viernes, 29 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Hoy día de Internet

Autor por Emilio Silvera    ~    Archivo Clasificado en Internet    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Internet map 1024.jpg

 

Mapa parcial de Internet basado en la información obtenida del sitio opte.org en 2005. Cada línea entre dos nodos representa el enlace entre dos direcciones IP y su longitud es proporcional al retardo entre estos.

 

“El Día de Internet es una efeméride que se celebra en México, Perú, Chile, Paraguay, Argentina, España, Colombia, Uruguay, Ecuador, Bolivia, Venezuela y República Dominicana y en algunos otros lugares del mundo el 17 de mayo, impulsada por la Asociación de Usuarios de Internet y por la Internet Society, respectivamente. Se celebró por primera vez el 25 de octubre de 2005. Poco tiempo después, la Cumbre de la Sociedad de la Información celebrada en Túnez en noviembre de 2005, decidió proponer a la ONU la designación del 17 de mayo como el Día Mundial de la Sociedad de la Información,1​ por lo que se movió el denominado Día de Internet a dicha fecha.”

Resultado de imagen de Internet ha venido a cambiar el Mundo

Internet, como muchos de los aelantos que la ciencia realiza, ha sobrepsado las espectativas creadas cuando aún, estaba en sus comienzos. Hoy día, está presente por todo el mundo y en todas partes y actividades, podemos decir sin temor a equivocarnos que vino para cambiar nuestras vidas.

Imagen relacionada

En el presente, Internet forma parte de nuestras vidas y, ni podemos imaginar que pasaría de de pronto, dejara de funcionar… ¡El Mundo quedaría paralizado! ¿No es mucho el riego que estamos corriendo?

Resultado de imagen de Internet ha venido a cambiar el Mundo

Cin esto me pasa como con los Robots, la inteligencia Artificial me produce escalofríos y, todo este entrsamadso de Internet… ¡Me da un poco de grima! Me hace pensdar que estamos en manos de todo este entramado que, sin que lo podamos evitar, no sólo inciden en nuestras vidas sino que, la dirigen de alguna manera.

Resultado de imagen de Imágenes de lo que es InternetImagen relacionadaImagen relacionadaImagen relacionadaImagen relacionadaImagen relacionadaImagen relacionadaResultado de imagen de Imágenes de lo que es InternetImagen relacionada

                                                    ¡Totalmente atrapados!

Resultado de imagen de Los jóvenes caminan mirando la pantalla del móvil

Antes podíamos ver por las calles a grupos de personas que charlaban entre sí, unos se contaban a otros sus cosas o comentaban sobre algún suceso acaecido. Hoy, podemos contemplar por las calles de todo el mundo a grupos que, con sus móviles en la mano, miran hacia abajo y teclean sin cesar, como posesos.

¿Qué clase de mundo hemos creado?

Resultado de imagen de En las Ondas de Internet

Infografía con ondas de sonido sobre un fondo oscuro sobre el tema de la tecnología digital y de Internet.

Resultado de imagen de En el "Universo" de Internet

El volumen de datos almacenados por el sistema de Internet es inconmensurable, ya nadie, en nuestro mundo, está a salvo de que le tengan tomada su afiliación, todos sus datos y antecedentes que, con Internet… ¡La privacidad se fue al garate!

No sé decir de todo esto me gusta.

emilio silvera

Reportaje

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cúmulo de galaxias MACS J1149.5 + 2223 tomadas con el Hubble.

Las primeras estrellas surgieron 250 millones de años después del Big Bang

El hallazgo, publicado en la revista ‘Nature’, representa además el oxígeno más distante jamás detectado en el universo.

E.E. / Agencias
 
 
 
Resultado de imagen de El Telescopio AlMA en Atacama
 
 
 

Un equipo internacional de astrónomos han utilizado observaciones de los telescopios ALMA (Atacama Large Millimeter/submillimeter Array) y del VLT (Very Large Telescope) del Observatorio Austral Europeo (ESO) han encontrado evidencias de estrellas formándose a 13.300 millones de años, tan solo 250 millones de años después del Big Bang, un hallazgo que representa además el oxígeno más distante jamás detectado en el universo.

Los científicos utilizaron ALMA para observar una galaxia lejana llamada ‘MACS1149-JD1’, donde detectaron un resplandor muy débil emitido por oxígeno ionizado de la galaxia. A medida que esta luz infrarroja viaja por el espacio, la expansión del universo la desplaza y, para cuando fue detectada en la tierra por ALMA, la longitud de onda era más de diez veces más larga que cuando se originó.

Resultado de imagen de El equipo infirió que la señal fue emitida hace 13.300 millones de años (o 500 millones de años después del Big Bang), convirtiéndolo en el oxígeno más distante jamás detectado por ningún telescopio. La presencia de oxígeno es una clara señal de que debe haber habido incluso generaciones anteriores de

El equipo infirió que la señal fue emitida hace 13.300 millones de años (o 500 millones de años después del Big Bang), convirtiéndolo en el oxígeno más distante jamás detectado por ningún telescopio. La presencia de oxígeno es una clara señal de que debe haber habido incluso generaciones anteriores de estrellas en esta galaxia, según informa ESO. Los resultados aparecen publicados este jueves en la revista Nature.

“Esta detección hace retroceder las fronteras del universo observable”, afirma el autor principal del artículo, Takuya Hashimoto, investigador de la Universidad Osaka Sangyo y el Observatorio Astronómico Nacional de Japón. “Me emocionó ver la señal de oxígeno distante en los datos de ALMA”, indica.

Resultado de imagen de El equipo infirió que la señal fue emitida hace 13.300 millones de años (o 500 millones de años después del Big Bang), convirtiéndolo en el oxígeno más distante jamás detectado por ningún telescopio. La presencia de oxígeno es una clara señal de que debe haber habido incluso generaciones anteriores de

Además del brillo del oxígeno captado por ALMA, el VLT de ESO también detectó una señal más débil de emisión de hidrógeno. La distancia a la galaxia, determinada a partir de esta observación, es consistente con la distancia de la observación del oxígeno. Esto hace de ‘MACS1149-JD1’ la galaxia más lejana con una medición precisa de la distancia y la galaxia más lejana jamás observada con ALMA o con el VLT.

