miércoles, 30 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Viajar a las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Futuro    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Espacio

 

Hawking anuncia una nave que llegará a las estrellas en 20 años

 

 

 

Junto al magnate ruso Yuri Milner, el físico presenta el proyecto Starshot, una nano-nave capaz de viajar a un 20% de la velocidad de la luz que enviarán a Alfa Centauri.

 

 

Milner y Hawking, durante la presentación. E.E

 

El millonario ruso Yuri Milner y el físico Stephen Hawking han presentado un proyecto de nano-nave espacial que podría alcanzar Alfa Centauri, la estrella más cercana a nuestro sistema solar, en apenas una generación.

“Me llamaron Yuri por Yuri Gagarin”, ha dicho hoy en una esperada comparecencia Milner, acompañado del famoso físico británico. El ruso, que a principios de este año anunció junto a Hawking una inversión de 100 millones de dólares para encontrar vida extraterrestre, ha presentado las tres fases en que consiste el proyecto Starshot, que en inglés se traduce como ‘disparo a las estrellas’.

La primera es el Starchip, del tamaño de un sello y equipado con sensores, cámaras y todo lo necesario. Un satélite en miniatura “que puede ser producido en masa con el coste de un iPhone”, ha dicho Milner. Luego está Lightsail, un tejido resistente del que varios metros pesan apenas unos gramos, y que servirá de vela para esta nave espacial. Finalmente, la guinda del concepto es que el Starshot irá propulsado con un rayo de luz, formado por docenas de lásers que se unirán en un punto sobre la atmósfera para enviar la nave a las estrellas a toda velocidad.

“La nave será acelerada a un 20% de la velocidad de la luz”, ha dicho Milner, “mil veces más rápido que la aeronave más rápida existente”. Como resultado, Milner y Hawking asegura que su artilugio podría alcanzar, literalmente, las estrellas en 20 años, tomar imágenes y enviarlas de vuelta a la Tierra en un rayo de luz. “Todo está basado en un conocimiento científico ya disponible y todo estará en acceso abierto”, ha dicho el magnate ruso.

Hawking ha intervenido también para preguntar al aire “¿qué hace únicos a los seres humanos? Algunos dicen que el lenguaje, otros que la capacidad de razonar… obviamente no han conocido a muchos humanos”, bromeó el físico. “Creo que lo que nos hace únicos es la capacidad de trascender nuestros límites: yo perdí la voz, pero la he recuperado gracias a un sintetizador”.

Según Hawking, “trascendemos los límites con nuestras mentes y con las máquinas, y el límite al que nos enfrentamos ahora es un gran vacío entre nosotros y las estrellas, y ahora, con rayos de luz, el Starchip y el Lightsail alcanzaremos Alfa Centauri en una generación, estamos a punto de acometer el próximo gran salto hacia el cosmos”.

Su compinche en este fascinante reto, Milner, ha recordado que cuando nació, en plena Guerra Fría, “estábamos en mitad de una carrera espacial, y ahora sin embargo estamos en un esfuerzo colaborativo que dirá tanto de nosotros como de Alfa Centauri. Por primera vez en la historia de la humanidad podemos hacer algo más que mirar a las estrellas, podemos alcanzarlas”.

Noticias de prensa.

¿Alquimia estelar? ¿Proplasma vivo? ¿De dónde venimos?

Autor por Emilio Silvera    ~    Archivo Clasificado en El origen    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Estructuración del protoplasma-vivo como el plasma de la Vida con unas notables facultades para hacer cosas nuevas a partir de otras viejas. ¡Cuánto se habría excitado y cuán complacido habría estado Pasteur si hubiera conocido el famoso experimentio de Miller! Pese a ser el mismo un teísta, Pateur estaba convencido de que Dios creó la vida sobre la Tierra combinando precisamente fuerzas químicas y azar. Reconocía también, como sabemos, que los compuestos or´ganicos de los seres vivos son ópticamente activos, es decir, poseen una asimetría interna capaz de desviar planos de luz polarizada. Estaba impresionado, con el hecho de que, fuera de los tejidos vivos, los compuestos asimétricos se encuentran siempre en forma racémica: una mezcla de moléculas orientadas a la derecha, y otras, orientadas a la izquierda. Solamente en estos tejidos vivos, los compuestos orgánicos tienen una lateralidad bien definida.


