miércoles, 30 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Monopolos magnéticos? ¿Hasta dónde podemos imaginar?

Autor por Emilio Silvera    ~    Archivo Clasificado en Lo que no sabemos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

 

 el LHC se ponía en marcha, algunos hablaron de que se podían crear monopolos magnéticos.

“ Desde el punto de vista teórico, uno se siente inclinado a creer que los monopolos han de existir, debido a la belleza matemática de su concepción. Aunque se han hecho varias tentativas de hallarlos, ninguna ha tenido éxito. Debiera deducirse de ello que la belleza matemática en sí no es razón suficiente  que la naturaleza aplique una teoría. Nos queda aún mucho que aprender en la investigación de los principios básicos de la naturaleza.”

P. A. M. DIRAC, 1981

 

En los  treinta del pasado siglo Paul Dirac realizó unos cálculos teóricos que indicaban que si existieran los monopolos magnéticos, entonces se podría cuantizar fácilmente la carga del electrón. Bastaría que existiera un sólo monopolo magnético en el Universo para que los electrones tuvieran la carga que tienen y no otra.

FotoResultado de imagen de Monopolos magnéticos

 

La imagen de arriba vino acompañada de la noticia siguiente: “Afirman haber podido detectar por primera vez monopolos magnéticos como un  de la materia que se daría a partir de una disposición especial de los momentos magnéticos dentro de un cristal a baja temperatura. “

 

En realidad, cohabitamos una naturaleza llena de fenómenos enigmáticos. Uno de estos fenómenos es la asimetría insólita que se observaba en el magnetismo y la electricidad: no hay cargas magnéticas comparables a las cargas eléctricas. Nuestro mundo está lleno de partículas cargadas eléctricamente,  los electrones o los protones, pero nadie ha detectado jamás una carga magnética aislada. El objeto hipotético que la poseería se denomina monopolo magnético.

Foto

         Montaje experimental. Foto: HZB, D.J.P. Morris y A. Tennant.

El grupo de investigadores dispuso un montaje experimental especial  poder detectar estas cuerdas de Dirac. Hicieron que un chorro de neutrones impactara sobre una muestra a la que aplicaban un campo magnético. En el interior de la muestra se formaban cuerdas de Dirac que dispersaban los neutrones con un patrón específico que delataba su presencia.

La muestra era un cristal de titanato de disprosio. La estructura cristalina de  compuesto tiene una geometría notable, de tal modo que los momentos magnéticos de su interior se organizan en lo que se llama un “espagueti de espines”. El viene de la ordenación de los dipolos, que forman una red de tubos contorsionados (cuerdas) por los que se transporta flujo magnético.

Estos tubos pueden “hacerse visibles”  los neutrones interaccionan con ellos; pues los neutrones, aunque no tienen carga eléctrica, sí tienen  magnético. El patrón de dispersión de los neutrones obtenido es una representación recíproca de las cuerdas de Dirac contenidas en la muestra. Con el campo magnético aplicado los investigadores podían controlar la simetría y orientación de las cuerdas. A temperaturas de entre 0,6 a 2 grados Kelvin los investigadores pudieron ver pruebas de la existencia de monopolos magnéticos (la temperatura suele ser la peor enemiga del magnetismo, pues tiene a desordenarlo todo) en  de este de cuerdas según se acaba de describir.

Además pudieron ver la firma que en la capacidad calorífica dejada el gas de monopolos, viendo que estas cuerdas interaccionan de manera similar a como lo hacen las cargas eléctricas, lo que era de prever para el caso de monopolos magnéticos. En este resultado los monopolos no son partículas, sino que emergen como un  de la materia, en concreto a partir de un arreglo especial de los dipolos que forman del material.

 hacernos una idea de cómo sería un monopolo magnético si existiera, imaginemos una barra imantada que, como sabemos, posee en cada extremos un «un polo magnético» por el cual se atraen o se repelen. Estos polos son de dos tipos, llamados «norte» y «sur», y se comportan como las cargas eléctricas, positiva y negativa. Esa configuración del campo es un ejemplo de «campo bipolar», y sus líneas de campo no paran: giran y giran interminablemente. Si partimos por la mitad la barra imantada, no tenemos dos polos, el norte y el sur, separados, sino dos imanes. Un polo norte o sur aislado (un objeto con líneas de campo magnético que sólo salgan o que sólo entren) sería un monopolo magnético. De hecho, es imposible aislar una de estas cargas magnéticas. Nunca se ha detectado monópolos magnéticos, es decir partículas que poseyeran una sola carga magnética aislada. que ello se deba a razones no aclaradas, o  la naturaleza no creó monopolos magnéticos o creó poquísimos.

Imagen relacionada

En cambio, los monopolos eléctricos (partículas que llevan carga eléctrica) son muy abundantes. chispa de materia contiene un increíble número de electrones y protones que son auténticos monopolos eléctricos. Podríamos imaginar las líneas de fuerza del campo eléctrico surgiendo de una partícula cargada eléctricamente o convergiendo en ella y empezando o acabando allí. Además, la experiencia ha confirmado la ley de conservación de la carga eléctrica: la carga monopólica eléctrica total de un sistema cerrado no puede ni crearse ni  destruirse. Pero en el mundo del magnetismo, no existe nada similar a los monopolos eléctricos, aunque un monopolo magnético sea fácilmente concebible.

