaxias muy separadas, o entre dos cúmulos de galaxias, aumenta con el paso del tiempo y la expansión imparable del universo.
El universo real está en función de la densidad crítica que es la densidad media de materia requerida densidad crítica, alrededor de 10-29g/cm3, es descrito por el modelo de universo de Einstein-de Sitter, que se encuentra en la línea divisoria de estos dos extremos. Pero la densidad media de materia que puede ser observada directamente en nuestro universo no representa la cantidad necesaria para generar la fuerza de gravedad que se observa en la velocidad de alejamiento de las galaxias, que necesita mucha más materia que la observada para generar materia oscura”, que nadie sabe lo que es, cómo se genera o de qué esta hecha. Así que, cuando seamos capaces de abrir esa puerta cerrada ante nuestras narices, podremos por fin saber la clase de universo que vivimos; si es plano, si es abierto e infinito, o si es un universo que, por su contenido enorme de materia es curvo y cerrado.
Aunque el signo de arriba lo quiere significar…lo infinito o eterno…no existe. Todo densidad crítica del universo, sí podemos contestarla en dos vertientes, en la seguridad de que al El destino final será:
El Big Freeze (“Gran Frío”), también conocido como Big Whisperer (“Gran susurro”) es una teoría física sobre el futuro del Universo, en la que se supone éste se seguirá expandiendo eternamente -asume, por tanto, un universo abierto- y está marcada por el triunfo de la segunda ley de la termodinámica, con la consecución final de prácticamente todos los procesos físicos que puedan darse y posiblemente acabando con la muerte térmica del Universo.
Claro que circulan varias hipótesis:
a) Si el universo es abierto y se expande para siempre, entropía hará desaparecer la energía y el frió será tal que la temperatura alcanzará el cero absoluto, -273ºK. La vida no podrá estar presente.
Todo se unirá de singularidad, se producirá otro Big Bang y, el ciclo comenzará de nuevo. Sin embargo, que de nuevo podamos aparecer nosotros aquí…no es nada seguro.
b) Si el universo es cerrado por contener una mayor cantidad de materia, llegará un momento en que la fuerza de gravedad detendrá la expansión de las galaxias, que poco a poco se quedarán quietas y muy lentamente, comenzaran a moverse en el sentido inverso; correrán Big Crunch. Se formará una enorme concentración de materia de energía y densidad infinitas. Habrá dejado de existir el espacio y el tiempo. Nacerá una singularidad que, seguramente, dará lugar a otro Big Bang. Todo empezará de Así las cosas, no parece que el futuro de la Humanidad sea muy alentador. Claro que los optimistas nos hablan de hiperespacio y universos paralelos a los que, ¡Quién pudiera contestar a eso!
¿Es viejo el universo?
“Las cuatro edades del hombre: Lager, Aga, Saga y Gaga”.
Anónimo.
Si el Universo fuese más jóven, amigos míos, entonces nosotros no estaríamos aquí.
emilio silvera
Ago
27
Misterios de la Naturaleza
por Emilio Silvera ~
Clasificado en El Universo misterioso ~
Comments (2)
Por qué la materia no puede moverse más deprisa que la velocidad de la luz? Porque cuando se acerca a las velocidades relativistas, es decir, la velocidad de la luz en el vacío, c, la energía inercial se convierte en masa y, al llegar a c (299.792,458 m/s), sería infinita.
Fotones que salen disparados a la velocidad de c. ¿Qué podría seguirlos?
Para contestar esta pregunta hay que advertir al lector que la energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otra manera, energía de movimiento. Si el martillo golpea sobre un clavo, cuya punta está apoyada en una madera dura e incapaz de moverse, el clavo seguirá ganando energía, pero esta vez en forma de calor por rozamiento al ser introducido a la fuerza dentro de la madera.
“La velocidad de la luz en el vacío es por definición una constante universal de valor 299 792 458 metros por segundo (aproximadamente 186 282,397 millas/s (suele aproximarse a 3·108m/s), o lo que es lo mismo 9,46·1015m/año; la segunda cifra es la usada para definir la unidad de longitud llamada año luz.
Se simboliza con la letra c, proveniente del latín celéritās (en español celeridad o rapidez). Parece que en nuestro Universo nada puede ir más ráìdo que la luz. Si alguna cosa le pudiera ganar serían los pensamientos. Sin embargo, están más allá de lo físico.
