martes, 19 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La perfección imperfecta

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Me refiero al Modelo estándar y, algunos han llegado a creer que sólo faltan algunos detalles técnicos y, con ellos, la física teórica está acabada. Tenemos un modelo que engloba todo lo que deseamos saber acerca de nuestro mundo físico. ¿Qué más podemos desear?

Resultado de imagen de El MOdelo Estándar de la física de partículas

Bueno, lo que hasta el momento hemos logrado no está mal del todo pero, no llega, ni con mucho, a la perfección que la Naturaleza refleja y que, nosotros perseguimos sin llegar a poder agarrar sus múltiples entrecijos y parámetros que conforman ese todo en el que, sin ninguna clase de excusas, todo debe encajar y, de momento, no es así.

Es cierto que, el Modelo estándar es casi (en algunos momentos), pero no permanentemente, perfecto. En primer lugar, podríamos empezar a quejarnos de las casi veinte constantes que no se pueden calcular. Pero si esta fuese la única queja, habría poco que hacer. Desde luego, se han sugerido numerosas ideas para explicar el origen de estos números y se han propuesto varias teorías para “predecir” sus valores. El problema con todas estas teorías es que los argumentos que dan nunca llegan a ser convincentes.

¿Por qué se iba a preocupar la Naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo, tal como el proncipio de la relatividad, pero nos resistimos a abandonar todos los demás principios que ya conocemos; ¡esos, después de todo, han sido enormemente útiles en el descubrimiento del Modelo estándar! una herramienta que posibilitado a todos los físicos del mundo, construir sus trabajos en ese fascinante mundo de la mecánica cuántica, donde partículas infinitesimales interactúan con las fuerzas y podemos ver, como se comporta la materia en determinadas circunstancias. El mejor lugar para buscar nuevos principios es precisamente donde se encuentran los puntos débiles de la presente teoría.

La regla universal en la física de partículas es que cuando las partículas chocan con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez menores, más pequeñas en el espacio y en el tiempo. Supongamos por un momento que tenemos a nuestra disposición un Acelerador de Partículas 10.000 veces más potente que el LHC, donde las partículas pueden adquirir esas tantas veces más energías de las alcanzadas actualmente. Las colisiones que tendrían lugar nos dirían algo acerca de los detalles estructurales de esas partículas que ahora no conocemos, que serían mucho más pequeños que los que ahora podemos contemplar. En este punto se me ocurre la pregunta: ¿Seguiría siendo correcto el Modelo estándar? 0, por el contrario, a medida que nos alejemos en las profundidades de lo muy pequeño, también sus normas podrían variar al mismo tiempo que varían las dimensiones de los productos hallados. Recordad que, el mundo no funciona de la misma manera ante lo grande que ante lo infinitesimal.

lhc

 El LHC cuando se puso en marcha, tardó menos de un mes en localizar el ‘bosón W’, que durante mucho tiempo estaba siendo perseguido por todos los físicos del mundo. Hacía falta un inmenso conglomerado de energía para llegar hasta él.

l Gran Colisionador de Hadrones (LHC, por sus siglas en inglés), de la Organización Europea de Física Nuclear (CERN, por sus siglas en inglés), ha obtenido en apenas un mes de funcionamiento los primeros resultados “espectaculares” en su investigación, el ‘bosón W’, que hasta ahora los científicos tardaban meses en conseguir.

Resultado de imagen de Colisiones a 70.000 TeV que abren agujeros de gusano

     De momento sólo se han utilizado 14 TeV y proximamente se llegará a los 100

¿Podéis imaginar conseguir colisiones a 70.000 TeV? ¿Que podrías ver? Y, entonces, seguramente, las protestas de algunas de que “ese monstruo” podría abrir un agujero de gunsano en el esapcio tiempo…¡tendría algún fundamento! No sabemos lo que puede pasar si andamos con fuerzas que no podemos dominar.

Hoy, el Modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aín más pequeñas. Pero tenemos algunas razones para sospechar que tales predicciones resultan estar muy alejadas de la realidad, o, incluso, ser completamente falsas.

Encendamos nuestro supermicroscopio imaginario y enfoquemosló directamente en el centro de un protón o de cualquier otra partícula. Veremos hordas de partículas fundamentales desnudas pululando. Vistas a través del supermicroscopio, el modelo estándar que contiene veinte constantes naturales, describen las fuerzas que rigen la forma en que se mueven. Sin embargo, ahora esas fuerzas no sólo son bastante fuertes sino que también se cancelan entre ellas de una forma muy especial; están ajustadaspara conspirar de tal manera que las partículas se comportan como partículas ordinarias cuando se vuelven a colocar el microscopio en la escala de ampliación ordinaria. Si en nuestras ecuaciones matemáticas cualquiera de estas constantes fueran reemplazadas por un número ligeramente diferente, la mayoría de las partículas obtendrían inmediatamente masas comparables a las gigantescas energías que son relevantes en el dominio de las muy altas energías. El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural.

¿Implica el ajuste fino un diseño con propósito? Hay tantos parámetros que deben tener un ajuste fino y el grado de ajuste fino es tan alto, que no parece posible ninguna otra conclusión.

Bueno, quizá en la imagen y el comentario que lleva abajo, me he podido pasar un poco. Lo que antes decía: “El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural”, es lo que se llama el “problema del ajuste fino”. Vistas a través del microscopio, las constantes de la Naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático, no hay nada que objetar, pero la credibilidad del Modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas o, lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas.