La teoría electromagnética unifica la fuerza eléctrica y la fuerza magnética. La fuerza eléctrica es generada por la presencia de cargas eléctricas (el electrón, por ejemplo), mientras que la fuerza magnética surge por el movimiento de estas mismas cargas. El campo magnético de un imán proviene del movimiento de los electrones alrededor de los núcleos de hierro.

James Clerk Maxwell, el físico escocés que unificó matemáticamente los campos magnético y eléctrico en 1864, incluía en sus ecuaciones electromagnéticas fundamentales la existencia de cargas eléctricas, no incluyó la posibilidad de cargas magnéticas. Le habría resultado fácil hacerlo; la inclusión, a nivel estético, habría hecho sus ecuaciones bellamente simétricas respecto a la electricidad y el magnetismo. Pero al igual que otros físicos, Maxwell no halló prueba alguna de que hubiera en la naturaleza cargas magnéticas y las excluyó, por principio, de sus ecuaciones. Los físicos consideran entonces extraña la asimetría natural de la electricidad y el magnetismo.

Resultado de imagen de Siguieron profundizando en sus estudios del campo electromagnético maxwelliano.Resultado de imagen de Siguieron profundizando en sus estudios del campo electromagnético maxwelliano.

Siguieron profundizando en sus estudios del campo electromagnético maxwelliano. Sabían que las ecuaciones de Maxwell podían simplificarse si se derivaban matemáticamente los campos eléctrico y magnético de otro campo aún más básico: un campo de medida. El campo de medida electromagnético es el ejemplo primero y más simple de la concepción general de campo de medida que descubrirían mucho después Yang y Mills. Curiosamente, al aplicar las ecuaciones de Maxwell al campo simple de medida, los físicos comprobaron que la ausencia de carga magnética se explicaba matemáticamente. Recíprocamente, pudieron demostrar que la ausencia de carga magnética entrañaba matemáticamente la existencia de un campo de medida. El campo de medida introdujo así una asimetría los campos eléctrico y magnético.

       En realidad, ¿quién sabe lo que puede haber en el Universo?

 la introducción del campo de medida estructura subyacente del electromagnetismo se consideraba entonces una novedad matemática, un truco conceptual y no verdadera física. De la idea del campo de medida sacabas exactamente (ninguna carga magnética) lo que ponías en ella (ninguna carga magnética). Luego, en los años veinte, el matemático Hermann Weyl demostró que la incorporación de los campos eléctrico y magnético en la nueva teoría cuántica exigía concretamente una interpretación en términos del campo de medida. Y se empezó así a comprobar que el campo de medida electromagnético era físicamente importante, además de interesante matemáticamente. La mecánica cuántica parecía hecha a la medida de los campos de medida, y, curiosamente, los campos de medida presuponían la ausencia de monopolos magnéticos.  planteamiento teórico coincidía tan absolutamente con la experiencia que la idea del campo de medida electromagnético se asentó con mucha firmeza. Pero luego, llegó Paul Dirac.

En 1931, Dirac empezó a examinar las consecuencias físicas de la «belleza matemática» del campo de medida electromagnético en la teoría cuántica. Según él: « realicé este , tenía la esperanza de encontrar una explicación de la constante de estructura fina (la constante relacionada con la unidad fundamental de carga eléctrica). Pero no fue así. Las matemáticas llevaban inexorablemente al monopolo.» En contra del punto de vista teórico predominante, Dirac descubrió que la existencia de un campo de medida electromagnético y la teoría cuántica unidas presuponían que en realidad los monopolos magnéticos podían existir… siempre que la unidad fundamental de carga magnética tuviese un valor específico. El valor de la carga magnética que halló Dirac era tan grande que si en realidad existiesen monopolos magnéticos en la naturaleza, tendrían que ser fácilmente detectables, debido a los efectos de sus grandes campos magnéticos.

Entender mejor las consecuencias de las investigaciones de Dirac imaginemos una barra imantada delgada de kilómetro y medio de longitud, con un campo magnético en  extremo. En este caso, el campo magnético se parece al de un monopolo magnético porque el imán es muy delgado y los extremos están muy alejados. Pero no es un auténtico monopolo, porque las líneas del campo magnético no terminan realmente en la punta ,del imán; se canalizan a través de éste y surgen por el otro extremo.

