viernes, 26 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




A la NASA no se le va de la cabeza el planeta Marte

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Tienen un ambicioso plan para convertir a Marte en un planeta habitable

Resultado de imagen de Marte será habitable

 

 

La agencia espacial presentó su osado proyecto que implica el lanzamiento de un inmenso escudo magnético que protegería al planeta rojo. “Si se puede lograr, la colonización humana no estaría muy lejos”, aseguraron.

Los detalles del proyecto que busca volver a Marte un planeta habitable (iStock)

Los detalles del proyecto que busca volver a Marte un planeta habitable (iStock)

Marte, en los últimos años, se convirtió en la gran obsesión espacial. Científicos especializados en la materia estudian las formas por las que se podría llegar, luego vivir y, por último, las letales secuelas que dejaría la experiencia. El último proyecto de la NASA para volver habitable el planeta rojo llamó la atención por su ambición y osadía.

Hace alrededor de 4.200 millones de años, el campo magnético que protegía la atmósfera de Marte desapareció en forma repentina, lo que tiempo después provocó que su ambiente dejara de ser cálido y húmedo para convertirse en un desierto inhabitable, frío y árido, que dificulta las futuras misiones espaciales, pensadas para a partir de 2030.

Sin embargo, la NASA aparenta tener la solución. La agencia pretende lanzar un gigantesco escudo magnético al espacio para proteger a Marte de los vientos solares. De esa forma, aseguran que podrían restaurar su atmósfera y convertir el ambiente marciano para que el agua líquida fluya sobre la superficie otra vez.

 

La NASA pretende lanzar un inmenso escudo magnético al espacio (IStock)

La NASA pretende lanzar un inmenso escudo magnético al espacio (IStock)

Jim Green, director de la División de Ciencias Planetarias de la NASA, sostuvo que lanzar una “magnetosfera artificial” en el espacio entre Marte y el Sol podría, llegado el caso, proteger al planeta rojo.

En un documento que acompañó la presentación del proyecto, los investigadores escribieron: “Esta solución elimina muchos de los procesos de erosión del viento solar que ocurren con la ionosfera y la atmósfera superior del planeta, permitiendo que la atmósfera marciana crezca en presión y temperatura a lo largo del tiempo“.

Si bien el equipo reconoce que el concepto puede sonar “fantasioso”, apuntan a que estudios recientes ofrecen un aval científico al proyecto. Puntualmente, resaltaron la investigación existente sobre la magnetosfera en miniatura que se lleva a cabo para proteger astronautas y naves espaciales de la radiación cósmica. Intuyen que la misma tecnología, en una escala mayor, podría ser utilizada para salvaguardar Marte.

 

La magnetósfera artificial protegería a Marte de la radiación y el viento solar (Istock)

        La magnetósfera artificial protegería a Marte de la radiación y el viento solar (Istock)

El punto estratégico de colocación del escudo sería Lagrange L1, un sitio espacial ubicado entre el planeta y el sol en el que el objeto podría quedar estacionado. Allí, formaría una gran magnetosfera artificial encargada de protegerlo de la potente radiación y el viento solar.

El equipo de la NASA a cargo del proyecto es optimista. Cree que se puede lograr reestablecer al menos una séptima parte de los océanos que, millones de años atrás, cubrieron el planeta rojo. “Si esto se puede lograr, la colonización humana de Marte no estaría muy lejos”, resaltaron.

Las Interacciones fundamentales de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como pueden haber deducido por el título, me estoy refiriendo a cualquiera de los cuatro tipos diferentes de interacciones que pueden ocurrir entre los cuerpos.  Estas interacciones pueden tener lugar incluso cuando los cuerpos no están en contacto físico y juntas pueden explicar todas las fuerzas que se observan en el universo.

https://mgmdenia.files.wordpress.com/2014/04/images.jpegLa interacción más potente de todas es la que hace posible que los núcleos atómicos existan al mantener confinados a los quarks dentro de los nucleones (protones y neutrones)

Viene de lejos el deseo de muchos físicos que han tratado de unificar en una teoría o modelo a las cuatro fuerzas, que pudieran expresarse mediante un conjunto de ecuaciones. Einstein se pasó los últimos años de su vida intentándolo, pero igual que otros antes y después de él, aún no se ha conseguido dicha teoría unificadora de los cuatro interacciones fundamentales del universo. Se han hecho progresos en la unificación de interacciones electromagnéticas y débiles.

Figuras

 

Estos diagramas son una concepción artística de los procesos físicos. No son exactos y no están hechos a escala. Las áreas sombreadas con verde representan la nube de gluones o bien el campo del gluón, las líneas rojas son las trayectorias de los quarks.

Decaimiento del neutrón

En el texto del recuadro dice: Un neutrón decae en un protón, un electrón y un antineutrino, a través de un bosón virtual (mediador). Este es el decaimiento beta del neutrón.

emás emenos hacia <i>B</i>0 <i>B</i>bar0″ align=”LEFT” vspace=”10″ /><a name=

En el texto del recuadro dice: Una colisión electrón – positrón (antielectrón) a alta energía puede aniquilarlos para producir mesones B0 y Bbarra0 a través de un bosón Z virtual o de un fotón virtual.

eta_c hacia pimás K0 Kmenos

El texto del recuadro dice: Dos protones que colisionan a alta energía pueden producir varios hadrones más partículas de masa muy grande tales como los bosones Z. Este tipo de suceso es raro pero puede darnos claves cruciales sobre cómo es la estructura de la materia.