Resultado de imagen de el ajuste fino del universo

¿Y por qué debería ser el modelo válido hasta ahí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables, e ellas podrían modificar completamente el mundo que Gulliver planeaba visitar. Si deseamos evitar la necesidad de un delicado ajuste fino de las constantes de la Naturaleza, creamos un nuevo problema:

Resultado de imagen de ¿Cómo podemos modificar el modelo estándar de tal manera que el ajuste-fino no sea necesario?

… fuerzas y podemos ver, como se comporta la materia en determinadas circunstancias. El mejor lugar para buscar nuevos principios es precisamente donde se …

¿Cómo podemos modificar el modelo estándar de tal manera que el ajuste-fino no sea necesario? Está claro que las moficiaciones son necesarias , lo que implica que muy probablemente hay un límite más allá del cual ewl modelo deja de ser válido. El Modelo estándar no será más que una aproximación matemática que hemos sido capaces de crear, tal que todos los fenómenos observados hasta el presente están de acuerdo con él, pero cada vez que ponemos en marcha un aparato más poderoso, debemos esperar que sean necesarias nuevas modificaciones para ir ajustando el modelo, a la realidad que descubrimos.

Resultado de imagen de http://www.zonaoposiciones.com/pensador.gifResultado de imagen de http://www.zonaoposiciones.com/pensador.gif

¿Cómo hemos podido pensar de otra manera? ¿Cómo hemos tenido la “arrogancia” de pensar que podemos tener la teoría “definitiva”? Mirando las cosas de esta manera, nuestro problema ahora puede muy bien ser el opuesto al que plantea la pregunta de dónde acaba el modelo estándar: ¿cómo puede ser que el modelo estándar funcione tan extraordinariamente bien? y ¿por qué aún no hemos sido capaces de percibir nada parecido a otra generación de partículas y fuerzas que no encajen en el modelo estándar?

Resultado de imagen de Foto de El hallazgo de una nueva partícula abre un nueva era para la física

                                                         Nos quedan muchas cosas por descubrir

Asistentes escuchan la presentación de los resultados del experimento ATLAS, durante el seminario del Centro Europeo de Física de Partículas (CERN) para presentar los resultados de los dos experimentos paralelos que buscan la prueba de la existencia de la “partícula de Higgs”, uno de los 20 parámetros (metidos con calzador en el Modelo) que faltan por hallar para completarlo.

Resultado de imagen de Foto de El hallazgo de una nueva partícula abre un nueva era para la física

La pregunta “¿Qué hay más allá del Modelo estándar”? ha estado fascinando a los físicos durante años. Y, desde luego, todos sueñan con llegar a saber, qué es lo que realmente es lo que conforma el “mundo” de la materia, qué partículas, cuerdas o briznas vibrantes. En realidad, lo cierto es que, la Física que conocemos no tiene que ser, necesariamente, la verdadera física que conforma el mundo y, sí, la física que conforma “nuestro mundo”, es decir, el mundo al que hemos podido tener acceso hasta el momento y que, no necesariamente tiene que tratarse del mundo real.

O, como decía aquél: ¡Que mundo más hermoso, parece de verdad!

http://4.bp.blogspot.com/-t7BYp5UcTgk/Tu-34NeqgRI/AAAAAAAAAEY/2xERJsqryoE/s1600/quarks.jpg

No todo lo que vemos es, necesariamente, un reflejo de la realidad de la Naturaleza que, puede tener escondidos más allá de nuestras percepciones, otros escenarios y otros objetos, a los que, por ahora, no hemos podido acceder, toda vez que, físicamente tenemos carencias, intelectualmente también, y, nuestros conocimientos avanzar despacio para conseguir, nuevas máquinas y tecnologías nuevas que nos posibiliten “ver” lo que ahora nos está “prohibido” y, para ello, como ocurre siempre, necesitamos energías de las que no disponemos.

http://1.bp.blogspot.com/-BfG-17MUa2w/TviUd6jfxII/AAAAAAAACIE/E6Wot1PbMOY/s1600/vacuum1.jpg

Hay dos direcciones a lo largo de las cuales se podría extender el Modelo estándar, tal como lo conocemos actualmente, que básicamente se caraterizan así:

– Nuevas partículas raras y nuevas fuerzas extremadamente débiles, y

– nuevas partículas pesadas y nuevas estructuras a muy altas energías.

Resultado de imagen de Existen partículas difíciles de producir y detectar

Esquema simplificado que ilustra la colisión entre dos protones de alta energía y la aparición de partículas de mayor masa que estos tras la colisión.

Podrían existir partículas muy difíciles de producir y de detectar y que, por esa razón, hayan pasado desapaercibidas hasta ahora.  La primera partícula adicional en la que podríamos  pensares un neutrino rotando a derecha. Recordaremos que si se toma el eje de rotación paralelo a la dirección del movimiento los neutrinos sólo rotan a izquierdas pero, esa sería otra historia.

Resultado de imagen de "Los interferómetros atómicos tienen ahora la sensibilidad para observar nuevas fuerzas más allá del modelo estándar de la física de partículas.