En la imagen de arriba podemos ver la estructura de molécula de ciclosporina A en forma de corona, izquierda de la imagen (representación de bolas y varillas) y unida a su diana por la que ejerce su función farmacológica (representada como modelo de esferas). Se une a la ciclofilina (en blanco) y esta a su vez a la Calcineurina. Esta última es la encargada de permitir la respuesta inmune de los linfocitos por lo que ésta queda bloqueada. Siempre hemos querido saber sobre el origen de la vida y los secretos que la rodean y cómo apareció en nuestro mundo.

El protoplasma-vivo para mantener su forma debe renovar sus moléculas de materia. El recambio de sustancias es lo que se conoce globalmente como metabolismo. Corresponde a reacciones sencillas de oxidación, reducción, hidrólisis, condensación, etc. Estas reacciones se van modificando y perfeccionando, en los casos más optimistas, hasta llegar a diferenciarse procesos idénticos en alguna o algunas reacciones, A. Baj y Palladin estudiaron la respiración, con todas sus reacciones y catalizadas por su fermento específico. S. Kostichev, A. Liebedev estudiaron la química de la fermentación.

Michurin estudió la relación del organismo y el medio. Los fermentos de las estructuras protoplasmáticas determinaban sus reacciones por la velocidad y la dirección, estableciendo una relación con el medio. Se establecía un círculo de fenómenos relacionados y ordenados regularmente. Se producían asimilaciones y desasimilaciones de sustancias orgánicas con el fin de autoconservación y autorenovación del protoplasma.

En la base de la organización de todo individuo está la célula, y en la célula el protoplasma vivo, en cuya compleja estructura morfológica y química reside el principio de todas las funciones vitales. Inicialmente la organización morfológica de la célula sólo se conocía a través de los medios ópticos. Dentro de los límites de su poder resolutivo; con la introducción del microscopio electrónico amplió notablemente los conocimientos sobre la estructura celular, al conseguirse aumentos hasta 200 veces superior a los obtenidos por los medios ópticos.

Muchas son las veces que aquí, en este lugar dedicado a distintas disciplinas de la Ciencia, hemos hablado de la Vida. Sin embargo, nunca nos hemos parado a explicar la cuestión del proceso del origen de la vida, conociendo antes, aunque sea de manera sencilla y sin profundidad, aquellos principios básicos de la estructura del protoplasma vivo, ese sustrato material que será la base de todos los seres vivos, sin excepción.

A finales del siglo XIX y principios del XX, había científicos que creían que los organismos sólo eran “máquinas vivientes” especiales, de estructuras muy complejas y, aseguraban que la estructura del protoplasma vivo era algo así como una máquina, construido conforme a un determinado plan y que estaba formado por “vigas” y “tirantes” como si de un puente se tratara y que, de manera similar a éste, los lazos de unión tenían unida toda la estructura que, de esta manera, se mantenía firme, y, esa estructura de tan estricto orden en la colocación recíproca de las distintas partes del protoplasma vivo, era precisamente, según ellos, la causa específica de la vida. Y, a todo ello, sin olvidarse del Carbono, la base de todo signo de vida que conocemos.

Pero el estudio concreto del protoplasma vivo desmintió esta teoría mecanicista. Fue probado que no existía ninguna estructura parecida a una máquina ni siquiera a las de máxima precisión, en el interior del protoplasma vivo.

Es bien conocido que la masa básica del protoplasma vivo es líquida; nos hallamos ante un coacervado complejo, constituido por una gran cantidad de sustancias orgánicas de un peso molecular considerable, entre estas destacan las proteínas y los lipoides. Por esta razón, se encuentran flotando a su libre albedrío en esa sustancia coacervática fundamental, partículas filamentosas coloides, quizás enormes moléculas proteínicas sueltas, y muy probablemente, auténticos enjambres de esas moléculas. El tamaño de las partículas es tan diminuto que no se distinguen ni a través de los microscopios actuales más sofisticados. Pero encontramos otros elementos visibles en el interior del protoplasma vivo. Cuando las moléculas proteínicas y de otras sustancias se unen formando conglomerados, destacan en la masa protoplasmática en forma de pequeñas gotas, captadas a través del microscopio, o en forma de coágulos, con una determina estructura denominados elementos morfológicos. El núcleo, las plastídulas, las mitocondrias, etcétera.