Imaginemos luego que un extremo de  delgado imán se extiende hasta el infinito, reduciéndose su grosor matemáticamente a cero. El imán parece una línea matemática, o una cuerda, con un campo magnético radial que brota de su extremo: un auténtico monopolo magnético puntiforme: Pero, ¿y esa cuerda infinitamente delgada (llamada cuerda de Dirac) que canaliza el flujo del campo magnético  el infinito? Dirac demostró que si la carga magnética del monopolo, con un valor g, cumplía la ecuación

ge = n/2

n = 0, ± 1, ± 2…

en la que e es la unidad fundamental de carga eléctrica (una cantidad conocida experimentalmente), la presencia de esa cuerda no podría detectarse nunca físicamente. Según Dirac, la cuerda se convierte entonces sencillamente en un artilugio matemático descriptivo sin realidad física, igual que las coordenadas de los mapas son artilugios matemáticos que utilizamos  describir la superficie de la Tierra, carentes de significado físico. La cuerda de Dirac con un monopolo magnético en la punta era matemáticamente una línea en el espacio, a lo largo de la cual el campo de medida electromagnético no estaba definido. Pero sorprendentemente falta de definición no tenía consecuencias mensurables, siempre que la carga del monopolo magnético cumpliese la condición de Dirac. Otra consecuencia más del monopolo de Dirac era que la carga magnética se conservaba rigurosamente  la carga eléctrica.

paul dirac 1907 250x212 Paul Dirac cuando era niño

¿Quién diría, viendo a  niño, que de mayor, desarrollaría un trabajo sobre el electrón que nada  que envidiar a las teorías de Einstein? Es Paul Dirac de niño, allá por el año 1907. Después de los importantes trabajos de Dirac, los físicos teóricos aceptaron la posible existencia de monopolos magnéticos, pensando que si ninguna ley física rechazaba su existencia, quizá existiesen.

Resumiendo, nada se opone, a priori, a la existencia de cargas magnéticas aisladas. Estos monopolos magnéticos producirían una fuerza magnética, mientras que sus movimientos engendrarían una fuerza eléctrica. , por una razón misteriosa, la naturaleza no parece haberse jugado aquí por la simetría, pues creó «monopolos eléctricos» y aparentemente no monopolos magnéticos.

Resultado de imagen de Monopolos magnéticos... existen en el universo

                                                 El imán de un sólo polo, el sueño no confirmado

¿Causa problemas tal asimetría?, ¿Deberían existir los monopolos magnéticos? La respuesta tradicional de los físicos es: No necesariamente. La teoría sugiere su existencia, pero no la exige, y se acomoda muy  con su ausencia.

Mas en el marco de la teoría del Big Bang la situación es diferente. En el  del quiebre de la simetría de gran unificación, se engendraron cantidades de monopolos magnéticos. Estas partículas, casi tan masivas como las X y las Y, ¡deberían ser tan numerosas como los protones! Masas tan gigantescas deberían poder señalarse fácilmente. ¿Por qué no se dejan percibir por nuestros detectores?

De hecho, con la masa de los monopolos magnéticos, si existiesen, otorgarían al universo una densidad bastante superior que la densidad crítica. Bajo su efecto gravitatorio, ¡el universo se habría cerrado hace mucho tiempo! Y ¿de nosotros?…  ¡Ni hablar!

No están aquí y tanto mejor. Pero, ¿por qué? El problema de los monopolos ausentes es otra de las patologías de las debilidades del Big Bang.

emilio silvera

La Denudación y otros fenómenos naturales

Autor por Emilio Silvera    ~    Archivo Clasificado en La Naturaleza...El Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 carteles dios ateo ateismo galaxias universo desmotivaciones

Lo cierto es que, lo extraño del Universo es que, viéndolo tan cerca (nosotros somos parte de él), a veces nos parece inalcanzable. ¡Es tan grande! Que hasta nos hemos tenido que inventar unidades especiales para poder medirlo, ya que, las medidas cotidianas locales y comarcales, no sirven para expresar las distancias que nos separan de otros mundos, de las estrellas, de otras galaxias.

Hablemos de la Denudación y de otros fenómenos naturales:

Las poderosas fuerzas geomorfológicas pueden actuar suavemente. La acción de la gravedad puede mover, en cuestión de segundos, enormes volúmenes de tierra y piedras en devastadores deslizamientos y desprendimientos. Con lluvias intensas, la erosión en barrancos y cauces puede transformar los campos y las riberas, e inundar las llanuras durante horas o incluso días. Los vientos huracanados pueden, igualmente, modificar la fisonomía de las costas, y algunas superficies pueden ser remodeladas casi instantáneamente por erupciones volcánicas y terremotos. Pero la denudación de los continentes – el proceso debido a la acción de las inclemencias del tiempo, erosión meteórica y el posterior arrastre de los materiales erosionados – es un cambio gradual con tasas habitualmente bajas, que las alteraciones no se perciben durante el transcurso de una vida.

Resultado de imagen de La denudación en regiones secas

             El comportamiento de la Naturaleza cambia el aspecto de grandes extensiones de terreno

El Bubnoff (B) – la denudación de 1 mm en mil años (o 1 μm/año) – es una unidad conveniente para medir este cambio. Las precipitaciones, por disolución, reducen las duras rocas ígneas o metamórficas con una tasa comprendida entre 0’5 y 5 B, y las calizas hasta 100 B. La denudación en terrenos generalmente secos se produce a ritmos no mayores de 10 – 15 B, y en los trópicos húmedos llega a los 20 – 30 B. Los cambios en terrenos montañosos pueden ser mucho más importantes, llegando hasta 800 B en zonas de glaciares rápidos (sudeste de Alaska) y hasta los casi 10 KB en las zonas más recientes en continua elevación (la región de Nanga Parbat en el Himalaya). Pero incluso estas altas tasas de denudación son resultado de fuerzas modestas.