“Vemos esta galaxia en un momento en el que el universo sólo tenía 500 millones de años y, sin embargo, ya tiene una población de estrellas maduras”, explica el segundo autor del nuevo artículo e investigador de la University College de Londres (UCL), Nicolas Laporte. “Por lo tanto somos capaces de utilizar esta galaxia para estudiar un periodo anterior, completamente desconocido, de la historia cósmica”, asegura.

Tras el Big Bang, hubo un periodo durante el cual no hubo oxígeno en el universo; fue creado por los procesos de fusión de las primeras estrellas y luego liberado al morir estas estrellas. La detección de oxígeno en ‘MACS1149-JD1’ indica que estas generaciones anteriores de estrellas ya se habían formado y había expulsado oxígeno apenas 500 millones de años después del comienzo del universo.

Resultado de imagen de El equipo infirió que la señal fue emitida hace 13.300 millones de años (o 500 millones de años después del Big Bang), convirtiéndolo en el oxígeno más distante jamás detectado por ningún telescopio. La presencia de oxígeno es una clara señal de que debe haber habido incluso generaciones anteriores de

Así, para averiguar cuándo tuvo lugar esta formación temprana de estrellas, el equipo reconstruyó los inicios de la historia de ‘MACS1149-JD1’ utilizando datos infrarrojos tomados con el Telescopio Espacial Hubble de la NASA y la ESA, así como del Telescopio Espacial Spitzer de la NASA. Los científicos descubrieron que el brillo observado de la galaxia puede explicarse con un modelo en el que el inicio de la formación estelar comienza tan solo 250 millones de años después del comienzo del universo.

La madurez de las estrellas en ‘MACS1149-JD1’ plantea la pregunta de cuándo surgieron las primeras galaxias de la oscuridad total, una época que los astrónomos denominan como el “amanecer cósmico”. Estableciendo la edad de ‘MACS1149-JD1’, el equipo ha demostrado, de forma efectiva, que hubo galaxias que existieron antes de las que se pueden detectar de forma directa en la actualidad.

Tal y como explica el astrónomo senior en la UCL y coautor del artículo, Richard Ellis, “determinar cuándo tuvo lugar el amanecer cósmico es el Santo Grial de la cosmología y el estudio de formación de galaxias”. “¡Con estas nuevas observaciones de MACS1149-JD1 nos acercando a la posibilidad de ser testigos directos del nacimiento de la luz de las estrellas! Puesto que todos estamos hechos de material estelar procesado, esto es realmente encontrar nuestros propios orígenes”, concluye Ellis.

Siempre haremos preguntas

Autor por Emilio Silvera    ~    Archivo Clasificado en El saber del mundo    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 El cerebro es capaz de inventar recuerdos de hechos que nunca ocurrieron. La capacidad humana para aprender, inventar, buscar recursos, … ¡Es casi ilimitada! siempre ha encontrado una respuesta a los problemas planteados y, a medida que avanzamos y nuestro cerebro evoluciona, más caminos se abren ante nosotros

Lo cierto es que, cada día que pasa, nuevos descubrimientos astronómicos nos llevan hacia el asombro y la maravilla… ¿Cómo puede la Naturaleza hacer las cosas que hace?

  

 

 

 

 

En el núcleo se alcanzan los 15.000.000 de grados y se producen las transisiciones de fase de la transmutación de elementos. La nucleosíntesis estelar es el conjunto de reacciones nucleares que tienen lugar en las estrellas durante el proceso de evoluciòn estelar anterior al colapso gravitatorio. Estos procesos empezaron a entenderse a principios del siglo XX cuando quedó claro que solo las reacciones nucleares podían explicar la gran longevidad de la fuente de calor y luz del Sol. Aproximadamente el 90% de la energía producida por las estrellas vendrá de las reacciones de fusión del hidrógeno para convertirlo en helio. Más del 6% de la energía generada vendrá de la fusión del helio en carbono. El proceso sigue hasta el Hierro, donde no puede continuar y se produce la “muerte de la estrella como tal en la secuencia principal.

 

 

El modelo estándar de la física de partículas es una teoría relativista de campos cuánticos desarrollada entre 1970 y 1973 basada en las ideas de la unificación y simetrías que describe la estructura fundamental de la materia y el vacío considerando las partículas elementales como entes irreducibles cuya cinemática está regida por las cuatro interacciones fundamentales conocidas. Aunque tenemos que decir que, la Gravedad, esa fuerza que mantiene unidos los planetas en las sistemas planetarios y nuestros pies al suelo de la Tierra, no se quiere juntar con las otras tres fuerzas, campa solitaria por el Cosmos.

Resultado de imagen de Simetría y asimetría en los rostros humanosResultado de imagen de asimetría en los rostros humanos

Aunque es cierto que “sobre gustos no hay nada escrito”, los humanos nos sentimos más a gusto con las caras más simétricas. En la cultura popular, y salvo alguna rara excepción, las caras asimétricas están relacionadas con la maldad. Los biólogos encontraron rápidamente una explicación evolutiva: los individuos más evolucionados pueden mantener sus formas simétricas inclusive cuando están expuestos al estrés y las enfermedades. Es decir, cuando las partes del cuerpo que tienden a la simetría no lo son, costará más pasar esos genes porque será rechazado por potenciales parejas. De esta manera la evolución distingue a la simetría como una característica valiosa.

David (1501-1504), de Miguel ÁngelGalería de la Academia de Florencia.

El desnudo de una figura presenta una simetría bilateral casi perfecta. Ciertamente, parte del atractivo del mismo, tanto en la realidad como en el arte, reside en la identificación de los lados derecho e izquierdo del cuerpo mediante mediante una simetría especular. La figura femenina raramente presenta asimetrías. La asimetría de un varón se rompe solamente por la curiosa circunstancia de que su testículo izquierdo cuelga más bajo que el derecho.

(1532), de Lucas Cranach el ViejoStädelsches KunstinstitutFráncfort del Meno, censurada por el Metro de Londres en 2008.

Evidentemente, cada cuerpo, considerado de forma individual, puede otras desviaciones menores de su simetría: un hombro más alto que otro, un pecho mayor que su pareja, una ligera desviación de la columna, una peca o un antojo en un costado…, pero tales anomalías, en su mayor parte, pueden encontrarse tanto a un lado como al otro.