Estos elementos protoplasmáticos, observables a través del microscopio, son, esencialmente, una manifestación aparente y externa de determinadas relaciones de solubilidad, enormemente complejas, de las distintas sustancias que conforman el protoplasma vivo y que se ha podido comprobar que tiene, un papel determinante, en el curso del proceso de la vida, que no se puede comparar de ningún modo con el papel que desempeña una máquina en su trabajo específico. Esto queda totalmente justificado por la sencilla razón de que una máquina y el protoplasma vivo son dos sistemas distintos y contrarios.

Sin duda, lo que caracteriza la función de una máquina es el desplazamiento mecánico de sus diferentes partes en el espacio. Por esa razón hay que insistir que el elemento más importante de la estructura de una máquina es, precisamente, la colocación de sus piezas; mientras que el proceso vital tiene un carácter totalmente distinto. Se manifiesta esencialmente con el recambio de sustancias, o sea, con la interacción química de las diferentes partes que conforman el protoplasma vivo. Por esto deducimos que el elemento primordial en toda la estructuración del protoplasma vivo es el orden concreto que siguen los procesos químicos en el tiempo, la forma tan armónica en que se combinan, siempre con tendencia a conservar en su conjunto el sistema vital.

Es de vital importancia para la formación del protoplasma vivo que exista una estructura interna determinada. Pero otro factor no menos decisivo es la organización en el tiempo, o sea, que los procesos que se dan en el protoplasma vivo lo hagan en armonía. Cualquier organismo, tanto animal, planta o microbio, vive únicamente mientras pasen por él, de forma continuada y constante, nuevas partículas de sustancias, cargadas de energía. Distintos cuerpos químicos pasan del medio ambiente al organismo; y cuando están dentro, sufren unos determinados y esenciales trastornos, mediante los cuales acaban convirtiéndose en sustancias del propio organismo invadido y serán iguales que aquellos cuerpos químicos que antes formaban parte del ser vivo. Este proceso se conoce con el nombre de asimilación. Sin embargo, de forma paralela a este proceso se da la desasimilación, que se trata precisamente del proceso contrario, es decir, las distintas sustancias que forman la parte del organismo vivo son sensibles a los cambios del propio organismo, se desintegran a menor o mayor velocidad, y son sustituidas por los cuerpos asimilados. De esta forma, los productos de la desintegración se echan al medio envolvente.

Por otra parte, en todo esto debemos tener en cuenta un gente que, siendo ineludible para la vida, está siempre presente en todo lo que a ella concierne. El Agua.

El agua pura es un líquido inodoro e insípido. Tiene un matiz azul, que sólo puede detectarse en capas de gran profundidad. A la presión atmosférica (760 mm de mercurio), el punto de congelación del agua es de 0 °C y su punto de ebullición de 100 °C. El agua alcanza su densidad máxima a una temperatura de 4 °C y se expande al congelarse. Como muchos otros líquidos, el agua puede existir en estado sobreenfriado, es decir, que puede permanecer en estado líquido aunque su temperatura esté por debajo de su punto de congelación.

Es muy cierto que la sustancia del organismo vivo siempre se encuentra en movimiento, desintegrándose y volviendo a formarse de manera continua en virtud de la gran cantidad de reacciones de desintegración y síntesis, que se dan guardando una fuerte relación entre ellas. Ya Heráclito, aquel gran dialéctico de la antigua Grecia, nos decía: “nuestros cuerpos fluyen como un arroyo, y de la misma manera que el agua de éste, la materia se renueva en ellos.” Está claro que una corriente o un chorro de agua pueden mantener su forma, su aspecto externo, durante un tiempo, pero su aspecto sólo es la manifestación exterior de ese proceso continuo y constante del movimiento de las partículas del agua. Incluso la misma existencia de este sistema depende, naturalmente, de que las renovadas moléculas de materia pasen constantemente, y a una velocidad determinada por el chorro de agua. Pero si interrumpimos este proceso, el chorro dejará de existir como tal. Lo mismo sucede en todos los sistemas conocidos como dinámicos, los cuales tienen un proceso concreto.