Reducción de riesgos.
a. Detección de precursores. Permiten una predicción espacial y
temporal del riesgo.
Ejemplo:
b. Ela...

Cuando se producen grandes lluvias torrenciales las aguas arrastran grandes cantidades de materiales y cambia la fisonomía de importantes extensiones superficiales que, en pocos años, las transforma.

Un ejemplo de importancia medioambiental y económica ilustra este lento proceso geomorfológico de baja potencia. Si no hubiera erosión, la profundidad del suelo en los campos de cultivo sería mayor, pero su capa superior se empobrecería en nutrientes, ya que la erosión meteórica, si no es demasiado intensa, es la que repone los minerales en esta capa en la que crecen las raíces, ayudando a mantener la fertilidad del terreno.

La máxima pérdida de suelo compatible con el cultivo sostenido de cosechas es aproximadamente de 11 toneladas por hectárea en la mayor parte del terreno agrícola norteamericano. Cerca de dos quintas partes de los campos de ese país se están erosionando a tasas superiores, y la tasa media nacional de erosión, solamente por agua, es de casi diez toneladas por hectárea, equivalente a 550 B (suponiendo que la densidad del suelo es de 1’8 tn/m3).

El papel dominante de las lluvias en el proceso de la denudación se hace evidente cuando se compara la energía cinética de las gotas de lluvia con la energía de la escorrentía superficial. Las mayores gotas de lluvia, con diámetro comprendido entre 5 y 6 mm, alcanzan velocidades finales de 9 m/s, lo que implica que su energía cinética durante el impacto equivale aproximadamente a 40 veces su masa. Aunque la mitad de la precipitación corriera por la superficie a un velocidad media de un metro por segundo, la energía cinética sería una cuarta parte de la masa en movimiento. Consecuentemente, la erosión resultante de la caída de la lluvia sería dos órdenes de magnitud más potente que la corriente superficial.

La energía total de la denudación global del planeta se puede calcular suponiendo que afecta al menos a 50 B de material, con una densidad media de 2’5 g/cm3 (125 tn/m3) y que la altura media continental es de 850 m. Así, la energía de los campos de la Tierra se reduciría anualmente en 135 PJ. Este flujo, 4’3 GW, es muy pequeño comparado con otros flujos energéticos del planeta, representando el 0’05 por ciento de la energía potencial perdida por las corrientes superficiales de agua, el 0’01 por ciento del calor terrestre e igual a menos de 2×10-7 veces la radiación solar absorbida  por las superficies continentales. Claramente, en la denudación de los continentes se invierte una parte insignificante de la radiación solar tanto directamente, a través de la luz solar, como indirectamente, con las corrientes de agua y el viento.

cordillera de alaska

Además, hay fuerzas opuestas que anulan este lento cambio. Si no fuera por el continuo levantamiento tectónico, la cordillera alpina, con sus 4.000 metros de altura, sometida a una denudación de 1 – 5 B se nivelaría en menos de cinco millones de años, y sin embargo, la edad de la cordillera es actualmente un orden de magnitud superior.

Tasas de levantamiento comprendidas entre 5 – 10 B son bastantes frecuentes, y muchas regiones están elevándose con tasas superiores a 20 KB, es decir, una tasa hasta 10 veces superior a la tasa de denudación. No obstante, parece ser que en las zonas montañosas cuyas cumbres sobrepasan la cota de nieve, con grandes precipitaciones y gran actividad glacial, la altura está más limitada por una denudación rápida que por la elevación tectónica del terreno. El noroeste del Himalaya, incluyendo la zona del famoso Nanga Parbat, es un claro ejemplo, donde muchos de sus picos sobrepasan los 7.000 m y solamente el 1 por ciento del terreno los 6.000 m.

Encuentros espaciales

                   Siendo temibles localmente, son sucesos de relativa poca importancia globalmente habland0

La más destructiva intensificación temporal de los normalmente suaves flujos de energía geotectónica – erupciones volcánicas o terremotos extraordinariamente potentes – o de energía atmosférica – vientos o lluvias anormalmente intensas -, parecen irrelevantes cuando se comparan con las repetidas colisiones del planeta con cuerpos extraterrestres relativamente grandes.

Reconstrucción del meteorito que arrasó la Tierra. | Nature

                La caída sobre la Tierra de un Gran asteroide sí que es temible

La Tierra está siendo bombardeada continuamente por invisibles partículas microscópicas de polvo muy abundantes en todo el Sistema Solar, y cada treinta segundos se produce un choque con partículas de 1 mm de diámetro, que dejan un rastro luminoso al autodestruirse en la atmósfera. También son relativamente frecuentes los choques con meteoritos de 1 metro de diámetro, que se producen con una frecuencia de, al menos, uno al año.