En un artículo que no recuerdo donde fue publicado, pude leer:

“Los interferómetros atómicos tienen ahora la sensibilidad para observar nuevas fuerzas más allá del modelo estándar de la física de partículas. Las nuevas fuerzas a corta distancia son una predicción frecuente de las teorías más allá del Modelo Estándar y la búsqueda de estas nuevas fuerzas es un canal prometedor para descubrir una nueva física”, dice Jay Wackerdel Laboratorio del Acelerador Nacional SLAC en California. La pregunta es cómo encontrarlas”

http://4.bp.blogspot.com/-HfR7qGN039Q/T5w_3J0KeKI/AAAAAAAABcY/fcJMR0S7tIw/s1600/Experimento-con-neutrinos.jpg

Los neutrinos siempre me han fascinado. Siempre se han manifestado como si tuvieran masa estrictamente nula. Parece como si se movieran exactamente con la velocidad de la luz. Pero hay un límite para la precisión de nuestras medidas. Si los neutrinos fueran muy ligeros, por ejemplo, una cienmillonésima parte de la masa del electrón, seríamos incapaces de detectar en el laboratorio la diferencia entre éstos y los neutrinos de masa estrictamente nula. Pero, para ello, el neutrino tendría que tener una componente de derechas.

En este punto, los astrónomos se unen a la discusión. No es la primera vez, ni será la última, que la astronomía nos proporciona información esencial en relación a las partículas elementales. Por ejemplo, debido a las interacciones de corriente neutra (las interacciones débiles originadas por un intercambio Zº), los neutrinos son un facto crucial en la explosión  supernova de una estrella. Ahora sabemos que debido a las interacciones por corriente neutra, pueden colisionar con las capas exteriores de la estrella y volarlas con una fuerza tremenda.

http://latabernaglobal.com/wp-content/uploads/2012/02/NEUTRIN1.jpg

En realidad, los neutrinos nos tienen mucho que decir, todavía y, no lo sabemos todo acerca de ellos, sino que, al contrario, son muchos los datos y fenómenos que están y subyacen en ellos de los que no tenemos ni la menor idea que existan o se puedan producir. Nuestra ignorancia es grande, y, sin embargo, no nos arredra hablar y hablar de cuestiones que, la mayoría de las veces…ni comprendemos.

Aquí lo dejar´ñe por hoy, el tema es largo y de una fascinación que te puede llevar a lugares en los que no habías pensado al comenzar a escribir, lugares maravillosos donde reinan objetos exóticos y de fascinante porte que, por su pequeñez, pueden vivir en “mundos” muy diferentes al nuestro en los que, ocurren cosas que, nos llevan hacia el asombro y también, a ese mundo mágico de lo fascinante y maravilloso.

emilio silvera

Mesopotamia: El pueblo sumerio

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Situada en una región histórica del Oriente Medio, en las planicies aluviales entre los ríos Éufrates y Tigris, donde el pueblo sumerio construyó la primera ciudad del mundo y… ¡Mucho más!

Resultado de imagen de LOs inventos sumerios

Mesopotamia es una zona geográfica, no una civilización. Durante el período de varios miles de años, esta zona estuvo controlado por un conjunto difuso y variado de pueblos: sumerios, hititas, árabes y otros. No obstante, la tecnología evolucionó y se transfirió entre estas civilizaciones dentro de Mesopotamia como si se tratara de una sola sociedad coherente.

Es fácil hacer un seguimiento retrospectivo del desarrollo de la tecnología llegando hasta los sumerios, hasta la que podría ser la civilización humana a partir de la cual se desarrollaron todas las demás, si se exceptúa el caso de las civilizaciones de América.

Resultado de imagen de LOs inventos sumerios

Los Sumerios fueron unas tribus que habían llegado del este. de las montañas de Elam, quizá ya en el año 8000 a. C. Se asentaron cerca de los pantanos frente al Golfo Pérsico, entre los ríos Tigris y Éufrates. Posteriormente los griegos los llamaron Mesopotamia a esta tierra situada entre ríos, en el extremo más oriental del Creciente Fértil. Se extendía desde el Golfo Pérsico hasta el mar Mediterráneo. El Creciente Fértil se convirtió en el cruce de caminos del mundo euroasiático, siendo la zona de arranque de muchas, si no de todas, las culturas posteriores del hemisferio oriental.

Sumer surgió en elgún momento anterior a 5000 a. C., y allí comienza la crónica escrita de la Humanidad. “Si comparamos a los sumerios con los cazadores recolectores que les precedieron”, nos dice Crosby, “veremos que el contraste entre este pueblo del amanecer de la civilización y cualquier pueblo de la Edad de Piedra es mayor que el contraste entre los sumerios y nuestra propia civilización. Al contemplar a los sumerios, los arcadios, los egipcios, los israelitas y los babilonios, “lo que estamos haciendo es mirarnos en un espejo muy viejo y polvoriento”.

Resultado de imagen de La alfarería en sumeria

                                                    También trabajaron la alfarería

La era tecnológico comenzó en Oriente Medio, cuando los seres humanos empezaron a moler y pulir sus herramientas de piedra, en vez de tallarlas a golpes, y terminó cuando aprendieron a fundir metales y trabajarlos para convertirlos en herramientas de calidad superior. Entretanto, nuestros antepasados domesticaron “todos los animales de nuestros corrales y prados, aprendieron a escribir, construyeron ciudades y crearon una civilización. El Científico historiador Crosby nos dice que Colón y sus contemporáneos europeos deben tanto a las civilizaciones del antiguo Oriente Medio como a todo lo que se inventó en Europa.

Resultado de imagen de El sistema sexagesimal sumerio

                                              El sistema aritmético sexagesimal sumerio

En resumen, el genio de los aritméticos sumerios sólo puede calificarse como sobresaliente. Los primeros documentos escritos atestiguan el uso de la combinación de un sistema sexagesimal con bases auxiliares decimales y duodecimales, de forma que se pueden aprovechar al máximo las ventajas de ambos sistemas; una combinación tan versátil que incluso seguimos empleándolo en algunos campos del conocimiento: todavía hoy tenemos días de 24 horas (2/5 de la base), cada una de las cuales se divide en 60 minutos de 60 segundos cada uno, y al igual que en el tiempo de los sumerios, nuestras circunferencias se dividen en 360 grados, cada uno de los cuales tiene 60 minutos de arco compuestos por 60 segundos de arco por cada uno de ellos. Desde luego, los aritméticos sumerios pueden sentirse legítimamente orgullosos de su creación.