Resultado de imagen de simetría bilateral

La simetría bilateral se mantiene en el interior del cuerpo, en en los músculos y en el esqueleto, pero queda rota por la disposición fuertemente asimétrica de algunos órganos. El corazón, el estómago y el  páncreas están desviados hacia la izquierda; el hígado y el apéndice, hacia la derecha. El pulmón derecho es mayor que el izquierdo. Los retorcimientos y vueltas de los intestinos son completamente asimétricos. El cordón umbilical humano, una magnifica hélice triple formada por dos arterias y una vena, puede enrollarse en cualquiera de los dos sentidos.

Los mellizos que se desarrollan por la fecundación simultánea de dos óvulos separados, pueden tener detalles asimétricos en un sentido en uno de ellos, y en el contrario en el otro, pero esto no ocurre con mayor frecuencia que la que cabría esperar como fruto del azar. Es una creencia generalizada que los gemelos (formados a partir de un único óvulo, que se divide inmediatamente después de la fecundación) tiene una marcada tendencia a aparentar especulares recíprocas. Por desgracia, las estadísticas al respecto son confusas y muchos expertos creen que los gemelos idénticos no se presentan como imágenes especulares uno de otro en mayor medida que cualquier otro tipo de hermanos.

En el caso de gemelos siameses (gemelos idénticos, unidos uno a otro a causa de un a partición tardía e incompleta del óvulo), el tema no ofrece duda alguna. Son exactamente enantiomorfos en casi todos los detalles: si uno es diestro, el otro es zurdo; si uno tiene el remolino del pelo que va en el sentido de las agujas del reloj, el de su hermano/hermana irá en el sentido contrario. Diferencias en los oídos, los dientes…, aparecen en ambos como especulares unas respecto de otras (hasta en eso es perfecta la Naturaleza). Las huellas dactilares o de la palma de la mano derecha de uno serán muy parecidas a las correspondientes a la mano izquierda del otro.

Todavía más: un gemelo siamés tendrá “vísceras transpuestas”; sus órganos internos estarán colocados de manera inversa, el corazón a la derecha, el hígado a la izquierda. Esta transposición de órganos, o inverse situs, como se denomina a veces, se da siempre en cualquier par de gemelos siameses, pero puede aparecer también en no incluidas en estas circunstancias.

Merece la pena hacer notar que Lewis Carroll, en A través del espejo (Alianza Editorial, 1990), pretende tomar los gemelos idénticos Tararí y Tarará como imágenes especulares uno de otro. Cuando los hermanos Tara ofrecen enlazar sus manos con Alicia, uno de ellos alarga su derecha; el otro la izquierda. Si observamos detenidamente las ilustraciones de Tenniel, especialmente la que muestra los dos gemelos uno frente a otro, para la batalla, veremos que los ha dibujado como si fueran enantiomorfos.

Resultado de imagen de Gemelos iguales

                 Claro que, algunos son completos

En el comportamiento y los hábitos de los seres humanos hay muchos ejemplos de marcada asimetría; los más evidentes son consecuencia de que la mayoría de las personas son diestras. La mano derecha está controlada por la parte izquierda del cerebro, y la parte derecha de éste controla la mano izquierda, por lo que la condición de diestro es, en realidad, un fenómeno de lateralidad izquierda del cerebro. Hubo un tiempo en el que se creía que los bebés nacían sin tendencia alguna de tipo genético que favoreciera el uso de una mano concreta, que la lateralidad de un niño era exclusivamente el resultado de las enseñanzas de sus padres. Platón era un notable defensor de esta opinión.

“En el uso de las manos estamos, y estábamos, viciados por las manías de nuestras intitutrices y madres -escribe Platón en sus Leyes-, pues aunque nuestros miembros están compensados por naturaleza, creamos una diferencia entre ellos como consecuencia de un mal hábito.”

 

Sabemos hoy en día que Platón estaba equivocado. Como hace notar Aristóteles con buen criterio. De todas las maneras, la tendencia innata para muchas personas de usar preferentemente la mano derecha es común desde que la puede constatarlo de manera evidente.

Resultado de imagen de los maoríes y los africanos son todos diestros. Los antiguos egipcios, griegos y romanos eran diestros.

                                                                     Sin embargo, existe un mundo zurdo

Losantropólogs culturales no han encontrado todavía ni una sola sociedad, o incluso una tribu , en la que la norma sea la lateralidad izquierda: los esquimos, los indios americanos, los maoríes y los africanos son todos diestros. Los antiguos egipcios, griegos y romanos eran diestros. Naturalmente, si retrocemos todavía más en la Historia, la evidencia de la lateralidad diestra es ya escasa e indirecta y hay que dilucidarla a partir del estudio de la forma de sus utensilios y armas, así como de las pinturas que muestran los hombres trabajando o en la batalla.

Las  propias palabras que se usan en muchas lenguas para designar la izquierda y la derecha dan testimonio de un sesgo universal hacia el lado derecho. En , ir a derechas es hacer las cosas correctamente, mientras que no dar una a derechas, es sinónimo de hacerlo todo mal.

Resultado de imagen de Tener habilidad y dotes gimnásticas

Ser diestro en algo es lo mismo que poseer una habilidad especial para ello, mientras que una cosa siniestra (del latín sinester, izquierda) es una cosa hecha con mala intención. En otras lenguas el significado viene a ser más o menos el mismo. Los italianos, tan suyos ellos, llaman a la mano izquierda stanca, fatigada, o manca, la que no se tiene. Lo cierto es que, por lo , los zurdos son ambidiestros.

Para tener una buena visión histórica de mlos prejuicios virulentos contra los zurdos en cualquier parte del mundo, veáse el séptimo capítulo de The Dragons of Eden, de Carl Sagan (Random House, 1977), y el delicioso de Jack Fincher, Sinister People (Putnam, 1977). Este último da una lista de más de cien personajes famosos que fueron zurdos.

Por lo que hemos observado , y hasta donde sabemos, la especie humana tiene la tendencia a utilizar la mano derecha. Claro que no sabemos. La mayoría de los mamíferos subhumanos son ambidiestros y, ¿cómo serán las especies que viven en otros mundos? El personaje de arriba, al menos, parece que es zurdo.