Pero los impactos, incluso con meteoritos mayores, producen solamente efectos locales. Esto es debido a que los meteoritos que deambulan por la región de asteroides localizada entre Marte y Júpiter están girando alrededor del Sol en el mismo sentido que la Tierra, de manera que la velocidad de impacto es inferior a 15 Km/s.

El cráter de Arizona, casi perfectamente simétrico, se formó hace 25.000 años por el impacto de un meteorito que iba a una velocidad de 11 Km/s, lo que representa una potencia cercana a 700 PW. Estas gigantescas liberaciones de energías palidecen cuando se comparan con un choque frontal con un cometa típico. Su masa (al menos de 500 millones de toneladas) y su velocidad relativa (hasta 70 Km/s) elevan su energía cinética hasta 1022 J. Aunque se perdiera un diez por ciento de esta energía en la atmósfera, el impacto sería equivalente a una explosión de unas 2.500 bombas de hidrógeno de 100 megatones. Está claro que un fenómeno de estas características produciría impresionantes alteraciones climatológicas. Sin embargo, no es seguro y sí discutible que un impacto parecido fuese la causa de la extinción masiva del cretácico, siendo lo más probable, si tenemos en cuenta el periodo relativamente largo en que se produjo, que se podría explicar por la intensa actividad volcánica de aquel tiempo.

La frecuencia de impactos sobre la Tierra disminuye exponencialmente con el tamaño del objeto.

Aproximadamente, cada cincuenta o sesenta millones de años se produce una colisión con un cometa, lo que significaría que la biosfera, que ha evolucionado durante cuatro mil millones de años, ha debido superar unos cuarenta impactos de este tipo. Está claro que ha salido airosa de estas colisiones, ya que aunque haya sido modificada, no ha sido aniquilada.

Igualmente, la evolución de la biosfera ha sobrevivido a las explosiones altamente energéticas de las supernovas más “cercanas”. Dado que en nuestra galaxia se produce por término medio la explosión de una supernova cada 50 años, el Sistema Solar se encuentra a una distancia de 100 parsecs de la explosión cada dos millones de años y a una distancia menor de 10 parsecs cada dos mil millones de años. En este último caso, la parte alta de la atmósfera se vería inundada por un flujo de rayos X y UV de muy corta longitud de onda, diez mil veces mayor que el flujo habitual de radiación solar, lo que implica que la Tierra recibiría, en unas pocas horas, una dosis de radiación ionizante igual a la que recibe anualmente. Exposiciones de 500 roentgens son setales para la mayoría de los vertebrados y, sin embargo, los diez episodios de esta magnitud que se han podido producir en los últimos 500 millones de años no han dejado ninguna consecuencia observable en la evolución de la biosfera.

Resultado de imagen de La radiación cósmica incompatible con la vidaResultado de imagen de La radiación cósmica es incompatible con la vida

                                                    La radiación cósmica incompatible con la vida

Si suponemos que una civilización avanzada podría preparar refugios para la población durante el año que transcurre ente la llegada de la luz y la llegada de la radiación cósmica, se encontraría con la inevitable dosis de 500 roentgens cada mil millones de años, tiempo suficiente para permitir el desarrollo de una sociedad cuyo conocimiento le sirviera para defenderse de un flujo tan extraordinario y de consecuencias letales. En realidad, somo frágiles dotados de una fortaleza descomunal.

Sí, la Naturaleza nos muestra constantemente su poder. Fenómenos que no podemos evitar y que nos hablan de unos mecanismos que no siempre comprendemos. Nuestro planeta por ejemplo, se comporta como si de un ser vivo se tratara, la llaman Gaia y realiza procesos de reciclaje y renovación por medio de terremotos y erupciones volcánicas, tsunamis y tornados debastadores que cambian el paisaje y nosotros, lo único podemos hacer es acatar el destino, ya que, ignoramos lo que está por venir.

El mundo nos parece un lugar complicado. Sin embargo, existen algunas verdades sencillas que nos parecen eternas, no varían con el paso del tiempo (los objetos caen hacia el suelo y no hacia el cielo, el Sol se levanta por el Este, nunca por el Oeste, nuestras vidas, a pesar de las modernas tecnologías, están todavía con demasiada frecuencia a merced de complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico es más un arte que una ciencia, los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatoria, los cambios en las Sociedades fluctuan a merced de sucesos que sus componentes no pueden soportar y exigen el cambio.

La inmensa complejidad que está presente en el cerebro humano y de cómo se genera lo que llamamos “la mente”, a partir de una maraña de conexiones entre más de cien mil millones de neuronas, más que estrellas existen en nuestra Galaxia, la Vía Láctea. Es algo grande que, en realidad, no hemos alcanzado a comprender. Me hace gracia cuando alguna vez escucho decir a alguien: “Sólo utilizamos un diez por ciento de nuestro cerebro”. Lo cierto es que lo utilizamos al cien por ciento y, lo que en realidad quieren decir es que, se supone que el cerebro humano tiene un potencial tan grande que, de momento, sólo ha evolucionado hasta el diez por ciento de su capacidad futura. ¿Hasta dónde llegaremos?

emilio silvera

Las cosas del Universo siempre nos han fascinado

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

 

 

 

 

  

Breve Historia del Universo según Timoty Ferris II

Si queréis estar bien informados, os recomiendo este libro en el que el autor, un maestro indiscutible de la literatura de divulgación científica, nos cuenta la apasionante historia de cómo el hombre ha ido descubriendo el escenario cósmico en el que habita, desde aquellos grandes pensadores clásicos hasta las más modernas visiones del origen y el fin del universo.