Aunque no pueda dar esa sensación, todo está relacionado con las interacciones fundamentales de la materia en el entorno del espacio-tiempo en el que se mueven y conforman objetos de las más variadas estructuras que en el Universo podemos contemplar, desde una hormiga a una estrella, un mundo o una galaxia. Las fuerzas fundamentales de la Naturaleza siempre están presentes y de alguna manera, afecta a todo y a todos.

Cuando hablamos de la relatividad general, todos pensamos en la fuerza gravitatoria que es unas 1040veces más débil que la fuerza electromagnética. Es la más débil de todas las fuerzas y sólo actúa entre los cuerpos que tienen masa. Es siempre atractiva y pierde intensidad a medida que las distancias entre los cuerpos se agrandan. Como ya se ha dicho, su cuanto de gravitación, el gravitón, es también un concepto útil en algunos contextos. En la escala atómica, esta fuerza es despreciablemente débil, pero a escala cosmológica, donde las masas son enormes, es inmensamente importante para mantener a los componentes del universo juntos. De hecho, sin esta fuerza no existiría el Sistema Solar ni las galaxias, y seguramente, nosotros tampoco estaríamos aquí. Es la fuerza que tira de nuestros pies y los mantiene firmemente asentados a la superficie del planeta. Aunque la teoría clásica de la gravedad fue la que nos dejó Isaac Newton, la teoría macroscópica bien definida y sin fisuras de la gravitación universal es la relatividad general de Einstein, mucho más completa y profunda.

Resultado de imagen de La gravedad cuántica

Nadie ha podido lograr, hasta el momento, formular una teoría coherente de la Gravedad Cuántica que unifique las dos teorías. Claro que, la cosa no será nada fácil, ya que, mientras que aquella nos habla del macrocosmos, ésta otra nos lleva al microcosmos, son dos fuerzas antagónicas que nos empeñamos en casar.

       Seguimos empeñados en buscar esa teoría que una lo muy grande con lo muy pequeño y la Gravedad, hasta el momento no da el sí

Por el momento, no hay una teoría cuántica de la interacción gravitatoria satisfactoria. Es posible que la teoría de supercuerdas pueda dar una teoría cuántica de la gravitación consistente, además de unificar la gravedad con los demás interacciones fundamentales sin que surjan los dichosos e indeseados infinitos.

¿Hallado un «agujero» en el modelo estándar de la Física?

      Las partículas colisionan ente sí y se producen cambios y transiciones de fase

Algunos han puesto en duda la realidad del Modelo Estándar que, como se ha dicho aquí en otros trabajos, está construído con el contenido de una veintena de parámetros aleatorios (entre ellos el Bos´çon de Higgs) que no son nada satisfactorios para dar una conformidad a todo su entramado que, aunque hasta el momento ha sido una eficaz herramienta de la física, también es posible que sea la única herramienta que hemos sabido construir pero que no es ¡la herramient! 

Es posible que sola sea cuestión de tiempo y de más investigación y experimento. En el sentido de la insatisfacción reinante entre algunos sectores, se encuentran los físicos del experimento de alta energía BaBar, en el SLAC, un acelerador lineal situado en Stanford (California). Según ellos, la desintegración de un tipo de partículas llamado «B to D-star-tau-nu» es mucho más frecuente de lo predicho por el modelo estándar. Puede que no sea importante y puede que, hasta la existencia del Bosón de Higgs esté en peligro a pesar de que en el LHC digan que se ha encontrado.

                                       Esquema del decaimiento Beta y una sencilla explicación de la interacción débil

La fuerza débil recibe su nombre porque a la escala de sus interacciones es la más débil dentro del modelo estándar. Pero ojo, esto no incluye la gravedad, puesto que la gravedad no pertenece al modelo estándar por el momento. La interacción débil ocurre a una escala de  metros, es decir, la centésima parte del diámetro de un protón y en una escala de tiempos muy variada, desde  segundos hasta unos 5 minutos. Para hacernos una idea, esta diferencia de órdenes de magnitud es la misma que hay entre 1 segundo y 30 millones de años.

La interacción débil, que es unas 1010 veces menor que la interacción  electromagnética, ocurre entre leptones y en la desintegración de los hadrones. Es responsable de la desintegración beta de las partículas y núcleos. En el modelo actual, la interacción débil se entiende como una fuerza mediada por el intercambio de partículas virtuales, llamadas bosones vectoriales intermediarios, que para esta fuerza son las partículas W+, W y Z0.  Las interacciones débiles son descritas por la teoría electrodébil, que las unifica con las interacciones electromagnéticas.

                    Propiedades de los Bosones mediadores intermediarios de la fuerza débil

La teoría electrodébil es una teoría gauge de éxito que fue propuesta en 1.967 por Steven Weinberg y Abdus Salam, conocida como modelo WS.  También Sheldon Glashow, propuso otra similar.

La interacción electromagnética es la responsable de las fuerzas que controlan la estructura atómica, reacciones químicas y todos los fenómenos electromagnéticos. Puede explicar las fuerzas entre las partículas cargadas, pero al contrario que las interacciones gravitacionales, pueden ser tanto atractivas como repulsivas. Algunas partículas neutras se desintegran por interacciones electromagnéticas. La interacción se puede interpretar tanto como un modelo clásico de fuerzas (ley de Coulomb) como por el intercambio de unos fotones virtuales. Igual que en las interacciones gravitatorias, el hecho de que las interacciones electromagnéticas sean de largo alcance significa que tiene una teoría clásica bien definida dadas por las ecuaciones de Maxwell. La teoría cuántica de las interacciones electromagnéticas se describe con la electrodinámica cuántica, que es una forma sencilla de teoría gauge.