Lo cierto es que, poco importa si somos zurdos o no, la igualdad en lo esencial es casi idéntica. La verdadera diferencia está en el cerebro, en la manera de ver las cosas, en cómo cada cual enfoca los problemas y qué soluciones aplica a cada situación, en que perspectiva podamos tener de nuestra Sociedad, de nuestras leyes, de nuestros derechos, de la moral y la ética… Todo lo demás, son circunstancias anecdóticas que poco influyen en el devenir del mundo.

emilio silvera

Partículas, antipartículas, fuerzas…

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Bajo la “definición basada en quarks y leptones”, las partículas elementales y compuestas formadas de quarks (en púrpura) y leptones (en verde) serían la “materia”; mientras los bosones “izquierda” (en rojo) no serían materia. Sin embargo, la energía de interacción inherente a partículas compuestas (por ejemplo, gluones, que implica a los neutrones y los protones) contribuye a la masa de la materia ordinaria.

 

 

 

File:Annihilation.png

 

Esquema de una aniquilación electrón-positrón.

 

Ya hemos descrito en trabajos anteriores las dos familias de partículas elementales: Quarks y Leptones. Pero hasta ahí, no se limita la sociedad del “universo” infinitesimal. Existen además las antifamilias. A quarks y electrones se asocian, por ejemplo, antiquarks y antielectrones. A cada partícula, una antipartícula.

Uno de los primeros éxitos de la teoría relativista del campo cuántico fue la predicción de las anti-partículas: nuevos cuantos que eran la imagen especular de las partículas ordinarias. Las antipartículas tienen la misma masa y el mismo spin que sus compañeras las partículas ordinarias, pero cargas inversas. La antipartícula del electrón es el positrón, y tiene, por tanto, carga eléctrica opuesta a la del electrón. Si electrones y positrones se colocan juntos, se aniquilan, liberando la energía inmensa de su masa según la equivalencia masa-energía einsteniana.

                      Una partícula y su antipartícula no pueden coexistir: hay aniquilación de ambas.

¿Cómo predijeron los físicos la existencia de antipartículas? Bueno, por la «interpretación estadística» implicaba que la intensidad de un campo determinaba la probabilidad de hallar sus partículas correspondientes. Así pues, podemos imaginar un campo en un punto del espacio describiendo la creación o aniquilación de sus partículas cuánticas con una probabilidad concreta. Si esta descripción matemática de la creación y aniquilación de partículas cuánticas se inserta en el marco de la teoría relativista del campo cuántico, no podemos contar con la posibilidad de crear una partícula cuántica sin tener también la de crear un nuevo género de partícula: su antipartícula. La existencia de antimateria es imprescindible para una descripción matemáticamente coherente del proceso de creación y aniquilación según la teoría de la relatividad y la teoría cuántica.

La misteriosa sustancia

conocida como “materia oscura” puede ser en realidad una ilusión, creada por la interacción gravitacional entre partículas de corta vida de materia y antimateria. Un mar hirviente de partículas en el espacio puede crear la gravedad repulsiva.

Algunas no se paran en barra, y, por sobresalir y obtener unos minutos de gloria, son capaces de cualquier cosa. El verdadero físico, ante este cartel, quedó asombrado y se preopueso investigar de quá iba todo aquello.

“Investigando un poco, la historia, hasta donde puedo determinarla, es que Alejandro Gallardo es un estudiante de la Facultad de Ingeniería de la UNAM, que está (o quiźa estaba) por presentar su examen de grado en estos días (sin ningún sinodal del área de gravitación) y que tiene alguna relación con la sociedad de astrónomos aficionados que ostensiblemente organizaba la conferencia. Desde hace al menos diez años labora en un intento de describir una fuerza de repulsión gravitatoria usando álgebra elemental, falsando así tanto la gravedad Newtoniana como la Relatividad General. En esto es similar a innumerables personas que hacen ciencia marginal o pseudociencia (entendida como algo que no es ciencia pero que pretende hacerse pasar por ciencia).”

Resultado de imagen de Puede ser posible que las cargas gravitacionales en el vacío cuántico podrían proporcionar una alternativa a la "materia oscura". La idea se basa en la hipótesis de que las partículas y antipartículas tienen cargas gravitacionales de signo opuesto

Puede ser posible que las cargas gravitacionales en el vacío cuántico podrían proporcionar una alternativa a la “materia oscura”. La idea se basa en la hipótesis de que las partículas y antipartículas tienen cargas gravitacionales de signo opuesto. Como consecuencia, los pares de partícula-antipartícula virtuales en el vacío cuántico y sus dipolos de forma gravitacional (una carga gravitacional positivos y negativos) pueden interactuar con la materia bariónica para producir fenómenos que se suele atribuir a la materia oscura. Fue el  físico del CERN, Dragan Slavkov Hajdukovic, quien propuso la idea, y demostró matemáticamente que estos dipolos gravitacionales podrían explicar las curvas de rotación de las galaxias observadas sin la materia oscura en su estudio inicial. Sin embargo,  señaló que quedaba mucho por hacer.

Pero sigamos con la cuántica…

El pionero en comprender que era necesario que existiesen antipartículas fue el físico teórico Paul Dirac, que hizo varías aportaciones importantes a la nueva teoría cuántica. Fue él quien formuló la ecuación relativista que lleva hoy su nombre, y a la que obedece el campo electrónico; constituye un descubrimiento comparable al de las ecuaciones del campo electromagnético de Maxwell. Cuando resolvió su ecuación, Dirac se encontró con que además de describir el electrón tenía soluciones adicionales que describían otra partícula con una carga eléctrica opuesta a la del electrón. ¿Qué significaría aquello? En la época en que Dirac hizo esta observación, no se conocían más partículas con esta propiedad que el protón. Dirac, que no deseaba que las partículas conocidas proliferasen, decidió que las soluciones adicionales de su ecuación describían el protón.

{\displaystyle \left(\alpha _{0}mc^{2}+\sum _{j=1}^{3}\alpha _{j}p_{j}\,c\right)\psi (\mathbf {x} ,t)=i\hbar {\frac {\partial \psi }{\partial t}}(\mathbf {x} ,t)}

“La llamada ecuación de Dirac es la versión relativista de la ecuación de ondas de la mecánica cuántica y fue formulada por Paul Dirac en 1928. Da una descripción de las partículas elementales de espín ½, como el electrón, y es completamente consistente con los principios de la mecánica cuántica y de la teoría de la relatividad especial. Además de dar cuenta del espín, la ecuación predice la existencia de antimateria.”