Alguna vez me he preguntado… ¿Es viejo el Universo?

Nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsaresagujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí estan presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y espacio como años, kilómetros o años-luz. Como ya hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales” la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada en el ser humano.

Es fácil caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

Al menos una vez al día, el cielo en su parte alta, es iluminado por un gran destello producido por grandes explosiones de rayos gamma. A menudo, esos destellos alcanzan magnitudes superiores a las que pueden ser generadas por todo un conjunto de otros rayos cósmicos y desaparecen posteriormente sin dejar más rastro. Nadie puede predecir cuando volverá a ocurrir la próxima explosión o de que dirección del cielo procederá. Hasta ahora, no contamos con evidencias duras como para asegurar cuáles podrían ser las fuentes precisas de donde provienen esos rayos gamma que observamos en lo alto del cielo, las razones que ocasionan los grandes destellos y la distancia en la cual ocurre el fenómeno.

cluster-galaxias

La edad actual del Universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el Universo es un reflejo del hecho de que:

Densidad actual del Universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto, es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la de Planck

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el Universo está estructurado en una escala sobre humana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones el Universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.

Pero, pese a la enorme edad del Universo en “tics” de Tiempos de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas supermasivas se pueden producir sucesos de inmensas energías y, en regiones de gas y polvo de muchos años-luz de diámetro, es donde surgen los Sistemas solares que contienen planetas aptos para la vida.

¿Por qué nuestro Universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el Universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme pasa el tiempo en el Universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas.

 File:Goes12 firstimage.png

Nuestro Sol es una estrella de tercera o cuarta generación. Así lo confirman los materiales que existen en el Sistema solar que son complejos y creados por una Supernova o Hipernova, de otra manera, reinaría sólo el Hidrógeno y el Helio en Lugar de estar presentes otros elementos mñas pesados y radiactivos..

Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos por extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen series amenazas exteriores.

        Como veréis no estamos a salvo y, cualquier colisión entre estos pedruzcos los puede desviar hacia nosotros y las consecuencias…

La mayoría de asteroides, incluyendo Vesta, están en el cinturón de asteroides que se sitúa entre Marte y Júpiter. Otros asteroides giran en círculos mas cerca del Sol que de la Tierra, mientras que un gran número de ellos comparten orbitas planetaria. Dada esta gran variedad de asteroides, algunos particularmente extraños han sido descubiertos en los últimos dos siglos desde que el primer asteroide fuera descubierto (Ceres en 1801).

Júpiter nos protege de grandes asteroides y cometas que colisionarían con la Tierra

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución, o, por el contrario, evitar que siga cualquier clase de evolución produciendo la extinción total y dejando la Tierra como un planeta muerto. Sin embargo pocas veces pensamos en que tal eventualidad podría ocurrir en cualquier momento, y, las organizaciones de expertos como la NASA, tampoco podrían, en su caso, poner remedio a una situación tan grave como esa.

emilio silvera

La Gravedad…¡Esa fuerza misteriosa!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hace ya algún tiempo que nuevos estudios realizados por investigadores de Australia, Austria y Alemania pusieron en entredicho la  en la que entendemos la física de la gravedad. Los descubrimientos, publicados en las revistas Astrophysical Journal y Monthly Notices of the Royal Astronomical Society, se basan en observaciones de galaxias enanas satélite o galaxias más pequeñas que se encuentran en el extrarradio de la gran galaxia espiral que es la Vía Láctea.

La Ley de la gravitación universal de Newton, publicada en 1687, sirve  explicar cómo actúa la gravedad en la Tierra, por ejemplo por qué cae una manzana de un árbol. El profesor Pavel Kroupa del Instituto de Astronomía Argelander de la Universidad de Bonn (Alemania) explicó que «a pesar de que su ley describe los efectos cotidianos de la gravedad en la Tierra, las cosas que podemos ver y medir, cabe la posibilidad de que no hayamos sido capaces de comprender en absoluto las leyes físicas que rigen realmente la fuerza de la gravedad».

La ley de Newton ha sido puesta en entredicho por distintos cosmólogos modernos, los cuales han redactado teorías contradictorias sobre la gravitación que intentan explicar la gran cantidad de discrepancias que se dan  las mediciones reales de los sucesos astronómicos y las predicciones basadas en los modelos teóricos. La idea de que la «materia oscura» pueda ser la responsable de estas discrepancias ha ganado muchos adeptos durante los últimos . No obstante, no existen pruebas concluyentes de su existencia.