                               El electromagnetismo está presente por todo el Universo

La interacción fuerte es unas 102 veces mayor que la interacción electromagnética y, como ya se dijo antes, aparece sólo entre los hadrones y es la responsable de las fuerzas entre nucleones que confiere a los núcleos de los átomos su gran estabilidad. Actúa a muy corta distancia dentro del núcleo (10-15 metros) y se puede interpretar como una interacción mediada por el intercambio de mesones virtuales llamados Gluones. Está descrita por una teoría gauge llamada Cromodinámica cuántica.

CNO Cycle.svg

La interacción fuerte, también conocida como interacción nuclear fuerte, es la interacción que permite unirse a los quarks para formar hadrones. A pesar de su fuerte intensidad, su efecto sólo se aprecia a distancias muy cortas del orden del radio atómico. Según el Modelo estándar, la partícula mediadora de esta fuerza es el Gluón.  La teoría que describe a esta interacción es la cromodinámica cuántica  (QCD) y fue propuesta por David Politzer, Frank Wilczek y David Gross en la década de 1980 y por lo que recibieron el Nobel 30 años más tarde cuando el experimento conformó su teoría.

La interacción fuerte, como se ha explicado muchas veces, es la más fuerte de todas las fuerzas fundamentales de la Naturaleza, es la responsable de mantener unidos los protones y neutrones en el núcleo del átomo. Como los protones y neutrones están compuestos de Quarks, éstos dentro de dichos bariones, están sometidos o confinados en aquel recinto, y, no se pueden separar por impedirlo los gluones que ejercen la fuerza fuerte, es decir, esta fuerza, al contrario que las demás, cuando más se alejan los quarks los unos de los otros más fuerte es. Aumenta con la distancia.

En la incipiente teoría del campo electromagnético sugerida por Faraday, desaparecía la distinción esencial entre fuerza y materia, introduciendo la hipótesis de que las fuerzas constituyen la única sustancia física.

Las características de las fuerzas eran:

  1. Cada punto de fuerza actúa directamente sólo sobre los puntos vecinos.

  2. La propagación de cualquier cambio de la intensidad de la fuerza requiere un tiempo finito.

  3. Todas las fuerzas son básicamente de la misma clase; no hay en el fondo fuerzas eléctricas, magnéticas ni gravitatorias, sino sólo variaciones (probablemente geométricas) de un sólo tipo de fuerza subyacente.

Lo importante al considerar la influencia de la metafísica de Faraday en sus investigaciones, es su suposición de que la teoría de campos ofrece una explicación última a todos los fenómenos. Los cuerpos sólidos, los campos eléctricos y la masa de los objetos son, de alguna forma,  sólo apariencias. La realidad subyacente es el campo, y el problema de Faraday era encontrar un lazo de unión entre las apariencias y la supuesta realidad subyacente

       Estaría bueno que al final del camino se descubriera que todas son una sola fuerza con distintas manifestaciones según el ámbito en el que la podamos encontrar, así se comporta.

El concepto de campo de Faraday ha dado mucho juego en Física, es un concepto ideal para explicar cierttos fenómenos que se han podido observar en las investigaciones de las fuerzas fundamentales y otros. El campo no se ve, sin embargo, está ahí, rodea los cuerpos como, por ejemplo, un electrón o el planeta Tierra que emite su campo electromagnético a su alrededor y que tan útil nos resulta para evitar problemas.

Me he referido a una teoría gauge que son teorías cuánticas de campo creadas para explicar las interacciones fundamentales. Una teoría gauge requiere un grupo de simetría para los campos y las potenciales (el grupo gauge). En el caso de la electrodinámica, el grupo es abeliano, mientras que las teorías gauge para las interacciones fuertes y débiles utilizan grupos no abelianos. Las teorías gauge no abelianas son conocidas como teorías de Yang–Mills. Esta diferencia explica por qué la electrodinámica cuántica es una teoría mucho más simple que la cromodinámica cuántica, que describe las interacciones fuertes, y la teoría electrodébil que unifica la fuerza débil con la electromagnética. En el caso de la gravedad cuántica, el grupo gauge es mucho más complicado que los anteriores necesarios para la fuerza fuerte y electrodébil.

En las teorías gauge, las interacciones entre partículas se pueden explicar por el intercambio de partículas (bosones vectoriales intermediarios o bosones gante), como los gluonesfotones y los W y Z.

El físico Enrico Fermi, refiriéndose al gran número de partículas existentes, dijo: “Si tuviera que saber el nombre de todas las partículas, me habría hecho botánico.” Por todo lo antes expuesto, es preciso conocer los grupos o familias más importantes de partículas, lógicamente  “el espacio tiempo” nos limita y, me remitiré a  las más comunes, importantes y conocidas como:

–  Protón, que es una partícula elemental estable que tiene una carga positiva igual en magnitud a la del electrón y posee una masa de 1’672614×10-27 Kg, que es 1836,12 veces la del electrónEl protón aparece en los núcleos atómicos, por eso es un nucleón que estáformado por partículas más simples, los Quarks. Es decir, un protón está formado por dos quarks up y un quark down.

Estructura de quarks de un neutrón

–  Neutrón, que es un hadrón como el protón pero con carga neutra y también permanece en el núcleo, pero que se desintegra en un protón, un electrón y un antineutrino con una vida media de 12 minutos fuera del núcleo. Su masa es ligeramente mayor que la del protón (símbolo mn), siendo de 1’6749286(10)×10-27 kg. Los neutrones aparecen en todos los núcleos atómicos excepto en el del hidrógeno que está formado por un solo protón. Su existencia fue descubierta y anunciada por primera vez en 1.932 por James Chadwick (1891-1974. El protón está formado por tres quarks, dos quarks down y un quark up. Fijáos en la diferencia entre las dos partículas: la aparentemente minúscula diferencia hace que las dos partículas “hermanas” se comporten de formas muy distintas: la carga del protón es  +2/3 +2/3 -1/3 = +1. Pero como el neutrón tiene up/down/down su carga es +2/3 -1/3 -1/3 = 0. ¡No tiene carga!  No porque no haya nada con carga en él, sino porque las cargas que hay en su interior se anulan.