Pero, tras un análisis más meticuloso, se hizo evidente que las partículas que describían las soluciones adicionales tenían que tener exactamente la misma masa que el electrón. Quedaba así descartado el protón, cuya masa es por lo menos, 1.800 veces mayor que la del electrón. Por tanto, las soluciones adicionales tenían que corresponder a una partícula completamente nueva de la misma masa que el electrón, pero de carga opuesta: ¡El antielectrón! Esto quedó confirmado a nivel experimental en 1932 cuando Carl Anderson, físico del Instituto de Tecnología de Calífornia, detectó realmente el antielectrón, que hoy se llama positrón.

Antes de empezar, debemos recordar que el Premio Nobel de Física de 1936 se repartió a partes iguales entre Victor Franz Hess y Carl David Anderson. Merece la pena leer la Nobel Lecture de Carl D. Anderson, “The production and properties of positrons,” December 12, 1936, quien nos explica que en esta imagen un “electrón” de 63 MeV atraviesa un placa de plomo de 6 mm y emerge con una energía de 23 MeV, pero lo hace con la curvatura “equivocada” como si fuera una partícula de carga positiva, como si fuera un protón pero con la masa de un electrón. La Nobel Lecture muestra muchas otras fotografías de positrones y electrones. Anderson afirma: “The present electron theory of Dirac provides a means of describing many of the phenomena governing the production and annihilation of positrons.”

Resultado de imagen de quien nos explica que en esta imagen un “electrón” de 63 MeV atraviesa un placa de plomo de 6 mm y emerge con una energía de 23 MeV, pero lo hace con la curvatura “equivocada” como si fuera una partícula de carga positiva,

Por otro lado, el Premio Nobel de Física de 1933 se repartió a partes iguales entre Erwin Schrödinger y Paul Adrien Maurice Dirac. También vale la pena leer la Nobel Lecture de Paul A. M. Dirac, “Theory of electrons and positrons,” December 12, 1933, aunque no cuente la historia de su descubrimiento, afirma que su ecuación predice el “antielectrón” de soslayo: ”There is one other feature of these equations which I should now like to discuss, a feature which led to the prediction of the positron.” (fuente: Francis (th)E mule Science’s News).

Resultado de imagen de Las antipartículasResultado de imagen de Las antipartículas

La aparición de las antipartículas cambió definitivamente el modo de pensar de los físicos respecto a la materia. Hasta entonces, se consideraba la materia permanente e inmutable. Podían alterarse las moléculas, podían desintegrarse los átomos en procesos radiactivos, pero los cuántos fundamentales se consideraban invariables. Sin embargo, tras el descubrimiento de la antimateria realizado por Paul Dirac hubo que abandonar tal criterio. Heisenberg lo expresaba así:

Resultado de imagen de La ecuación relativista del electrón hecha por Direc

“Creo que el hecho de que Dirac haya descubierto partículas y antipartículas, ha cambiado toda nuestra visión de la física atómica… creo que, hasta entonces, todos los físicos habían concebido las partículas elementales siguiendo los criterios de la filosofía de Demócrito, es decir, considerando esas partículas elementales como unidades inalterables que se hallan en la naturaleza como algo dado y son siempre lo mismo, jamás cambian, jamás pueden transmutarse en otra cosa. No son sistemas dinámicos, simplemente existen en sí mismas. Tras el descubrimiento de Dirac, todo parecía distinto, porque uno podía preguntar: ¿por qué un protón no podría ser a veces un protón más un par electrón-positrón, etc.?… En consecuencia, el problema de la división de la materia había adquirido una dimensión distinta.”

 

Dado que la antimateria tiene la misma masa que la materia, es decir son de la misma magnitud y signo (la definición de masa es positiva siempre), el efecto gravitacional de la antimateria no debe ser distinto de la materia, es decir, siempre sera un efecto atractivo. Pero, ¿acaso no importa la equivalencia establecida de antipartícula viajando al futuro = partícula viajando al pasado?

                Existe un “universo” que se nos escapa de la comprensión

 

La respuesta es sí. Dicha equivalencia proviene de algo llamado simetría CPT (Charge-Parity-Time), y nos dice que la equivalencia entre las partículas y antipartículas no solo corresponde a realizar una transformación sobre la carga, sino también sobre la paridad y el tiempo. La carga no afecta la gravedad, pero la paridad y el tiempo si la afectan. En otras palabras, al modificarse el tiempo (poner el tiempo al reves) y el espacio (la paridad es “girar” el espacio), estamos alterando el espacio-tiempo, y como la teoría general de la relatividad lo afirma, es la geometría de este el que determina la gravedad.

El carácter mutable de la materia se convirtió en piedra angular de la nueva física de partículas. El hecho de que partículas y antipartículas puedan crearse juntas a partir del vacío si se aporta energía suficiente, no sólo es importante para entender cómo se crean las partículas en aceleradores de alta energía, sino también para entender los procesos cuánticos que se produjeron en el Big Bang.

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

Como ya lo hemos expresado, el conocimiento que se obtuvo sobre la existencia de antifamilias de partículas o familias de antipartículas es una consecuencia de la aplicación de la teoría relativista del campo cuántico, para cada partícula existe una partícula que tiene la misma masa pero cuya carga eléctrica (y otras llamadas cargas internas) son de signo opuesto. Estas son las antipartículas. Así, al conocido electrón, con carga negativa, le corresponde un «electrón positivo» como antipartícula, llamado positrón, descubierto en 1932. El antiprotón, descubierto en 1956, tiene la misma masa que el protón, pero carga eléctrica negativa de igual valor. El fotón, que no tiene masa ni carga eléctrica, puede ser considerada su propia antipartícula.

Un agujero negro es un objeto que tiene tres propiedades: masa, espin y carga eléctrica. La forma del material en un agujero negro no se conoce, en parte porque está oculta para el universo externo, y en parte porque, en teoría, el material continuaría colapsando hasta tener radio cero, punto conocido como Singularidad, de densidad infinita.

Resultado de imagen de Singularidad de densidad infinita

Un agujero negro tiene tres propiedades: masa, espín y carga eléctrica. La forma del material de un agujero negro no se conoce, en parte porque está oculta para el universo externo, y en parte porque, en teoría, el material continuaría colapsando hasta tener radio cero, punto conocido como singularidad, de densidad infinita.