Resultado de imagen de LOs sumerios inventaron el jabón

Se cree que el jabón se inventó hace unos tres mil años. Se han encontrado en la Mesopotamia tablillas de arcilla sumerias que mencionan la mezcla que se obtenía de hervir aceites con potasio, resinas y sal y sobre su uso medicinal.

El origen del jabón

Los fenicios lo fabricaban con aceite de oliva y soda cáustica (o carbonato de sodio) obtenida a partir de las cenizas de la combustión de plantas halófitas (plantas que viven en las salinas) como la salicornia o la salsola.

El jabón ha acompañado al hombre desde hace milenios. Los sumerios, 3000 años a.C., ya lo fabricaban hirviendo sustancia alcalinas y usando el residuo sobrenadante para lavarse.

Resultado de imagen de LOs inventos sumerios

                                                                    La escritura en forma cuneiforme

Aquí tenéis otras muestras de la inventiva sumeria que, de tenerlas que poner todas aquí, nos faltaría espacio. La Civilización Sumeria, hizo gala de una inmensa imaginación para la inventiva aplicada a las cosas prácticas de la vida cotidiana. La escritura, la agricultura y la rueda para hacer más fácil el transporte de las cosas.

Las primeras ciudades se desarrollaron en Mesopotamia,en la región comprendida entre el Tigris y el Eúfrates. Al ser una tierra fértil, sus habitantes cultivaban cereales y criaban ganado.Los sumerios (habitantes de Mesopotamia) intercambiaban cereales con las regiones vecinas a cambio de metales y útiles. Distintas ciudades destacaron según la época, pero todas tuvieron una cultura similar.

Los sumerios profesaban una religión jerarquizada, con muchos dioses. En cada ciudad había un zigurat (templo) que estaba formado por una plataforma y varios pisos unidos a través de escaleras. El zigurat de Ur, construido ca. 2100 a.c., estaba dedicado al dios lunar Nannar, que era el dios de la ciudad. Los sacerdotes le hacían ofrendas a diario.

 Escritura cuneiforme. Los primeros signos pictográficos se transformaron gradualmente en la escritura cuneiforme (forma de cuña) utilizada por los sumerios. Con una caña hacían marcas sobre tablillas de arcilla húmeda.

Cada ciudad era gobernada por un rey y un grupo de sacerdotes: 2330 a.C., Sargón 1 el Viejo, de Acad, gobernó en toda Mesopotamia. En otros trabajos expuestos en este Blog os he hablado ampliamente de aquellas ciudades: Ur, Uruk y Erídu.

Los sumerios comenzaron a a crear una industria textil, trabajando la lana para convertir en paño y el lino para fabricar lienzo. Construyeron canales y diques para controlar el agua de los ríos y llevar el exceso de éstas a sus campos, La rueda la inventaron alrededor del año 3500 a. C. Este invento hizo posible la construcción de carretas y de tornos de alfarero, hizo que fuera más fácil el transporte y posibilitó el uso de carros y otras máquinas de guerra. Los primeros objetos con superficies vidriadas aparecieron alrededor del año 4000 a. C.; los primeros objetos de vidrio se fabricaron hacia 2500 a.C. tanto en Mesopotamia como en Egipto.

Resultado de imagen de LOs inventos sumerios

Los sumerios comenzaron a desarrollar la escritura más o menos al mismo tiempo que la rueda; alrededor del 3500 a. C. Algunos investigadores han pensado durante mucho tiempo que la escritura evolucionó para llevar un registro de propiedades y contabilizar el intercambio de mercancias.

Está claro que hoy, nos movemos en las grandes ciudades y, casi ninguno de nostros se pone a pesnar, alguna vez que, debemos a los sumerios muchas de las cosas que nos hace la vida más placentera y menos difícil. Ellos, con sus inventos, hicieron posible que hoy vivamos en las modernas ciudades de las que podemos disfrutar.

Resultado de imagen de Restos de la ciudad de Uruk

                      Según los datos recopilados, así podría haber sido la ciudad de Uruk

Resultado de imagen de Sargon

Sargón, el poderoso rey, rey de Agadé, soy yo. Mi madre fue una cambiante, a mi padre no lo conocí. Los hermanos de mi padre amaron las colinas.

Resultado de imagen de Otras ciudades de Sumeria

Las ciudades rivalizaban unas de otras por el poder y la riqueza. Hubo algunos intentos de conquistar todas las ciudades para unificar al pueblo sumerio, pero ninguna tuvo éxito. Hasta que en el año 2350 a. C., apareció Sargón, un acadio de la ciudad de Kish. Se hizo con el poder de su ciudad y trató extenderlo al resto de ciudades sumerias. Lo consiguió y hoy se le considera el fundador del primer gran imperio de la Historia.

Pero el imperio no duró mucho tiempo. Debido a las revueltas internas y a los ataques de los pueblos nómadas, los herederos de Saragón vieron como, en el año 2220 a. C. el imperio se deshacía en pedazos, quedando reducido a una serie de ciudades estado independientes. Sus gobernantes desarrollaron una habilidad especial para la política.