           Andamos a la caza de los neutrinos

Los neutrinos, se cree que no tienen masa o, muy poca, y, su localización es difícil. Se han imaginado grandes recipientes llenos de agua pesada que, enterrados a mucha profundidad en las entrañas de la Tierra, en Minas abandonadas, captan los neutrinos provenientes del Sol y otros objetos celestes, explosiones supernovas, etc.

–  Neutrino, que es un leptón que existe en tres formas exactas pero (se cree que) con distintas masas. Tenemos el ve (neutrino electrónico) que acompaña al electrónvμ (neutrino muónico) que acompaña al muón, y vt (neutrino tau) que acompaña a la partícula tau, la más pesada de las tres. Cada forma de neutrino tiene su propia antipartícula.

El neutrino fue postulado en 1.931 para explicar la “energía perdida” en la desintegración beta. Fue identificado de forma tentativa en 1.953 y definitivamente en 1.956. Los neutrinos no tienen carga y se piensa que tienen masa en reposo nula y viajan a la velocidad de la luz, como el fotón. Hay teorías de gran unificación que predicen neutrinos con masa no nula, pero no hay evidencia concluyente.

Se ha conseguido fotografíar a un electrón. Poder filmar y fotografiar un electrón no es fácil por dos razones: primero, gira alrededor del núcleo atómico cada 0,000000000000000140 segundos , y, segundo, porque para fotografiar un electrón es necesario bombardearlo con partículas de luz (y cualquier que haya intentado sacarle una foto a un electrón sabe que hay que hacerlo sin flash).

–  Electrón, que es una partícula elemental clasificada como leptón, con una carga de 9’109 3897 (54)×10-31Kg y una carga negativa de 1´602 177 33 (49) x 10-19 culombios. Los electrones están presentes en todos los átomos en agrupamientos llamados capas alrededor están presentes en todos los átomos en agrupamientos llamados capas alrededor del núcleo; cuando son arrancados del átomo se llaman electrones libres. Su antipartícula es el positrón, predicha por Paul Dirac.

File:Helium atom QM.svg

        El núcleo del átomo constituye el 99,9% de la masa

En los átomos existen el mismo número de protones que el de electrones, y, las cargas positivas de los protones son iguales que las negativas de los electrones, y, de esa manera, se consigue la estabilidad del átomo al equilibrarse las dos fuerzas contrapuestas. El electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1940). El problema de la estructura (si la hay) del electrón no está resuelto. Si el electrón se considera como una carga puntual, su autoenergía es infinita y surgen dificultades en la ecuación conocida como de Lorente–Dirac.

Es posible dar al electrón un tamaño no nulo con un radio ro, llamado radio clásico del electrón, dado por e2/(mc2) = 2’82×10-13cm, donde e y m son la carga y la masa, respectivamente, del electrón y c es la velocidad de la luzEste modelo también tiene problemas, como la necesidad de postular las tensiones de Poincaré.

Muchas son las partículas de las que aquí podríamos hablar, sin embargo, me he limitado a las que componen la materia, es decir Quarks y Leptones que conforman Protones y Neutrones, los nucleaones del átomo que son rodeados por los electrones. El Modelo Estándar es la herramienta con la ue los físicos trabajan (de momento) hasta que surjan nuevas y más avanzadas teorías que permitan un modelo más eficaz y realista. De Wikipedia he cogido el cuadro comparativo de las fuerzas.

Tabla comparativa

Interacción7 Teoría descriptiva Mediadores Fuerza relativa Comportamiento con la distancia (r) Alcance (m)
Fuerte Cromodinámica cuántica (QCD) gluones 1038  \frac {e^{- \frac {r}{R}}}{r^2} 10-15
Electromagnética Electrodinámica cuántica (QED) fotones 1036 \frac{1}{r^2} \infty
Débil Teoría electrodébil bosones W y Z 1025 \frac{e^{-m_{W,Z}r}}{r^2} 10-18
Gravitatoria Gravedad cuántica gravitones(hipotéticos) 1 \frac{1}{r^2} \infty

La teoría cuántica de campos es el marco general dentro del cual se inscriben la cromodinámica cuántica, la teoría electrodébil y la electrodinámica cuántica. Por otra parte la “gravedad cuántica” actualmente no consiste en un marco general único sino un conjunto de propuestas que tratan de unificar la teoría cuántica de campos y la relatividad general.

Van surgiendo por ahí nuevas conjeturas como, por ejemplo, las de Maldacena. En 1997 el joven físico argentino Juan Maldacena sugirió utilizar esta solución de gravedad para describir la teoría gauge que vive en las D-Branas.

“Las consecuencias de esta conjetura son muy importantes, pues existe la posibilidad de que el resto de interacciones (electromagnéticas y nucleares) sean tan sólo una ilusión, el reflejo sobre el cristal de un escaparate del contenido de la tienda. Así, podría ser que el electromagnetismo tan sólo sea la imagen proyectada de la interacción de algunas cuerdas en un supuesto interior del espacio-tiempo. De la misma manera, la necesidad de compactificar las dimensiones adicionales desaparece en cierto modo si consideramos que, quizás, nuestro mundo sea solamente la frontera; siendo el interior del espacio-tiempo inaccesible.”