Resultado de imagen de Fotones libres

La luz (fotones), no son una onda distinta que un electrón o protón, etc.

1°- “No se dispersan”, no son más pequeñas, como las ondas del agua (olitas) cuando tiramos una piedrita, a medida que se alejan de su centro; sino que en el caso de la luz son menos partículas, pero son siempre el mismo tipo de onda (determinada frecuencia), igual tamaño.

2°- Las ondas con más energía son más grandes, los fotones al igual que las partículas son más pequeñas, contra toda lógica (contracción de Lorentz).

3°- No necesitan de un medio material para desplazarse. Viajan en el vacío. El medio que usan para viajar, es el mismísimo espacio.

4°- Su cualidad de onda no es diferente de las partículas. Lo podemos ver en la creación de pares y la cualidad de onda de las partículas, etc. En ningún momento la partícula, es una cosa compacta (ni una pelotita), siempre es una onda, que no se expande. En la comparación con la ola, sería como un “montón” o un “pozo” de agua, con una dirección, lo que conocemos como ecuación de Schrödinger. En ningún momento la partícula, es una pelotita; la ola sobre el agua, no es un cuerpo que se mueve sobre el agua, no es un montón de agua que viene (aunque parece), sino una deformación del agua. Así la partícula, no es un montón de algo, sino una deformación del espacio.

La curvatura está relacionadas con la probabilidad de presencia, no es una bolita que está en uno de esos puntos, sino que es una onda en esa posición. El fotón es una onda que no necesita de un medio material para propagarse, se propaga por el espacio vacío. Así como una onda de sonido es una contracción-expansión del medio en que se propaga, el fotón es una contracción-expansión del espacio (del mismísimo espacio), razón por la cual entendemos que el espacio se curva, se contrae y expande. La rigidez del medio, da la velocidad de la deformación (velocidad de  la onda), en el caso de la rigidez del espacio da una velocidad “c”.Esta onda por causa de la contracción del tiempo (velocidad “c”), no se expande, sino que se mantiene como en su origen (para el observador ), como si fuese una “burbuja”, expandida o contraída, en cada parte, positiva-negativa

Cada partícula está caracterizada por un cierto número de parámetros que tienen valores bien definidos: su masa, carga eléctrica, spin o rotación interna y otros números, conocidos como cuánticos. Estos parámetros son tales que, en una reacción, su suma se mantiene y sirve para predecir el resultado. Se dice que hay conservación de los números cuánticos de las partículas. Así, son importantes el número bariónico, los diversos números leptónicos y ciertos números definidos para los quarks, como la extrañeza, color, etc. Estos últimos y sus antipartículas tienen cargas eléctricas (± 1/3 o ± 2/3) y números bariónicos (±1/3) fraccionarios. No todos los números asociados a cada partícula han sido medidos con suficiente precisión y no todas las partículas han sido detectadas en forma aislada, por lo menos de su ligamento, como el caso de

los quarks

De los Quarks y de los gluones.

Los gluones son una especie de «partículas mensajeras» que mantienen unidos a los quarks. Su nombre proviene del término inglés “glue”, que significa pegamento, en español quizás podría ser gomón. Ahora, en cuanto a los quarks, ya hicimos referencia de ellos anteriormente. Pero recordemos aquí, que fueron descubiertos en 1964 por Murray Gell-Mann, como los componentes más reducidos de la materia. Hasta entonces se pensaba que los átomos consistían simplemente en electrones rodeando un núcleo formado por protones y electrones.

En estado natural, quarks y gluones no tienen libertad. Pero si se eleva la temperatura a niveles 100.000 veces superiores, como se ha hecho en aceleradores de partículas, a la del centro del Sol, se produce el fenómeno del desconfinamiento y por un brevísimo tiempo quedan libres. En ese preciso momento aparece lo que se suele llamar plasma, «una sopa de quarks y gluones» que equivale al estado en que se podría haber encontrado la naturaleza apenas una milésima de segundo luego del Big Bang.

11-three_quarks 11-heart2quarks_small

Recientemente se ha descubierto un nuevo estado de la materia, esta vez a niveles muy altos de energía, que los científicos han denominado Plasma Gluón-Quark. La transición ocurre a temperaturas alrededor de cien mil millones de grados y consiste en que se rompen las fuertes ligaduras que mantienen unidos los quarks dentro de los núcleos atómicos. Los protones y neutrones están formados, cada uno, por 3 quarks que se mantienen unidos gracias a los gluones (El gluón es la partícula portadora de interacción nuclear fuerte, fuerza que mantiene unida los núcleos atómicos). A temperaturas superiores se vence la fuerza nuclear fuerte y los protones y neutrones se dividen, formando esta sopa denominada plasma Gluón-Quark.

Resultado de imagen de Los Quarks libres

Pero por ahora aquí, nos vamos a quedar con los quarks al natural. Normalmente, los quarks no se encuentra en un estado separados, sino que en grupos de dos o tres. Asimismo, la duración de las vidas medias de las partículas, antes de decaer en otras, es muy variable (ver tablas).

Por otra parte, las partículas presentan una o más de las siguientes interacciones o fuerzas fundamentales entre ellas. Por un lado se tiene la gravitación y el electromagnetismo, conocidas de la vida cotidiana. Hay otras dos fuerzas, menos familiares, que son de tipo nuclear y se conocen como interacciones fuertes y débiles.

La gravitación afecta a todas las partículas, es una interacción universal. Todo cuerpo que tiene masa o energía está sometido a esta fuerza. Aunque es la más débil de las interacciones, como las masas son siempre positivas y su alcance es infinito, su efecto es acumulativo. Por ello, la gravitación es la fuerza más importante en cosmología.

Resultado de imagen de Los campos magnéticos están presentes por todo el Universo

                            Los campos magnéticos están presentes por todo el Universo

La fuerza electromagnética se manifiesta entre partículas con cargas eléctricas. A diferencia de las demás, puede ser de atracción (entre cargas de signos opuestos) o de repulsión (cargas iguales). Esta fuerza es responsable de la cohesión del átomo y las moléculas. Mantiene los objetos cotidianos como entidades con forma propia. Un vaso, una piedra, un auto, el cuerpo humano. Es mucho más fuerte que la gravitación y aunque es de alcance infinito, las cargas de distinto signo se compensan y sus efectos no operan a grandes distancias. Dependiendo de las circunstancias en que actúen, estas interacciones pueden manifestarse como fuerzas eléctricas o magnéticas solamente, o como una mezcla de ambos tipos.