Imagen relacionada

    Representación de un Zigurat, la morada del dios de la ciudad y punto de observación del cielo.

De las montañas de Irán y Turquía los sumerios importaron los metales necesarios para fabricar bronce y también técnicas para trabajar y fabricar metales. En general, los sumrios importaron por tierra y por mar, metales, maderas, lapislázuli y otras piedras, y exportaron tejidos, joyas y armas. Antes del año 3000 a, C. los contables de los templos de Sumer habían establecido una serie de pesos estándar para las transacciones comerciales; ponían fuertes multas a los que intentaban estafar con pesos falsos.

Resultado de imagen de La vida cotidiana en las ciudades de sumeria

Hacia el 3000 a. C. las ciudades prosperaron por toda la región a partir de la primera ciudad; Uruk, que abrió el camino a los otras que la siguieron haciendo de toda aquella región un emporio de riqueza y abundancia que, sin duda alguna, había sido ganada a base de ingenio y talento de los sumerios que, como digo y sin ningún género de dudas, pueden ser considerados como la primera y verdadera Civilización de nuestro Mundo.

Mucho sería lo que podríamos seguir hablando aquí de los sumerios y de sus increíbles logros. Sin embargo, el objeto del presente trabajo radica simplemente en dejar sentada la importancia que tuvieron aquellos pueblos del pasado para hacer posible nuestra actual situación. Precisamente por eso, cuando veo hasta donde hemos llegado en algunas regiones de la Tierra, me asuta pensar en el negro futuro que estamos dejando a los jóvenes de hoy.

emilio silvera

Einstein le llamó fotón: ¡El cuanto de Luz!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                       ¡Esas partículas! Algunas son más elementales que otras

Quarksfotónneutrinoelectrónprotónneutrónmuóntaukaónsigmaomega, W y Z, gluónfotóngravitón…, son muchas más pero estas se consideran las más importantes al formar la materia e intermediar en las interacciones con las cuatro fuerzas fundamentales del universo. Sus  nombres son muy familiares y, cada una de ellas nos trae una imagen que está asociada a aquello de lo que creemos que forma parte.

El fotón es el cuanto de luz, radiación electromagnética de una longitud de onda comprendida entre 380 y 780 mm, que produce percepción visual. Se define como el producto de visibilidad por el poder radiante, siendo éste último la intensidad de propagación de la energía luminosa.

Un fotón gamma de más alta energía tendría una velocidad menor que otro de baja energía según algunas ideas. Foto: NASA. Según los datos de Fermi, los fotones gamma de alta energía tienen la misma velocidad aunque sus energías sean diferentes. Esto apoya obviamente la Relatividad Especial y contradice algunos resultados teóricos relacionados con teorías cuánticas de gravedad que predecían lo contrario.

El fotón, como partícula, con masa nula en reposo que recorre el espacio vacío a 299.792.458 metros por segundo, puede ser considerado como una unidad de energía igual a hf, donde h es la constante de Plancky f es la frecuencia de la radiación en hertzios. Son necesarios para explicar el fenómeno fotoeléctrico y otros fenómenos que requieren que la luz tenga carácter de partícula.

De la luz, nos podríamos estar hablando horas y horas, de sus propiedades en fotónica, fotoquímica, fotosfera y otros muchos ámbitos del saber humano con la luz relacionados, como por ejemplo, la claridad luminosa que irradian los cuerpos en combustión, ignición o incandescencia.

En estos tiempos se ha logrado el teletransporte de un haz de fotones a larga distancia que, entre otras cosas, facilitará tanto transmitir información como protegerla de un eventual robo de datos. Un grupo de físicos chinos hizo realidad la teletransportación cuántica de fotones a una distancia de 97 kilómetros. Su haz recreado conservaba la capacidad de llevar información. Lejos queda ya aquel tiempo en el que, aquel genio…,  llamado

 

Newton nos descubrió que la luz del Sol o luz blanca, era el producto de la mezcla de todos los componentes coloreados, hizo pasar un rayo de luz por un prisma y, la habitación donde hacía el experimento, sus paredes, se llenaron de luciérnagas luminosas de muchos colores, el arco iris estaba allí, del rojo al violeta, descompuestos en mariposas luminosas.

Aunque el tema de la luz me fascina, no quiero repetirme, y,  en uno de mis últimos trabajos, traté ampliamente el tema. El estado natural (último) de la materia, no será sólido, líquido, gaseoso, plasma o materia oscura, el estado final de la materia, cuando pase por todas las fases y trascienda a un estado superior de conexión total con el Universo, será la LUZ. Ahí, dentro de los rayos luminosos, estarán gravados todos los recuerdos, toda la conciencia de la Humanidad que, para entonces, será otra cosa y, sonreirá al ver que un día muy lejano, discutían de Tiempo, de Materia, de… Energías… Cuando no sabían que todo, es la misma cosa en diferentes estadios de su trayectoria universal.

Un equipo internacional de científicos del experimento MINOS en el laboratorio del Acelerador Nacional Fermi (Fermilab) ha anunciado la medición más precisa del mundo hasta la fecha de los parámetros que rigen las oscilaciones antineutrino (de atrás y hacia adelante), es decir las transformaciones de antineutrinos de un tipo a otro. Este resultado proporciona información crucial sobre la diferencia de masa entre diferentes tipos de antineutrinos. La medición mostró una diferencia inesperada en los valores para neutrinos y antineutrinos. En este parámetro de diferencia de masa, el valor de los neutrinos es aproximadamente un 40 por ciento menor que el de los antineutrinos.