El valor de la velocidad de la luz en el vacío fue incluido oficialmente en el Sistema Internacional de Unidades el como constante el 21 de octubre de 1983, pasando así el metro a ser una unidad derivada de esta constante.
La rapidez a través de un medio que no sea el “vacío” depende de su permitividad eléctrica, de su permeabilidad magnética, y otras características electromagnéticas. En medios materiales, esta velocidad es inferior a “c” y queda codificada en el índice de infracción. En modificaciones del vacío más sutiles, como espacios curvos, efecto Casimir, poblaciones térmicas o presencia de campos externos, la velocidad de la luz depende de la densidad de energía de ese vacío.”
Albert Einstein demostró en su teoría de la relatividad especial que la masa cabía contemplarla como una forma de energía (E = mc2.) Al añadir energía a un cuerpo, esa energía puede aparecer en la forma de masa o bien en otra serie de formas.
En condiciones ordinarias, la ganancia de energía en forma de masa es tan increiblemente pequeña que sería imposible medirla. Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).
No un pulsar tampoco puede ser más rápido que la luz
La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:
- En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
- En forma de masa, con lo cual se hace “más pesado”.
La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).
Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.
A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.
En gracia quizás podamos superarla pero, en velocidad…no creo, c es el tope que impone el Universo para la velocidad y desplazarse entre las estrellas, ya que, en el ámbito material alejado del vacío interestelar la velocidad decrece.
Al aumentar aún más la velocidad y acercarse a los 299.792’458 Km/s, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa que, llegado a cierto límite, podría ser infinita y, como infinito no hay nada, nos quedamos con que nunca, nada, podrá sobrepasar esa velocidad.
El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.
Todo esto no es pura teoría, sino que tal como ha sido comprobado, es la realidad de los hechos.
¿Que velocidad podría ser la de la luz en otros mundos paralelos que pudieran existir fuera de nuestro universo?
Ninguna nave, por los medios convencionales, podrá nunca superar la velocidad de la luz
La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intente sobrepasarla adquiriría una masa infinita, y, siendo así (que lo es), nuestra especie tendrá que ingeniarse otra manera de viajar para poder llegar a las estrellas, ya que, la velocidad de la luz nos exige mucho tiempo para alcanzar objetivos lejanos, con lo cual, el sueño de llegar a las estrellas físicamente hablando, está lejos, muy lejos. Es necesario encontrar otros caminos alejados de naves que, por muy rápida que pudieran moverse, nunca podrían transpasar la velocidad de la luz, el principio que impone la relatividad especial lo impide, y, siendo así, ¿cómo iremos?
La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.
De momento sólo con los Telescopios podemos llegar tan lejos. A´hí han captado la galaxia más lejana del Universo. Cada día se construyen telescopios más poderosos que nos llevan hasta los confines del Universo
Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian y los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales. Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.
Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?
Sí, la Naturaleza nos habla, simplemente nos tenemos que parar para poder oír lo que trata de decirnos y, entre las muchas cosas que nos dice, estarán esos mensajes que nos indican el camino por el que debemos coger para burlar a la velocidad de la luz, conseguir los objetivos y no vulnerar ningún principio físico impuesto por la Naturaleza.
La única respuesta que podemos dar hoy es que así, es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.
A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio.
A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad. Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.
Fotones emitidos por un rayo coherente conformado por un láser
Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada. Hace no muchos días se habló de la posibilidad de que unos neutrinos hubieran alcanzado una velocidad superior que la de la luz en el vacío y, si tal cosa fuera posible, o, hubiera pasado, habríamos de relagar parte de la Teoría de la Relatividad de Einstein que nos dice lo contrario y, claro, finalmente se descubrió que todo fue una falsa alarma generada por malas mediciones. Así que, la teoría del genio, queda intacta.
¡La Naturaleza! Ahí residen todas las respuestas, hay que observarla para saber.
emilio silvera
Ago
26
Maravillas del Universo
por Emilio Silvera ~
Clasificado en El Final del ciclo solar ~
Comments (0)
Algún día, lejano aún en el Tiempo, nuestro Sol, podría verse con alguna de éstas formas
Esta galería muestra cuatro nebulosas planetarias desde el primer estudio sistemático de tales objetos en la vecindad solar hecho por el Observatorio de Rayos X Chandra. Las nebulosas planetarias que aparecen aquí son NGC 6543 — también co nocida como Ojo de Gato — NGC 7662, NGC 7009 y NGC 6826. En cada caso, la emisión de rayos X del Chandra está representada por el color púrpura y la óptica del Telescopio Espacial Hubble está coloreado en rojo, verde y azul.