 

Que gran sorpresa sería si al final del camino se descubriera que en realidad solo existe una sola fuerza: La Gravedad, de la que se derivan las otras tres que hemos podido conocer en sus ámbitos particulares y que, ¿por qué no? podrían surgir a partir de aquella primera y única fuerza existente en los principios o comienzos del Universo: ¡La Gravedad! Que no acabamos de comprender.

emilio silvera

Un sueño que, de momento será sólo eso

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Exploración espacial.   Pese a que un estudio serio cuestione los muchos inconvenientes y apuros, los científicos ya definen los mejores puntos para establecer las colonias en el planeta Marte, y, aunque parezca prematuro, el ir limando “asperezas” para prevenir situaciones difíciles cuando llegue el momento… ¡No está demás!

 Resultado de imagen de Vivir en Marte

 

Se han ideado mil maneras de sobrevivir en el planeta rojo, un sueño acariciado por la Humanidad

 

La promesa quedó asentada como un dictamen y la National Aeronautics and Space Administration (NASA) comienza a ensayar diferentes soluciones para poner un pie en Marte en 2030, considerado el próximo objetivo de la exploración espacial humana. Pensando en una eventual colonización, 175 científicos de diferentes áreas se dieron cita en el Lunar and Planetary Institute, en Houston, para intentar consensuar el mejor punto de amartizaje.

Imagen relacionada

Los elementos esenciales para elegir esta posición contemplan desde la seguridad para asentar la astronave hasta la ejecución de algunas operaciones de exploración, como el acceso a los recursos locales para los primeros colonizadores y la posibilidad de obtener al menos 100 toneladas métricas de agua.

Los potenciales territorios necesitan cumplir una serie de requisitos. Cada puesto de avanzada debe estar rodeado por una “zona de exploración” de 100 kilómetros. Un conjunto de tres a cinco aterrizajes permitirán a seis tripulantes llevar a cabo los primeros sondeos, con 500 días marcianos por expedición.
En esta instancia previa se delimitaron unos 50 puntos de descenso ubicados dentro de los 50° de latitud, Norte o Sur, del ecuador marciano. En los próximos 8 años los esfuerzos de los expertos se van a centrar en reducir este número y seleccionar las diez mejores posiciones geográficas para asentar una nave. La intención es realizar varios sobrevuelos al planeta y bajar en una de sus lunas.

Cráter Stickney, el más grande de Fobos, con 9 kilómetros de diámetro.

Mientras James Green, director de Ciencia planetaria de la NASA sostuvo que “los humanos acabarán pisando Marte”, una auditoría interna cuestiona que, desde el aspecto técnico, todavía no están dadas las condiciones para una misión tan compleja. El responsable de este informe fue Paul K. Martin, inspector general de la NASA, quien señaló que no están preparados en la actualidad y es probable que tampoco consigan avanzar lo suficiente en los próximos 15 años.

Resultado de imagen de El escudo está diseñado para proteger a los astronautas de la radiación solar dañina. (Ruth Bamford/RAL).

El escudo está diseñado para proteger a los astronautas de la radiación solar dañina. (Ruth Bamford/RAL).

El mayor riesgo lo deben afrontar los astronautas, ya que hay una enorme exposición a radiación “con posibilidades de desarrollar cáncer y otras enfermedades degenerativas, pérdida de densidad de los huesos y estiramiento de los músculos por la alteración de la gravedad, además de profundos cambios psicológicos motivados por un viaje tan largo y exigente” expone Martin.

Sobre esta cuestión, el astrobiólogo del Blue Marble Space Institute for Science, Jacob Haqq-Misra, sostiene en un artículo publicado en New Space que los astronautas deberán abandonar su nacionalidad terrícola para pasar a ser un orgulloso ciudadano del planeta rojo. También defendió la prohibición de las relaciones comerciales entre ambos planetas e indicó que una vez asentados en Marte se evite cualquier interferencia de la Tierra sobre el nuevo desarrollo cultural, económico o social.

Lo dicho, ni en 2020 ni en algunas decenas más de años podremos viajar al planeta Marte con todas las garantías, son muchos los inconvenientes de todo tipo que nos lo impedirán, tanto tecnológicos como naturales.

Nota: En este mismo blog se hicieron dos entradas en las que se enumeraban los muchos inconvenientes de ir a Marte y que aún no hemos podido resolver.

Una cosa es mandar Sondas y, otra muy distintas… ¡Seres humanos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al Espacio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El cerebro puede verse afectado por la exposición continua a los rayos cósmicos y quizás ni siquiera recordar el viaje

Recreación artística de una futura colonia en Marte

                            Recreación artística de una futura colonia en Marte – Archivo

 

Viajar a Marte, un reto que la NASA se prepara para conseguir a partir de 2030 y que también persiguen algunas empresas privadas, se convertirá en la hazaña del milenio, pero la gran aventura está plagada de peligros, entre ellos los que supone estar sometido a las altísimas dosis de radiación de partículas provenientes del espacio durante el trayecto. Un estudio publicado en la revista Science en 2013 decía que la exposición acumulada, para un astronauta con billete de ida y vuelta, sin contar la estancia más o menos prolongada en el Planeta rojo, equivale a hacerse 33.000 radiografías. Ahora, investigadores de la Universidad de California Irvine (UCI) se han interesado por lo que supondría esa radiación para el cerebro humano y sus conclusiones elevan aún más la alarma. Los astronautas que viajen a Martepodrían sufrir demencia crónica. Quizás, a su regreso, ni se acordarían del viaje.

Según describe en Scientic Reports Charles Limoli, profesor de oncología radiactiva en la Escuela de Medicina de la UCI, la exposición a las partículas cargadas de alta energía -al igual que las que se encuentran en los rayos cósmicos que bombardean a los astronautas durante los vuelos espaciales prolongados- causan importantes daños cerebrales a largo plazo en roedores, lo que resulta en alteraciones cognitivas y demencia. Limoli ya dio a conocer sus resultados en 2015, pero ahora ha ampliado su estudio, comprobando los efectos con el paso del tiempo.