La Fuerza Nuclear Débil: otra fuerza nuclear, considerada mucho más débil que la Fuerza Nuclear Fuerte. El fenómeno de decaimiento aleatorio de la población de las partículas subatómicas (la radioactividad) era difícil de explicar hasta que el concepto de esta fuerza nuclear adicional fue introducido.

La interacción nuclear débil es causa de la radioactividad natural y la desintegración del neutrón. Tiene un rol capital en las reacciones de fusión del hidrógeno y otros elementos en el centro de las estrellas y del Sol. La intensidad es débil comparada con las fuerzas eléctricas y las interacciones fuertes. Su alcance es muy pequeño, sólo del orden de 10-15 cm.

Archivo:CNO Cycle.svg

La interacción fuerte es responsable de la cohesión de los núcleos atómicos. Tiene la intensidad más elevada de todas ellas, pero es también de corto alcance: del orden de 10-13 cm. Es posible caracterizar las intensidades de las interacciones por un número de acoplamiento a, sin dimensión, lo que permite compararlas directamente:

Fuerte as = 15

Electromagnéticas a = 7,3 x 10-3

Débil aw 3,1 x 10-12

Gravitacional aG = 5,9 x 10-39

Por otro lado, la mecánica cuántica considera que la interacción de dos partículas se realiza por el intercambio de otras llamadas «virtuales». Tienen ese nombre porque no son observables: existen por un tiempo brevísimo, tanto más corto cuanto mayor sea su masa, siempre que no se viole el principio de incertidumbre de Heisenberg de la teoría cuántica (que en este contexto dice que el producto de la incertidumbre de la energía por el tiempo de vida debe ser igual o mayor que una constante muy pequeña). Desaparecen antes de que haya tiempo para que su interacción con otras partículas delate su existencia.

Monografias.com

                                      El fotón  virtual común se desplaza hacia la partícula menos energética.

Dos partículas interactúan al emitir una de ellas una partícula virtual que es absorbida por la otra. Su emisión y absorción cambia el estado de movimiento de las originales: están en interacción. Mientras menos masa tiene la partícula virtual, más lejos llega, mayor es el rango de la interacción. El alcance de la interacción es inversamente proporcional a la masa de la partícula portadora o intermedia. Por ejemplo, la partícula portadora de la fuerza electromagnética es el fotón, de masa nula y, por lo tanto, alcance infinito. La interacción gravitacional también tiene alcance infinito y debe corresponder a una partícula de masa nula: se le denomina gravitón. Naturalmente tiene que ser neutro. (Aún no ha sido vistos ni en pelea de perros).

Resultado de imagen de Bosones W+, W- y Zª

Como ya hicimos mención de ello, a las fuerzas nucleares se les asocian también partículas portadoras. Para la interacción débil estas partículas se llaman bosones intermedios, expresados como W+, W- y Zº (neutro). El W- es antipartícula del W+. Los W tienen masas elevadas comparadas con las otras partículas elementales. Lo de bosones les viene porque tienen spin entero, como el fotón y el gravitón, que también los son, pero que tienen masas nulas. Las fuerzas fuertes son mediadas por unas partículas conocidas como gluones, de los cuales habría ocho. Sin embargo, ellos no tienen masa, pero tienen algunas de las propiedades de los quarks, que les permiten interactuar entre ellos mismos. Hasta ahora no se han observado gluones propiamente tal, ya que lo que mencionamos en párrafos anteriores corresponde a un estado de la materia a la que llamamos plasma. Claro está, que es posible que un tiempo más se puedan detectar gluones libres cuando se logre aumentar, aún más, la temperatura, como está previsto hacerlo en el acelerador bautizado como “Relativistic Heavy Ion Collider”, empotrado en Estados Unidos de Norteamérica.

TABLA DE LAS PRINCIPALES PROPIEDADES DE LAS PARTÍCULAS PORTADORAS DE LAS INTERACCIONES FUNDAMENTALES

tabla3

Una partícula y su antipartícula no pueden coexistir si están suficientemente cerca como para interactuar. Si ello ocurre, ellas se destruyen mutuamente: hay aniquilación de las partículas. El resultado es radiación electromagnética de alta energía, formada por fotones gamma. Así, si un electrón está cercano a un positrón se aniquilan en rayos gamma. Igual con un par protón-antiprotón muy próximos.

La reacción inversa también se presenta. Se llama «materialización o creación de partículas» de un par partícula-antipartícula a partir de fotones, pero se requieren condiciones físicas rigurosas. Es necesario que se creen pares partícula-antipartícula y que los fotones tengan una energía mayor que las masas en reposo de la partículas creadas. Por esta razón, se requieren fotones de muy alta energía, de acuerdo a la relación de Einstein E=mc2 . Para dar nacimiento a electrones/positrones es necesario un campo de radiación de temperaturas mayores a 7×109 °K. Para hacer lo mismo con pares protón/antiprotón es necesario que ellas sean superiores a 2×1012 °K. Temperaturas de este tipo se producen en los primeros instantes del universo.

Resultado de imagen de Gran emisión de rayos GammaResultado de imagen de Gran emisión´çon de rayos gamma

Se detectan grandes emisiones de rayos gamma en explosiones supernovas y otros objetos energéticos

Los rayos gamma están presentes en explosiones de supernovas, colisión de estrellas de neutrones… Todos los sucesos de altas energías los hace presente para que nuestros ingenios los detecten y podamos conocer lo que la materia esconde en lo más profundo de sus “entrañas”. Aún no hemos podido conocer en profundidad la materia ni sabemos, tampoco, lo que realmente es la luz.

emilio silvera

¿La Física? Mucho más de lo que nos pueda parecer

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para ser llamado científico, un método de investigación debe basarse en lo empírico y en la medición, sujeto a los principios específicos de las pruebas y el razonamiento, hay que demostrar con certeza la teoría.