Es un hecho concreto e innegable que los seres vivos también son sistemas dinámicos. Igual que el chorro de agua al que antes hacíamos referencia, su forma y su estructura sólo forman parte de la expresión externa y aparente de un equilibrio, muy competente, formado por procesos que se dan en el ser vivo en sucesión permanente a lo largo de toda su vida. Sin embargo, el carácter de estos procesos es totalmente diferente a los que ocurre en los sistemas dinámicos de la naturaleza orgánica.

Las moléculas de agua llegan al chorro, ya como moléculas de agua, y lo atraviesan sin que se produzca ningún cambio. Pues el organismo toma del medio ambiente sustancias ajenas y desconocidas para él, pero a continuación, mediante procesos químicos muy complejos, son convertidos en sustancias del propio organismo, muy parecidas a los materiales que forman su cuerpo.

Precisamente esto es lo que hace posible las condiciones que mantienen constantemente la composición y estructura del organismo, ignorando este proceso continuo e ininterrumpido de desasimilación que se da en todos los organismos vivos.

Así pues, desde una perspectiva puramente química, el recambio de sustancias, también llamado metabolismo, es un conjunto enorme de reacciones más o menos sencillas, de oxidación, reducción, hidrólisis, condensación, etcétera. Lo que lo hace diferente del protoplasma vivo,  es que en el metabolismo, estas reacciones se encuentran organizadas en el tiempo de de cierto modo, las cuales se combinan para poder crear un sistema integral. Dichas reacciones no surgen por casualidad, y de forma caótica, sino que se dan en estricta sucesión, y en un orden armónico concreto.

El ácido pirúvico (ver otros nombres en la tabla) es un ácido alfa-ceto que tiene un papel importante en los procesos bioquímicos. El anión carboxilato del ácido pirúvico se conoce como piruvato. El ácido pirúvico es un compuesto orgánico clave en el metabolismo. Es el producto final de la glucolisis, una ruta metabólica universal en la que la glucosa se escinde en dos moléculas de piruvato y se origina energía (2 moléculas de ATP).

Ese orden será la base de todos los fenómenos vitales conocidos. En la fermentación alcohólica, por ejemplo, el azúcar proveniente del líquido, que es fermentable, penetra en la célula de la levadura, sufriendo determinados trastornos químicos. O sea, primero se le incorpora el ácido fosfórico y luego se divide en dos partes.

Una de las cuales experimentará un proceso de reducción, mientras que la otra se oxidará, quedando convertida, finalmente, en ácido pirúvico, que más tarde se descompondrá en anhídrido carbónico y acetaldehído. Este último se reducirá, quedando transformado después en alcohol etílico. Como resultado, podemos observar que el azúcar queda convertido en alcohol y anhídrido carbónico.

Imagen

Esto nos demuestra que en la célula de la levadura, lo que determina la producción de estas sustancias es el extraordinario rigor con que se dan todas estas reacciones, las cuales se suceden de forma muy ordenada. Sólo con que sustituyésemos en esta cadena de transmutaciones un único eslabón o si alterásemos en lo más mínimo el orden de dichas transmutaciones ya no tendríamos como resultado alcohol etílico, sino cualquier otra sustancia. En efecto, en las bacterias de la fermentación de la leche, el azúcar, al principio sufría los mismos cambios en la levadura, pero cuando se llega a la fermentación del ácido pirúvico, éste ya no se descompone, todo lo contrario, se reduce al instante. Esto explica que en las bacterias de la fermentación láctica el azúcar no se transforme en alcohol etílico, sino en ácido láctico.

Las encimas

Estructura de la triosafosfato isomerasa.  Conformación en forma de diagrama de cintas  rodeado por el modelo de relleno de espacio de la proteína.Esta proteína es una eficiente enzima involucrada en el proceso de transformación de azúcares en energía  en las células.

La enzimología, al igual que las disciplinas experimentales que han surgido como ramas del tronco común que es la biología, tiene una historia propia construida a través de observaciones, experiencias, pruebas y teorías.

Se inició con el estudio de los procesos de fermentación y de putrefacción y Antoine-Laurente Lavoisier fue el primero en plantear sobre bases cuantitativas el proceso de la fermentación alcohólica, al observar una relación entre cantidad de azúcar presente y productos formados durante el proceso.