«Esta no es una noticia positiva para los astronautas que hagan un viaje de dos o tres años a Marte», admite el especialista. «El entorno espacial plantea peligros específicos a los astronautas. La exposición a estas partículas puede conducir a una serie de posibles complicaciones del sistema nervioso central que pueden ocurrir durante el trayecto por el espacio y persistir mucho tiempo después, como una disminución del rendimiento, déficit de memoria, ansiedad, depresión y problemas para la toma de decisiones. Muchas de estas consecuencias adversas a la cognición pueden continuar y progresar durante toda la vida».

Resultado de imagen de rOEDORES SOMETIDOS A RADIACIÓN

                           La radiación no le sienta bien a ningún metabilismo celular

En el experimento, los roedores fueron sometidos a una irradiación de partículas cargadas (oxígeno totalmente ionizado y titanio) en el Laboratorio de Radiación Espacial de la NASA en el Laboratorio Nacional de Brookhaven en Nueva York, y luego se enviaron al de Limoli en la UCI.

Seis meses después de la exposición (el primer estudio contemplaba los resultados seis semanas después), los investigadores todavía encontraron niveles significativos de inflamación del cerebro y daño en las neuronas de los ratones. La red neural del cerebro se veía afectada por la reducción de las dendritas y espinas de las neuronas, lo cual interrumpe la transmisión de señales entre las células del cerebro. Estas deficiencias fueron paralelas a los malos resultados de las cobayas en las tareas de comportamiento diseñadas para probar el aprendizaje y la memoria.

Miedo y ansiedad

Resultado de imagen de No digamos de la radiación en nosotros, y, la sensación de soledad, el miedo, la Ansiedad Espacial

        No digamos de la radiación en nosotros, y, la sensación de soledad, el miedo, la Ansiedad

Además, el equipo de Limoli descubrió que la radiación afecta a la «extinción del miedo», un proceso activo por el cual el cerebro suprime asociaciones desagradables y estresantes anteriores, como cuando alguien que casi se ahoga aprende a disfrutar del agua de nuevo. Estos déficits pueden hacer a los sujetos «más propensos a la ansiedad», dice Limoli, lo que podría convertirse en un grave problema en el transcurso de un viaje lleno de dificultades, ya tan estresante de por sí.

Tipos similares más graves de disfunción cognitiva son comunes en pacientes con cáncer cerebral que han recibido altas dosis en tratamientos de radiación a base de fotones.

Los efectos en el cerebro de vivir en el espacio

VIAJAR AL ESPACIO PUEDE TENER EFECTOS FATALES EN EL CEREBRO

Hace bastante tiempo, aparecí­a en los medios una oferta de trabajo de la NASA un tanto curiosa. Se buscaban personas dispuestas a pasar 90 dí­as en la cama. Lo que perseguí­an los cientí­ficos, en este caso Roberts, era estudiar los efectos de la microgravedad en el cerebro humano.

Las cabezas de los participantes se inclinaron ligeramente hacia abajo. Cuanto más tiempo estuvieron en esa posición, más presión se acumuló en la parte superior del cerebro. Además, el espacio entre la parte superior del cráneo y el cerebro disminuyó. Para saber si a los astronautas también les pasaba lo mismo, Roberts comparó las imágenes de distintos astronautas, participantes en vuelos de duraciones variadas: desde un par de semanas a algunos meses.

Al 94% de los astronautas que habí­an participado en vuelos de larga duración habí­an sufrido este mismo efecto. El mismo que hace que se estreche el surco central, el área de la parte superior del cerebro que separa los lóbulos frontal y parietal. Los que se encargan de controlar la función ejecutiva y el cuerpo. De ahí­ que sea tan preocupante que se produzca esta deformación.

Resultado de imagen de Sufrir demencia espacial

Si bien los déficits parecidos a la demencia en los astronautas tardan meses en manifestarse, el tiempo necesario para una misión a Marte es suficiente para su desarrollo. Las personas que trabajan durante largos períodos en la Estación Espacial Internacional (ISS), sin embargo, no se enfrentan al mismo nivel de bombardeo de rayos cósmicos galácticos porque todavía están en la magnetosfera que protege la Tierra.

El trabajo de Limoli forma parte del Programa de Investigación Humana de la NASA. Investigar cómo afecta la radiación espacial a los astronautas y las maneras de mitigar esos efectos es crítico para los planes de futuras misiones a Marte y más allá.

Resultado de imagen de Misiones tripuladas a Marte y más allá

Las soluciones parciales se están explorando. La nave espacial podría ser diseñada para incluir áreas de aumento de blindaje, tales como las utilizadas para el descanso y el sueño. Sin embargo, estas partículas cargadas de alta energía atravesarán la nave, «y realmente no hay escapatoria».

Los tratamientos preventivos ofrecen alguna esperanza. El grupo de Limoli está trabajando en estrategias farmacológicas que implican compuestos que eliminan los radicales libres y protegen la neurotransmisión.

Más sobre Marte, seguimos intentando conocerlo

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte, Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de El planeta Marte

Así será el primer viaje al corazón de Marte

Historias

Resultado de imagen de Recreación del interior de Marte NASA

                                                        Recreación del interior de Marte NASA

El desafío de pisar el planeta rojo

 

Donald Trump quiere volver a mandar astronautas a la Luna: “Esta vez, no sólo pondremos una bandera y dejaremos nuestra huella”, aseguró el presidente de EEUU al anunciar sus nuevos planes para la NASA. Su predecesor, Barack Obama, quería lanzar una misión tripulada a Marte hacia el año 2030 pero, como no había dinero para todo, optó por cancelar el programa con el que George W. Bush pretendía volver a enviar humanos a la Luna. Nadie ha vuelto a pisarla desde que en 1972 regresaran los últimos astronautas de las misiones Apolo.