Si hablamos de neutrinos, estamos hablando de Leptones y, a pesar de lo que digan esas mediciones… el neutrino y su oponente antineutrino, deben tener exactamente la misma masa. De no ser así, se rompería el equilibrio que debe existir y, de hecho existe.

Después de tres meses de experimentos en un laboratorio de el Imperial College de Londres, los científicos pueden confirmar –con más confianza que nunca– que el electrón es muy, muy redondo.En las mediciones más exquisitas hasta la fecha, los investigadores declararon que la partícula es una esfera perfecta dentro de una mil millonésima de una mil millonésima de una mil millonésima de centímetro. Si los electrones se aumentaran a escala hasta tener el tamaño del sistema solar, cualquier desviación de su redondez sería menor que el ancho de un cabello humano, señaló el equipo.

El electrón es la partícula principal de la familia leptónica y está presente en todos los átomos en agrupamientos llamados capas electrónicas alrededor del núcleo. Tiene una masa en reposo (me) de numeración 9,1093897(54) × 10-31 Kg y una carga negativa de 1,602 17733(49) × 10-19 culombios. La antipartícula es el positrón que, en realidad, es copia exacta de todos sus parámetros, a excepción de la carga que es positiva.

File:Generaciones delamateria.png

Las dos familias: Quarks y Leptones, conforman la materia y, la familia de Bosones intermedian en las cuatro fuerzas fundamentales.

Si el electrón se considerara como una carga puntual, su autoenergía es infinita y surgen dificultades de la ecuación de Lorentz-Dirac. Es posible dar al electrón un tamaño no nulo con un radio r0 llamado el radio clásico del electrón, dado por r0 = e2/(mc2) = 2’82×10-13 cm, en donde e y m son la carga y la masa del electrón y c la velocidad de la luz.

El electrón es muy importante en nuestras vidas, es un componente insustituible de la materia y los átomos que son posibles gracias a sus capas electrónicas alrededor de los núcleos positivos que se ven, de esta forma equilibrados por la energía igual, negativa, de los electrones.

Resultado de imagen de Utilizando grandes aceleradores de partículas hemos conseguido conocer la materia

“Un nuevo reto estaba sobre la mesa. ¿Cuándo dejan de danzar los quarks dentro de los bariones? Esto es lo que trataron de explicar durante el verano de 2017 en el supercolisionador. Una investigación que aún está llevándose a cabo describe el comportamiento de los quarks pesados de un barión como planetas orbitando alrededor de una gran estrella.”

                  Utilizando grandes aceleradores de partículas hemos conseguido conocer la materia

Resultado de imagen de La familia de los hadrones

Resultado de imagen de La familia de los hadrones

Los Quarks confinados dentro de los hadrones (nucleones) en el núcleo del átomo y sujetados por los Gluones que no los dejan separarse mediante la fuerza nuclear fuerte.

Los protones, como los neutrones, son de la familia de los Hadrones. El protón es una partícula (no elemental) que tiene carga positiva igual en magnitud a la del electrón y posee una masa de 1,672614 x 10-27 kg, que es 1836,12 veces la del electrón. El protón aparece en los núcleos atómicos, por eso, junto al neutrón, también son conocidos como nucleones.

La familia de los Hadrones es la clase de partícula subatómica que interaccionan fuertemente, e incluye protonesneutrones y piones. Los hadrones son o bien bariones, que se desintegran en protones y que se cree están formados por tres quarks, o mesones, que se desintegran en leptones o fotones o en pares de protones y que se cree que están formado por un quark y un antiquark.

La materia bariónica, es la que forman planetas, estrellas y Galaxias, y la podemos ver por todas partes. Nosotros mismos estamos hechos de Bariones. La otra materia, esa que no podemos ver y que, nuestra ignorancia nos ha llevado a llamar oscura, esa, de momento no sabemos ni lo que es, o, si realmente existe y, los fenómenos observados que ella se adjudican, tienen su fuente en otra parte.

Resultado de imagen de La familia de los hadronesResultado de imagen de La familia de los Quarks

        Todo lo que vemos en el universo está hecho de materia bariónica, es decir: Quarks y Leptones

Resultado de imagen de La familia de los Bosones

En el Modelo Estándar de la física de partículas, los Bosones aparecen en la última fila vertical, y, representan los mensajeros de las cuatro fuerzas fundamentales. El gravitón sigue sin dejarse “ver”.

Las partículas conocidas como bosonesfotóngluóngravitón, partícula W+ W– y Zº son las que median en el transporte de las fuerzas fundamentales de la naturaleza. Electromagnetismo, fuerza fuerte, la Gravedad, y la fuerza débil. El Fotón transporta el electromagnetismo, la luz y todas las formas de radiación electromagnéticas. El Gluón (el de la libertad asintótica de David Politzer, Frank Wilczek y David Gross), transporta la fuerza nuclear fuerte que se desarrolla en el núcleo del átomo. El Gravitón (ese que aún no hemos localizado), es el mensajero de la Gravitación Universal, haciendo posible que nuestros pies estén bien asentados sobre la superficie del planeta y que el Sistema solar sea estable. Y, por último, las partículas W y Z, responsables de la radiación natural y espontánea de algunos elementos como el Uranio.

Este pequeño repaso a modo de recordatorio, es algo inevitable, si hablamos de materia, las partículas se nos cuelan y, como si tuvieran vida propia (que la tienen), nos obliga a hablar de ellas, lo que, por otra parte no esta mal.