Un estudio de la síntesis de distintas sustancias en el protoplasma vivo demuestra que éstas no se crean de repente, y no provienen de un acto químico especial, sino que son el resultado de una cadena larguísima de trastornos químicos.

No puede constituirse un cuerpo químico complejo, propio de un ser vivo en concreto, sin que se produzcan centenares o miles de reacciones en un orden regular, constante, y ya previsto con rigurosidad, lo cual constituirá la base de la existencia del protoplasma vivo.

 

                                                       La Biología Físico-Química

La bioquímica, es la rama de la Química y de la Biología que tiene por objetivo principal el conocimiento de la estructura y comportamiento de las moléculas biológicas, que son compuestos de Carbono que forman las diversas partes de la célula y llevan a cabo las reacciones químicas las que le permiten crecer, alimentarse, reproducirse y usar y almacenar energía.

Porque cuanto más compleja es la sustancia, más reacciones intervienen en su formación dentro del protoplasma vivo y estas reacciones deben coordinarse entre sí con mayor rigor y exactitud. En efecto, investigaciones bastante recientes han demostrado que en la síntesis de las proteínas a partir de los aminoácidos toman parte gran cantidad de reacciones que se producen en una sucesión muy ordenada. Únicamente como consecuencia de esta rigurosa armonía, de esta sucesión ordenada de las reacciones, se da en el protoplasma vivo ese ritmo estructural, esa regularidad en la sucesión de los distintos aminoácidos que también podemos apreciar en las proteínas actuales.

Por consiguiente, las moléculas proteínicas, así originadas y con una estructura determinada se agrupan entre sí, y ciertas leyes las hacen tender a la formación de auténticos conglomerados moleculares que se acaban separando de la masa protoplasmática y se distinguen como elementos morfológicos, visibles a través del microscopio, como formas protoplasmáticas características por su gran movilidad. De esta manera, la composición química propia del protoplasma vivo, como su estructura, son la manifestación del orden en que se producen estos procesos químicos que se dan de forma continua y permanente en la materia viva.

Hidrógeno

                                                         Todos sabemos de su importanica para la vida

En el siglo XVI se observó que cuando el ácido sulfúrico actuaba sobre el hierro se desprendía un gas combustible. En 1766 Henry Cavendish demostró que dicho gas era una sustancia distinta a otros gases también combustibles, confundiendo el gas obtenido, al que llamo <<aire inflamable>>. Provenía del hierro y no del ácido sulfúrico, también demostró que el gas en el aire y en el oxígeno se formaba Agua

                                                                      La Atmósfera

Es la capa de gas que rodea a un cuerpo celeste que tenga la suficiente masa como para atraer ese gas. Los gases son atraídos por la gravedad del cuerpo, y se mantienen en ella si la gravedad es suficiente y la temperatura de la atmósfera es baja. Algunos planetas están formados principalmente por gases, con lo que tienen atmósferas muy profundas. Si no se dan ciertos parámetros, el protoplasma vivo de la vida, nunca habría hecho acto de presencia.

– Nitrógeno (78%) y
– Oxígeno (21%)

– El 1% restante lo forman el argón (0,9%), el dióxido de Carbono (0,03%), y distintas proporciones de vapor de agua, y trazas de hidrógeno, ozono, metano, monóxido de Carbono, helio, neón, kriptón y xenón.

Ozonosfera y sodiosfera

Desde 15 hasta 60 kilómetros de altitud, el ozono, que en las zonas próximas al suelo se encuentra sólo en pequeñas cantidades, aparece en porcentajes más sensibles y forma la ozonosfera. Este ozono absorbe la radiación ultravioleta procedente del Sol, haciendo posible de es modo la existencia de vida en la Tierra.