En  investigación, el profesor Kroupa y varios colegas examinaron «galaxias enanas satélite», cientos de las cuales deberían existir en la cercanía de las principales galaxias, incluida la Vía Láctea, según indican los modelos teóricos. Se cree que algunas de estas galaxias menores contienen tan sólo unos pocos millares de estrellas (se estima que la Vía Láctea, por ejemplo, contiene más de 200.000 millones de estrellas).

No obstante, a día de hoy sólo se ha logrado detectar treinta de estas galaxias alrededor de la Vía Láctea. Esta situación se atribuye al hecho de que, al contener tan pocas estrellas, su luz es demasiado débil como para que podamos observarlas  una distancia tan lejana. Lo cierto es que este estudio tan detallado ha deparado resultados sorprendentes.

Galaxias Satélites de la Vía Láctea

«En primer lugar, hay algo extraño en su distribución», indicó el profesor Kroupa. «Estas galaxias satélite deberían estar distribuidas uniformemente alrededor de su galaxia madre,  no es el caso.»

 

Los investigadores dicen que descubrieron que la totalidad de los satélites clásicos de la Vía Láctea (las once galaxias enanas más brillantes) están situados prácticamente en un mismo plano que dibuja una especie de disco. También observaron que la mayoría de estas once galaxias rotan en la misma dirección en su movimiento circular alrededor de la Vía Láctea, de  muy similar a como lo hacen los planetas alrededor del Sol.

Resultado de imagen de El Grupo Local de galaxias

                                                                             Grupo Local de Galaxias

La explicación de los físicos a estos fenómenos es que los satélites debieron surgir de una colisión galaxias más jóvenes. «Los fragmentos resultantes de un acontecimiento así pueden formar galaxias enanas en rotación», explicó el Dr. Manuel Metz, también del Instituto de Astronomía Argelander. Éste añadió que «los cálculos teóricos nos indican la imposibilidad de que los satélites creados contengan materia oscura».

Estos cálculos contradicen otras observaciones del equipo. «Las estrellas contenidas en los satélites que hemos observado se mueven a mucha más velocidad que la predicha por la Ley de la gravitación universal. Si se aplica la física clásica, esto sólo  atribuirse a la presencia de materia oscura», aseveró el Dr. Metz.

Este enigma nos indica que quizás se hayan interpretado de  incorrecta algunos de los principios fundamentales de la física. «La única solución posible sería desechar la Ley de la gravitación de Newton», indicó el profesor Kroupa. «Probablemente habitemos un universo no Newtoniano. De ser cierto, nuestras observaciones podrían tener explicación sin necesidad de recurrir a la materia oscura

                        Universo sin la materia oscura

Hasta , la Ley de la gravitación de Newton sólo ha sido modificada en tres ocasiones: incluir los efectos de las grandes velocidades (la teoría especial de la relatividad), la proximidad de grandes masas (la teoría general de la relatividad) y las escalas subatómicas (la mecánica cuántica). Ahora, las graves inconsistencias reveladas por los  obtenidos sobre las galaxias satélite respaldan la idea de que hay que adoptar una «dinámica newtoniana modificada» (MOND) para el espacio.

big bang

Las galaxias severamente interrumpidas, como NGC 6872, pueden extenderse por muchas veces más lejos que una galaxia tranquila que no ha tenido una interacción gravitacional importante. Crédito de la imagen: ESO / VLT, Judy Schmidt

Según un nuevo análisis, unos datos recientes sobre galaxias ricas en gas coinciden exactamente con la predicción hecha por una teoría conocida como MOND, la cual constituye una modificación de la gravedad con respecto a los planteamientos teóricos más aceptados.

 predicción, la última de varias hechas a la luz de esta teoría y que han tenido acierto, despierta nuevas dudas sobre la precisión del modelo cosmológico hoy vigente del universo.

La teoría MOND, propuesta en 1981, modifica la segunda ley de la dinámica de Newton para que con ella se pueda explicar la rotación a velocidad uniforme de las galaxias, que contradice las predicciones newtonianas que afirman que la velocidad de los objetos separados del centro será menor.

Después de la colisión de los dos grupos, en la teoría MOND, la masa está en la nube de gas en el centro (arriba). Con la materia oscura, …

Imagen: Después de la colisión de los dos grupos, en la teoría MOND, la masa está en la nube de gas en el centro (arriba). Con la materia oscura, la masa está en las burbujas grises (parte inferior).

Crédito imagen : Conferencia 5 de abril 2011 de Nathalie Palanque-Delabrouille astrofísica CEA (Saclay).

Los nuevos descubrimientos poseen implicaciones de gran calado para la física fundamental y para las teorías sobre el Universo. Según el astrofísico Bob Sanders de la Universidad de Groningen (Países Bajos), «los autores de  artículo aportan argumentos contundentes. Sus resultados coinciden plenamente con lo predicho por la dinámica newtoniana modificada, pero completamente contrarios a la hipótesis de la materia oscura. No es normal encontrarse con observaciones tan concluyentes.»