File:Combustion methane.es.png

Cuando se enunció la ley de la conservación de la materia no se conocía el átomo, pero con los conocimientos actuales es obvio: puesto que en la reacción química no aparecen ni destruyen átomos, sino que sólo se forman o rompen enlaces (hay un reordenamiento de átomos), la masa no puede variar.

Como la única verdad del Universo es que todo es lo mismo, la materia ni se fabrica ni se destruye, sino que, en cada momento, cada cosa ocupa su lugar exacto por la evolución, la entropía y el paso del tiempo, resulta que, al final, se hable de lo que se hable, aunque sea de la conciencia y del ser, venimos a parar al mismo sitio: El Universo, la materia, la luz, el tiempo… ¡Y nuestras mentes que son el producto de más alto nivel en la evolución de la materia!

Parece mentira como a veces, cuando estoy inmerso en mis más profundos pensamientos, y creo tener una conexión directa con algo que, estando dentro de mí,  intuyo superior, lo veo todo más claro y, en ese momento especial,  todo es más fácil.El Universo está ante mí como un todo de diáfana claridad. Sin embargo, son efímeros momentos que se esfuman y me traen a la realidad de esa complejidad insondable que nos hace comprender, cuan ignorantes somos.

Claro que, si seguimos evolucionando y la Naturaleza nos respeta… ¡Hasta donde podremos llegar! Muchas veces hemos dicho aquí que somos conscientes y aplicamos nuestra razón natural para clasificar los conocimientos adquiridos mediante la experiencia y el estudio para aplicarlos a la realidad del mundo que nos rodea.

También hemos dicho que el mundo que nos rodea es el que nos facilita nuestra parte sensorial, la mente, y que este mundo, siendo el mismo, puede ser muy diferente para otros seres, cuya conformación sensorial sea diferente a la nuestra. Parece que, realmente es así, lo que es para nosotros, para otros no lo será y, tenemos que tener en cuenta esta importante variable a la hora de plantearnos ciertos problemas que, de seguro, tendremos que afrontar en el futuro. Hay diferentes maneras de resolver el mismo problema, solo tenemos que tratar de entenderlos.

                               No todos ven “el mundo” de la misma manera

La Naturaleza de la mente es el misterio más profundo de la humanidad., se trata, además de un enigma de proporciones gigantescas, que se remonta a milenios atrás, y que se extiende desde el centro del cerebro hasta los confines del Universo. Es un secreto que provocó vértigo y depresión en alguna de las mentes más preclaras de algunos de los filósofos y pensadores más grandes que en el mundo han sido. Sin embargo, este amplio vacío de ignorancia está, ahora, atravesado, por varios rayos de conocimiento que nos ayudará a comprender cómo hemos podido llegar hasta aquí y qué conexión existe realmente entre nuestras mentes y el universo inmenso.

Haga clic para mostrar el resultado de "Cerebro" número 3Resultado de imagen de El cerebro humano... ¡Esa maravilla!

Hablar de la “Mente” y del “Cerebro” es querer ir mucho más allá de nuestros conocimientos. Una Galaxia como la Vía Láctea tiene más de 100 000 millones de estrellas, y, un cerebro humano, tiene casi las mismas neuronas y, además, conexiones sin fin que generan ideas y pensamientos, algo que la galaxia no puede hacer. Así que, nos encontramos ante un complejo dilema: La verdad no puede ser experimentada de la misma forma que podemos experimentar con los objetos que están fuera, separados de nosotros y que podemos ver y observar, estudiar sus mecanismos y funciones pero, eso que llamamos “La Mente” es algo más, mucho más que una simple galaxia que “sólo” tiene Estrellas, Nebulosas y Mundos, una Mente, amigos míos, tiene dentro mucho más. Tanto es lo que tiene que no hemos podido llegar a comprender, siendo algo tan cercano a nosotros y que -creemos- está dentro de nosotros mismos, y, sin embargo, no sabemos lo que es, como funciona, y, hasta dónde puede llegar.

Imagen relacionadaImagen relacionadaImagen relacionada

          Sí, nuestro cerebro, y nosotros mismos, podemos ser la obra más compleja del Universo

Es curioso constatar como el enorme flujo de información que llega a mi mente a velocidad de vértigo, a veces (como ahora me ha pasado), estoy hablando de una cosa y me transporto  a otra distinta, sin querer, sin que me de cuenta al principio elijo caminos diferentes a los que debía llevar para hacer coherente la conversación iniciada en un campo de objetos materiales. Estaba comentando sobre el cometido de las partículas.

Crookes tube-in use-lateral view-standing cross prPNr°11.jpg

La naturaleza de partícula del electrón se demostró por primera vez con un tubo de Crookes. En esta ilustración, un haz de electrones proyecta el perfil en forma de cruz del objetivo contra la cara del tubo.

  • En 1.897, J.Thomson, descubrió el electrón
  • En 1.911, Rutherford, descubrió el núcleo atómico y el protón
  • En 1.932, Chadwick, descubrió el neutrón.

Así quedó sentado que, el modelo atómico estaba completo basado en un núcleo consistente en protonesneutrones rodeados en su órbita, de un número suficiente de electrones que equilibraba la carga nuclear y lo hacía estable. Pero este modelo no era suficiente para explicar la gran estabilidad del núcleo, que claramente no podía mantenerse unido por una interacción electromagnética, pues el neutrón no tiene carga eléctrica.