Verdaderamente, el Universo no dejará nunca de asombrarnos con sus maravillas que, cuando son estudiadas a fondo, son mucho más de lo que en un principio, una simple imagen, por muy bonita que sea, nos pueda decir.
Claro que antes de que se formen las Nebulosas Planetarias que arriba podemos contemplar, y, que el Sol se convierta en una estrella Enana Blanca, muchas son las cosas que tienen que pasar. Veamos la explicación que hemos encontradfo por la red, de entre las muchas que circulan:
El sol se formo hace 4650 millones de años, su gran energía es el producto de transformar el hidrogeno de su núcleo en helio mediante fusión, pero ¿que pasara cuando se le acabe el combustible? Os adelanto que nada bueno.
Dentro de 1000 millones de años el sol empezara a agotar el hidrogeno de su núcleo, y unos procesos internos le obligaran a expandirse.
El Sol, a medida que agote el combustible nuclear de fusíon se convertirá en Gigante Roja
La expansión progresiva del sol hará que este sea cada vez más caliente e inestable y la temperatura media en la Tierra aumentara progresivamente, para los humanos 10 grados más nos llevarían a nuestro límite físico, para entonces mas nos vale tener la tecnología necesaria para colonizar otros lugares de la galaxia o la raza humana se extinguirá.
Los animales que mejor se adapten a las nuevas temperaturas extremas podrían aguantar un poco mas, pero dentro de 1200 millones de años todos los animales y plantas del planeta abran muerto, y los océanos se evaporaran por completo.
Los últimos supervivientes de la Tierra, no seremos nosotros, y, los posibles habitantes serán los que llamamos extremófilos que, ellos sí, aguantrán temperaturasd que nosotros no podemos. Finalmente, la Vida en la Tierra, tal como la conocemos, desaparecerá
Para entonces, los únicos supervivientes serian unos microbios llamados extremófilos, que pueden sobrevivir en condiciones en las que ningún otro ser vivo podría, incluso cuando los océanos se evaporasen, estos microbios tan resistentes podrían conservarse en animación suspendida en el interior de cristales de sal y seguirían metabolicamente activos, esto significa que realizarían todas sus funciones vitales igual que antes, pero a un ritmo mucho más pausado, lo que les permitirá sobrevivir al menos 200 millones de años más, pasado ese tiempo los extremofilos seguirían intentando aferrarse desesperadamente a la vida pero morirían finalmente por falta de agua y el aumento de las temperaturas.
Dentro de 1600 millones de años, no abra ningun rastro de vida, la temperatura de la Tierra será superior a los 105 grados, por encima del punto de ebullición del agua. En los miles de millones de años siguientes, el sol continuara expandiéndose y engullirá primero a Mercurio y luego a Venus.
¿Podéis haceros una idea de lo grande que es el sol actualmente? Dentro de el cabrían ¡¡mas de un millón de Tierras!! Pues dentro de 6000 millones de años será ¡256 veces más grande que ahora y mil veces más luminoso! ahora estamos acostumbrados a verlo del tamaño de la luna, pero cuando alcance su máxima expansión ocupara la mitad de nuestro cielo visible y tendrá casi 322 millones de kilómetros de diámetro.
Estará tan cerca de nuestro planeta que la superficie de la Tierra alcanzara los 1371 grados centígrados, suficiente para fundir el metal.
La Tierra no tendrá escapatoria alguna y el sol la engullirá.
El sol después frenara su expansión y se convertirá en una “enana blanca” del tamaño de la Tierra, el anciano sol se ira apagando poco a poco y el sistema solar será un lugar oscuro, frío y carente de vida.
Por todas estas fase pasará nuestro Sol en el transcurso de su larga vida. Ahora está en la mitad de ella, 5.000 millones de años, y, le dan otros tantos para que “muera” en función de los procesos que conllevan cambios de fase producidos por la degeneración de los estrones (que son fermiones) sometido al Principio de Exclusión de Pauli.
emilio silvera