Aunque el nuevo director de la NASA, Jim Bridenstine, también es un firme defensor de la vuelta a la Luna, la agencia aún no ha ofrecido detalles sobre el calendario previsto para ese viaje tripulado a nuestro satélite ni parece haber dinero suficiente en los presupuestos de la agencia para hacerlo realidad a corto plazo.

Recreación artística de la futura nave que viajará a Marte. | Inspiration Mars

     Recreación artística de la futura nave que viajará a Marte – Inspiración Mars

Así que, a falta de una nueva gran misión tripulada en el horizonte, Marte sigue siendo el gran objetivo de la exploración espacial y casi una obsesión. De momento, sólo con robots. Y es que al inhóspito planeta rojo no cesan de llegar sondas y vehículos que lo investigan desde tierra y aire. Las manda EEUU, la Agencia Espacial Europea (ESA), Rusia y hasta India.

La próxima misión científica despegará el 5 de mayo rumbo al corazón marciano para investigar su corteza, su manto y su núcleo. “InSight es la primera que va a estudiar el interior del planeta. Investigaremos sus constantes vitales”, resume el ingeniero español Fernando Abilleira, uno de los responsables del diseño de esta misión en el Jet Propulsion Laboratory (JPL) de la NASA.

Resultado de imagen de "InSight es la primera que va a estudiar el interior del planeta

InSight (de Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) intentará detectar por primera vez terremotos marcianos. O mejor dicho, martemotos. “Cada seísmo nos dará información sobre la estructura interior al estudiar cómo los ondas sísmicas pasan a través de las distintas capas del planeta”, explica el ingeniero desde California, donde ultiman los preparativos para el lanzamiento del sábado.

“Nos interesa la sismografía porque si un planeta se mueve, los terremotos o martemotos, nos van a dar mucha información sobre el interior del planeta, sobre lo vivo que está su núcleo. Marte no tiene un campo magnético, lo perdió y no entendemos por qué. Y es importante averiguarlo porque el campo magnético es nuestra gran coraza, nos protege y gracias a él la vida existe en la Tierra. Y si aún hay en Marte zonas con campo magnético, como zonas fósiles, queremos identificarlas”, explica la geóloga planetaria Adriana Ocampo durante una entrevista.

Resultado de imagen de Viaje tripulado a Marte

Si queremos mandar astronautas a Marte, añade esta ejecutiva del programa Nuevos Horizontes de la NASA, la información que recabe InSight será “clave tanto para entender la evolución como del planeta como para determinar cómo de seguro es para los seres humanos”.

 

 

 

Un sismómetro es como una cámara que toma una imagen del interior de un planeta así que, en cierto modo, será como hacer un escáner al planeta. En la Tierra, el estudio de los terremotos ha ayudado a entender mejor su composición pero la vida geológica de Marte ha sido mucho menos convulsa que la de nuestro planeta, por lo que se le considera un “planeta fósil” que preserva en su interior la historia de su nacimiento.

Resultado de imagen de El interior de Marte

Los científicos creen que averiguando la composición de cada una de sus capas internas podrán explicar las causas por las que los planetas rocosos acabaron siendo tan diversos. ¿Por qué Marte, la Tierra y Venus son tan distintos? Este aspecto, añaden, es esencial para entender en qué lugares del Universo puede originarse la vida.

Según recuerda Fernando Abilleira, la NASA ya intentó, con poco éxito, hacer estos estudios sismográficos en los años 70 con las sondas Viking: “Ambos aterrizadores llevaban sismómetros en la cubierta pero, por ello, las medidas tenían muchos errores. InSight colocará su sismómetro directamente en la superficie marciana, lo que reducirá los errores en las mediciones de manera dramática”. También las misiones Apolo colocaron sismómetros en la Luna.

Artist's Concept of the InSight Lander.jpg

Si todo sale según lo previsto, Insight aterrizará el próximo 26 de noviembre, uniéndose a la flotilla de naves y vehículos robóticos (rovers) que escrutan el planeta rojo. Sobre el terreno operan Curiosity (desde agosto 2012) y el incombustible Opportunity (a pleno rendimiento desde enero de 2004). Desde el espacio orbitan el planeta rojo las sondas de la NASA Mars Odyssey, MRO y MAVEN; las europea Mars Express Orbiter y ExoMars TGO y la india Mars Orbiter Mission.

InSight despegará desde California con dos años de retraso. La nave iba a ser lanzada en 2016 pero un problema técnico en uno de los sensores obligó a aplazar el inicio de la misión hasta que Marte y la Tierra volvieran a estar en la posición óptima para que el viaje sea lo más corto posible y con el menor gasto de energía. Esa demora ha encarecido la misión en 150 millones, elevando su coste hasta los 800 millones. A esta cifra hay que sumar los 180 millones de dólares que han aportado los socios europeos que han realizado contribuciones, entre los que figuran España, Francia y Alemania.

Meteorología española

 

Nuestro país ha proporcionado un instrumento llamado TWINS, que recopilará datos sobre el viento y la temperatura marciana. Según detalla José Antonio Rodríguez Manfredi, investigador principal de este instrumento desarrollado por el Centro de Astrobiología (CAB/CSIC-INTA) y la empresa aeroespacial Crisa, se trata de una versión un tanto reducida y mejorada del instrumento REMS que está actualmente en Marte a bordo de Curiosity: “Hemos aprovechado las lecciones aprendidas y el conocimiento adquirido sobre algunos problemas técnicos de ciertos elementos de REMS para mejorarlos”.