Empecé a estudiar física hace ahora unos 50 años. Y poco a poco he ido viendo  que una parte de la física iba dejando de ser ciencia, olvidando el método de Galileo, y avanzando hacia un sistema dogmático, místico e iniciático.  Recordemos que el método dogmático es aquel en el cual se exige aceptar una afirmación que no esta apoyada en ningún hecho comprobable: La afirmación de que las tablas de la ley las había entregado una deidad, por ejemplo.  Hoy es imposible, en el campo de la física, no aceptar la afirmación incomprobable, de que el mundo empezó en un Big-Bang, con una cierta energía que no se sabe que era, y moviéndose de una forma que exige un razonamiento circular que pasa de energía a frecuencias de algo que se desconoce,  a energías de caracter desconocido a frecuencias de ….., y así indefinidamente.

 Resultado de imagen de Imagen del Big Bang

¿Qué produjo el Big Bang? ¿Qué había antes allí?

Pero como con las tablas de la ley, nadie puede subir a la montaña a verificar las afirmaciones expresadas, que sin embargo hay que creer bajo pena de excomunión. Nadie puede volar en el tiempo hacia atrás hasta hace unos miles de millones de años, para verificar la hipótesis.

El sistema avanza hacia el misticismo: ¿Que otra cosa  es la idea de las supercuerdas, una idea que para Steven Weinberg, padre de la Gran Unificacion, era ilusionante, pero se ha revelado incapaz de tener algo que ver con la realidad?  O la SUSY, la supersimetría que postula que, por ejemplo, los electrones, con spin fraccionario, tengan simétricos con spin entero, selectrones que nadie ha medido ni de lejos.

Y se está convirtiendo en iniciático. Para ”descubrir” el Higgs, el CERN cerró las puertas y aisló a sus dos equipos durante años, en un sistema indigno de la idea de la ciencia, que había sido pública y abierta para todos hasta ese momento. El CERN ha publicado los resultados de sus dos equipos pero, o estoy muy equivocado, no ha distribuido los datos originales, las fotografías de las trazas de los productos de desintegració.  (Si, dos veces, pues si hay Higgs, ¿a qué tanto misterio?

Sólo vemos los productos de los productos de la desaparición de la partícula buscada.  En las sociedades místicas, tras un periodo de iniciación para los elegidos, las verdades se revelaban siempre en ceremonias secretas bajo la terrible promesa de no revelar los ritos nunca fuera de la institución.

Otro de los padres de la Gran Unificación, el físico Abdus Salam, daba como razón poderosa para la búsqueda de la misma su fé en un único dios. Según él, la naturaleza debería tener una única fuerza, correspondiente a esa única deidad.

El padre de la mecánica cuántica, Niels Bohr, apremiado por Einstein, entre otros, llegó a decir que de esa forma de analizar el mundo atómico y sub-atómico,  de esa mecánica cuántica había que tomar las reglas de cálculo, pero que había que renunciar a entender lo que pasaba en él.  Esto dicho por un supuesto científico que había renunciado a entender la naturaleza, pero que controló, hasta su muerte, la concesión de los premios Nobel de física.

Es tremendamente importante considerar esto que he escrito aquí, en todos los caminos de la ciencia. Hoy la presión es publicar, aunque lo que se publique sea mera copia no entendida de otros trabajos publicados anterior o simultáneamente.  Esos trabajos se acumulan en las revistas científicas, de donde no salen a las empresas ni hacia la técnica. Los resultados de un enorme tanto por ciento de la investigación no son aprovechados por aquellos que la han financiado, que dejan que esos resultados caigan en el olvido.

Mientras que miles de científicos trabajan de manera seria e incansable sobre asuntos y proyectos reales que, en su momento, darán una respuesta y en sus trabajos de laboratorio,  sus resultados se aprovechan para la sociedad, otros cientos de miles de ellos, destinan inmensas cantidades de dinero y esfuerzo que se desperdician en desarrollos místicos sin utilidad alguna. Antes de acometer un proyecto habría que ver las posibilidades reales de los mismos.

Claro que, pensándolo bien, tampoco Colón sabía hacia donde iba cuando emprendió su viaje.

Edward Witten revisita la teoría de supercuerdas perturbativa en Strings 2012.

“Me gusta esta figura porque muestra muy claramente lo que conocemos en física de partículas, lo que esperamos explorar en las próximas décadas, y lo que creemos conocer, aunque nunca llegaremos a explorar de forma directa. La partícula con más masa conocida tiene menos de 200 GeV y todavía se sigue explorando entre 10 a 200 GeV en busca de nuevas partículas. Basta recordar que se acaba de descubrir una partícula con 125 GeV de masa, el bosón de Higgs, y que muchos físicos creen que la partícula responsable de la materia oscura tiene una masa en este rango. El LHC y sus sucesores en las próximas décadas explorarán las energías entre 100 y 5000 GeV (difícilmente podrán llegar más lejos). Sin embargo, hay un desierto hasta energías de 10 000 000 000 GeV (la escala de Planck) que no hemos explorado, que no podremos explorar en el siglo XXI y del que no conocemos absolutamente nada,”

 

 

Dibujo20151124 iter construction 2015

 

“Bernard Bigot, director general de ITER, el reactor de fusión experimental que se está construyendo en Cadarache, Francia, ha anunciado que la primera inyección de plasma (que marca el final de su construcción) se retrasará hasta 2025. Recuerda que el proyecto se inició en 2006 y se planificó la primera inyección de plasma para 2016, pero en 2010 se retrasó hasta 2019.”

A veces, queremos imitar la Naturaleza sin llegar a ser conscientes de que, nunca la podremos igualar. ¿Qué materiales aquí en la Tierra podrían soportar temperaturas de millones de grados sin deteriorarse).”

Aún hay ciencia. Pero hay disciplinas que se están, tristemente, alejando de ella aunque se consideran públicamente, y así lo afirman, como los que marcan el camino del futuro de la misma. Terminarán olvidadas, como ha ocurrido con toda la mística iniciática. Pero de momento aún nos dicen, como los sufíes, que son los únicos que están cerca de la verdad.

La Ciencia es una cosa de la que todos sabemos como anda sus caminos y cuando se puede considerar digna de su nombre, otra cosa muy distinta será el especular y aventurar “teorías” que no llegan a ninguna parte, toda vez que tienen la imposibilidad de ser demostradas y, eso, amigos míos, es como hablar de la existencia de Dios.