Claro que, todos estos nuevos derroteros y atisbos de teorías (hay algunas más circulando por ahí), no son más que demostraciones de la insatisfacción que algunos sienten al comprender que…, ¡falta algo! y, yo personalmente en mi modestia y con humildad, me decanto por el simple hecho de que aún, no conocemos a fondo eso que llamamos Gravitación que debe ser mucho más amplia de lo que nos dijo Einstein y, no me extrañaría que, incluso eso que llamamos “materia oscura” no sea otra cosa que un continuo de esa Gravedad, es decir, la  desconocida y que, al ser ignorantes de su existencia, nos hemos inventado “la materia oscura”  que nos cuadren los números.

Para más información, consulte:

Instituto Argelander de Astronomía:
http://www.astro.uni-bonn.de

Astrophysical Journal:
http://www.iop.org/EJ/journal/apj

Monthly Notices of the Royal Astronomical Society:
http://www.wiley.com/bw/journal.asp?ref=0035-8711

Los Dinosaurios eran un callejón sin salida para nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Resultado de imagen de Lugar de la Tierra donde proliferan más insectosResultado de imagen de Lugar de la Tierra donde proliferan más insectos
Los insectos y pequeños mamíferos pudieron escapar de la catástrofe.
Los insectos le ganaron la batalla al meteorito que mató a los dinosaurios

 

La vida en el hemisferio sur se recuperó dos veces más rápido que en el norte tras el impacto

 

Zona en la que cayó el meteorito de Chixculub, en la península de Yucatán, vista desde el espacio.
Zona en la que cayó el meteorito de Chixculub, en la península de Yucatán, vista desde el espacio. ESA

Hace 66 millones de años, una roca espacial de 10 kilómetros chocó contra la Tierra causando una explosión equivalente a 7.000 millones de bombas atómicas. El choque levantó una enorme fumarola de roca pulverizada que se elevó hasta cubrir todo el globo y sumirlo en una profunda oscuridad. Tsunamis de más de 100 metros arrasaron las costas del actual Golfo de México, donde cayó el meteorito, y se desencadenaron fuertes terremotos. Parte de los escombros levantados por el impacto comenzaron a llover como diminutos meteoritos y transformaron el planeta en un infierno de bosques ardiendo. Las plantas que no se quemaron se quedaron sin luz solar durante meses. Tres de cada cuatro seres vivos en el planeta fueron exterminados, incluidos todos los dinosaurios no avianos.

Una de las grandes incógnitas sobre el evento de extinción masiva del Cretácico es si existió un refugio donde la vida permaneció más o menos intacta. Algunos estudios han situado ese oasis en el hemisferio sur del planeta, especialmente cerca del Polo.

 

Estudios recientes apuntan a que en Patagonia y Nueva Zelanda la extinción de plantas fue mucho menor

 

 

 

 

“La mayoría de lo que sabemos sobre la extinción y la recuperación de la vida en tierra después del asteroide viene del Oeste de EE UU, relativamente cerca del lugar del impacto, en Chixculub, México”, explica Michael Donovan, investigador de la Universidad estatal de Pensilvania (EE UU). Se sabe “mucho menos” de lo que sucedió en otras zonas más alejadas, dice, pero hay estudios recientes del polen y las esporas que apuntan a que en Patagonia y Nueva Zelanda la extinción de plantas fue mucho menor.

En un estudio publicado hoy en Nature Ecology & Evolution, Donovan y otros científicos en EE UU, Argentina y China exploran la hipótesis del refugio del sur a través del análisis de hojas fósiles de antes y después del impacto encontradas en la Patagonia argentina. En concreto, el equipo de investigadores ha analizado las pequeñas mordeduras dejadas por insectos herbívoros en la vegetación para estimar cuándo se recuperó el nivel de diversidad biológica anterior al desastre.

Los resultados muestran que, al igual que lo que se observó en el hemisferio norte, los insectos del sur prácticamente desaparecieron después del choque del meteorito. Pero los fósiles analizados también muestran que los niveles de diversidad de insectos se recuperaron en unos cuatro millones de años, dos veces más rápido que en el norte.

Los niveles de diversidad se recuperaron en unos cuatro millones de años, dos veces más rápido que en el norte

 

“También hemos estudiado los minadores, rastros de deterioro en las hojas hechos por larvas de insecto al alimentarse”, explica Donovan. “No encontramos pruebas de la supervivencia de minadores del Cretácico, lo que sugiere que este no fue un refugio para estos insectos”, explica, pero en los restos de después del impacto enseguida aparecen nuevas especies.

El trabajo refuerza la hipótesis de que la vida regresó antes a las zonas más alejadas del punto de impacto, “aunque también pudo haber otros factores desconocidos”, advierte Donovan. Las diferencias en el tiempo de recuperación probablemente influyeron en los patrones de biodiversidad hasta la actualidad, comenta.

El trabajo también puede ayudar a explicar por qué otras pequeñas criaturas que se alimentaban de insectos acabaron conquistando la Tierra tras sobrevivir al meteorito que exterminó a los dinosaurios. “Es posible que los cambios en la cadena alimentaria causados por la extinción de los insectos después del impacto, seguidos de la recuperación de los niveles anteriores afectasen a otros organismos, incluidos los mamíferos”, resalta.

 Reportaje de Prensa en El País