Según relata el científico, “dos de los instrumentos esenciales de la misión deben ser colocados sobre el suelo marciano a los pocos días de la llegada de la nave. El despliegue (un brazo robótico que usará una especie de garra magnética suspendida de un cable) requiere que las condiciones de viento sean propicias, ya que el resto de la misión depende de que esta actividad crítica se ejecute perfectamente”.

Una vez desplegados los instrumentos, TWINS permitirá descartar falsas alarmas generadas en los sistemas sísmicos. Las mediciones de viento y temperaturas que haga durante la vida de la misión (un año marciano) podrán ser comparadas por primera vez con los datos que recaba simultáneamente el instrumento REMS de Curiosity en otro punto del planeta, un poco más al sur de donde aterrizará InSight) y, a su vez, con los modelos atmosféricos que actualmente emplean para simular el comportamiento de la atmósfera marciana.

Resultado de imagen de Curiosity

“Con las últimas misiones hemos adquirido un gran conocimiento in situ sobre la geología y mineralogía de la superficie, en los puntos donde hemos aterrizado. También sabemos que las condiciones eran propicias para que pudiera haber albergado vida. Pero ojo, no digo que hubiera o haya vida, sino que las condiciones eran propicias. Sin embargo, nos queda por explorar el subsuelo (más allá de los pocos centímetros que hasta ahora se han explorado)”, relata Rodríguez Manfredi.

Buscar huellas de vida será el objetivo principal de los dos sofisticados vehículos robóticos que en 2020 se unirán a la flota marciana: Mars2020, de la NASA, y la segunda parte de >ExoMars, un proyecto conjunto de la ESA y Roscosmos, la agencia espacial rusa.

Resultado de imagen de Mars2020

Resultado de imagen de Mars2020

“La Mars 2020 Rover Mission es una misión espacial del Programa de Exploración de Marte que incluye un astromóvil de exploración marciana dirigida por la NASA con el propósito de ser lanzado en el año 2020. Su objetivo es investigar el entorno astrobiológicoantiguo relevante en Marte, investigar su superficie, procesos geológicos y la historia, incluida la evaluación de su pasado, habitabilidad y posibilidad de preservar las biofirmas dentro de los materiales geológicos accesibles.​ Un posible lugar de aterrizaje para la misión es el cráter Jezero localizado en el Cuadrángulo de Syrtis Major en las coordenadas 18.855, 77.519.

“El rover que lanzaremos en 2020 se centrará no sólo en buscar pistas sobre las condiciones de habitabilidad de Marte en el pasado, sino también en encontrar señales de posible vida microbiana pasada”, señala Abilleira, que dirige el equipo de Diseño y Navegación de la futura misión Mars2020, que contará también una estación meteorológica española.

Tendrá un “taladro que recogerá y almacenará muestras para que una posible misión futura las traiga de vuelta a la Tierra” e instrumentos que buscarán agua en el subsuelo y producirán oxígeno a partir de los elementos de la atmósfera marciana.

Hasta los dos metros de profundidad será capaz de perforar ExoMars, el rover que Europa y Rusia mandarán a Marte en 2020 (Curiosity sólo llega a los cinco centímetros). Según explica por teléfono desde Holanda Jorge Vago, el responsable científico de la misión en la ESA, a finales de este año elegirán el lugar de aterrizaje: “Hemos considerado muchos emplazamientos hasta quedarnos con dos, Oxia Planum y Mawrth Vallis, que están relativamente cerca y son muy interesantes desde el punto de vista científico. Mawrth Vallis está un poco más alto y tiene más variedad porque podremos ver cosas distintas al movernos. Es como un helado de tutti frutti mientras que Oxia Planum sólo tiene un sabor pero resulta muy interesante también”.

Resultado de imagen de Los vientos solares arrancaron el campo matn´ñetico de Marte

 

 

Nuestro objetivo es buscar trazas de vida pasada en Marte. No creemos que pueda haberla cerca de la superficie debido a que recibe dosis de radiación muy altas, que actúan como 10.000 pequeños cuchillos que cortan los enlaces de las moléculas”, explica el científico argentino. Quizás, a más profundidad, señala, pudiera haber algún tipo de vida, “pero eso no vamos a poder verlo con ExoMars“.

Los organismos que buscarán son relativamente primitivos, con dimensiones muy pequeñas así que dar con ellos, admite, será muy difícil: «La única posibilidad de encontrarlos cerca de la superficie es si formaron colonias, porque un organismo individual es demasiado pequeño para verlo. Hace 20 años que vamos y ninguna misión los ha hallado. Tenemos más fe en tratar de probar que haya habido vida Marte identificando metano y gases traza“, explica.

Esa es la tarea que está llevando a cabo el orbitador TGO, que fue lanzado en 2016 junto al módulo Schiaparelli, que se estrelló al intentar aterrizar en Marte.

 

                             Recreación de la sonda ‘InSight’ trabajando en Marte NASA

En cierto modo, reflexiona Vago, los estudios en Marte tratan de hacer “un viaje atrás en el tiempo para entender cuál pudo haber sido la evolución del planeta”.

“Creemos conocer aceptablemente bien cómo ha evolucionado el planeta. Hace entre 4.600 y 3.700 millones de años atrás, Marte pudo haber sido cálido y húmedo, pero nos falta encontrar evidencias de vida pasada (aunque esté extinguida en la actualidad), o incluso presente”, dice Rodríguez Manfredi. “Indudablemente, ese hallazgo permitiría confirmar (y revolucionar) nuestra concepción de la vida en el Universo”.