Resultado de imagen de En 1.935, Yukawa sugirió que la fuerza de intercambio que lo mantenía junto estaba mediada por partículas de vida corta, llamadas mesones, que saltaban de un protón a un neutrón y hacía atrás de nuevo

Para los no vrsados en “el mundo” de las partículas, no resulta fácil entender las diferentes familias que las forman y el cometido que cada una de ellas …

En 1.935, Yukawa sugirió que la fuerza de intercambio que lo mantenía junto estaba mediada por partículas de vida corta, llamadas mesones, que saltaban de un protón a un neutrón y hacía atrás de nuevo. Este concepto dio lugar al descubrimiento de las interacciones fuertes y de las interacciones débiles, dando un total de cuatro interacciones fundamentales.

También dio lugar al descubrimiento de unas 200 partículas fundamentales de vida corta. Como antes comentaba, en la clasificación actual existen dos clases principales de partículas: Leptones, que interaccionan con el electromagnetismo y con la fuerza nuclear débil y que no tienen estructura interna aparente, y los Hadrones (nucleonespiones, etc.), que interaccionan con la fuerza nuclear fuerte y tienen estructura interna.

Resultado de imagen de Gell-mann y los Quarks

                   Murray Gell-Mann

Fue el modelo de Murray Gell-Mann, introducido en1.964, el que fijó la estructura interna de los hadrones que, estarían formado por minúsculas partículas elementales a las que llamó quarks. Este modelo, divide a los hadrones en bariones (que se desintegran en protones) y mesones (que se desintegran en leptones y fotones). lLos bariones están formados por tres quarks y los mesones por dos quarks (quark y antiquark) En la teoría quark, por tanto, las únicas partículas realmente elementales son los leptones y los quarks.

La familia quarks esta compuesta por seis miembros que se denominan up (u), down (d), charmed (c), strange (s), top (t) y, bottom (b). El protón siendo un barión está constituido por tres quarks, uud (dos quarks up y un quark dowm), y, el neutrón por udd (un quark up y dos dowm).

Fuerza fuerte

Fuerza nuclear fuerte

En un nuevo trabajo, los físicos de altas energía han observado dos estados cuánticos muy buscados en una familia de partículas subatómicas: los bottomonium. El resultado ayudará a los investigadores a comprender mejor una de las cuatro fuerzas fundamentales del universo, la fuerza nuclear fuerte, que ayuda a gobernar lasinteracciones de la

materia

Resultado de imagen de los Quarks confinados en el núcleo atómicoResultado de imagen de los Quarks confinados en el núcleo atómico

“La historia de los quarks nos muestra cómo, a veces, una interpretación más coherente de los datos empíricos obtenidos precisa de hipótesis que se podrían considerar osadas y que, por lo general, son inicialmente ignoradas por la comunidad científica para luego terminar siendo mayoritariamente aceptadas.”

Para que los quarks estén confinados en el núcleo dentro de los nucleones, es necesario que actúe una fuerza, la nuclear fuerte que, entre los quarks se puede entender por el intercambio de ocho partículas sin carga y sin masa en reposo, llamadas Gluones (porque mantienen como pegados a los quarks juntos). Aunque los Gluones, como los fotones que realizan una función similar entre los leptones, no tienen carga eléctrica, si tienen una carga de color. Cada Gluón transporta un color y un anticolor. En una interacción un quark puede cambiar su color, pero todos los cambios de color deben estar acompañados por la emisión de un Gluón que, de inmediato, es absorbido por otro quark que automáticamente cambia de color para compensar el cambio original.

El universo de los quarks puede resultar muy complejo para los no especialistas y como no quiero resultar pesado, lo dejaré aquí y paso de explicar el mecanismo y el significado de los sabores y colores de los quarks que, por otra parte, es tema para los expertos.

                       Dentro del núcleo las fuerzas son… inauditas

Esta teoría de los quarks completamente elaborada está ahora bien establecida por evidencias experimentales, pero como ni los quarks ni los Gluones han sido identificados nunca en experimentos, la teoría no se puede decir que haya sido directamente verificada. Los quarks individuales pueden tener la curiosa propiedad de ser mucho más masivos que los Hadrones que usualmente forman (debido a la enorme energía potencial que tendrían cuando se separan), y algunos teóricos creen que es, en consecuencia, imposible desde un punto de vista fundamental que existan aislados. Sin embargo, algunos experimentales han anunciado resultados consistentes con la presencia de cargas fraccionarias, que tendrían los quarks no ligados y en estado libre.

Resultado de imagen de LHC

En ocasiones anteriores, ya hablamos del LHC, ese acelerador de partículas que tantas esperanzas ha suscitado. Puede que él tenga la respuesta sobre los Gluones y los quarks, además de otras muchas como la partícula de Higgs que llegó a encontrar después de muchos episodios fallidos.

Mirad como es nuestra naturaleza. Resulta que aún no hemos podido identificar a los quarks, y, sin embargo, hemos continuado el camino con teorías más avanzadas que van mucho más allá de los quarks, ahora hemos puesto los ojos y la mente, sobre diminutas cuerdas vibrantes, filamentos cien mil veces más pequeños que los quarks y que serían los componentes más elementales de la materia.

Resultado de imagen de La materia que va creando espacios al expandirseResultado de imagen de La materia que va creando espacios al expandirse

                           La materia que va creando espacios al expandirse

Y, a todo esto, ¿qué será de la teoría final, esa que llaman del Todo y que se conoce como teoría de cuerdas? Si finalmente resulta que dichos diminutos objetos están ahí, podría resultar que tampoco sean los componentes finales de la materia, pero el avance será muy significativo. La teoría de supercuerdas, ahora refundida por E. Witten, en la teoría M, si realmente se verifica, nos dará muchas respuestas.

emilio silvera