Pues bien, debemos preguntarnos de qué depende ese orden, propio de la organización del protoplasma vivo,  y cuáles son sus causas inmediatas. Un estudio minucioso sobre esta cuestión dejará demostrado que el orden indicado no es simplemente algo externo, que queda al margen de la materia viva, teoría defendida por los idealistas; en cambio, hoy día, sabemos perfectamente que la velocidad, la dirección y el encadenamiento de las diferentes reacciones, todo lo que forma el orden que estamos viendo, depende totalmente de las relaciones físicas y químicas que se establecen en el protoplasma vivo.

http://2.bp.blogspot.com/-az-rChkzpD4/Tm9SUJr4G_I/AAAAAAAAHMM/iynnMNxF0Cg/s1600/m42_vargas.jpg

Las propiedades químicas de las sustancias integradoras del protoplasma vivo,  en primer lugar, y también las de las sustancias orgánicas que intervienen son las que constituyen la base de todo ello. Dichas sustancias orgánicas poseen enormes posibilidades químicas y pueden generar gran variedad de reacciones. Pero, aprovechan estas posibilidades con mucha “pereza”, lentamente, a veces a una velocidad ínfima. En muchas ocasiones, se necesitan meses e incluso años, para que llegue a producirse alguna de las reacciones efectuadas entre las mismas sustancias orgánicas. Por esto, los químicos, para acelerar el proceso de las reacciones entre las sustancias orgánicas, usan a menudo en su trabajo diferentes sustancias de acción enérgica-ácidos y álcalis fuertes, etcétera.

Para conseguir tal aceleramiento cada vez con más frecuencia, los químicos recurren a la utilización de los catalizadores. Hace ya mucho tiempo que habían notado que sólo con añadir una pequeña dosis de algún catalizador a la mezcla donde se estaba realizando una reacción, se producía un gran aceleramiento de ésta. Además, otra propiedad propia e los catalizadores es que no se destruyen durante el proceso de la reacción, y cuando esta finaliza, comprobamos que queda exactamente la misma cantidad de catalizador que añadimos a la mezcla al principio. Así que, cantidades insignificantes de catalizador son suficientes, muchas veces, pata provocar la rápida transmutación de masas considerables de diferentes sustancias. Esta cualidad, hoy día, es de gran utilidad para la industria química, que usa como catalizadores distintos metales, sus óxidos, sus sales y otros cuerpos orgánicos o inorgánicos. Las reacciones químicas dadas en animales y vegetales entre las distintas sustancias orgánicas se suceden a gran velocidad. De lo contrario, la Vida no pasaría tan rápida como en realidad pasa. Se sabe que la gran velocidad de las reacciones químicas producidas en el protoplasma vivo es debida a la presencia constante de catalizadores biológicos especiales llamados fermentos.

Hace tiempo que estos fermentos fueron descubiertos, y ya con anterioridad, los científicos se habían fijado en ellos. Pues resultó que los fenómenos se podían extraer del protoplasma vivo y así separarse en forma de solución acuosa o como polvo seco de fácil solubilidad. Esto me hace pensar en lo que ocurre en las Nebulosas. No hace mucho se consiguieron fermentos en forma cristalina y se resolvió su composición química. Estos resultaron ser proteínas, y muchas veces, en combinación con otras sustancias de distinta naturaleza. Estos fermentos, por el carácter de su acción, se asemejan a los catalizadores inorgánicos. Sin embargo, se diferencian de ellos por la increíble intensidad de sus efectos.

En este sentido, los fermentos superan a los catalizadores inorgánicos de acción en centenares de miles, y en ocasiones hasta en millones de veces. Así que en los fermentos de naturaleza proteínica se da un mecanismo increíblemente perfecto y racional que hace posible acelerar las reacciones químicas entre las distintas sustancias orgánicas. Los fermentos también se caracterizan por la excepcional especifidad de su acción.

La Teoría Celular

Llegados a este punto debemos profundizar un poco más en la constitución de los seres vivos. Para ello debemos saber la teoría celular, enunciada por Matthias Schleiden (1804-1881) y Theodor Schwann (1810-1882).

La teoría celular de Schleiden y Schwann señala un rasgo común para todos los seres vivos: todos están compuestos por células y por productos elaborados por ellas. Aunque la idea de que la célula es el “átomo” de la vida nos parezca evidente, su importancia y la dificultad de su descubrimiento son parejas a la dificultad del descubrimiento de la existencia de átomos en química, y marca un cambio de paradigma en la manera de concebir la vida.

La teoría celular se basó en los adelantos realizados mediante los aparatos de observación debidos inicialmente a Robert Hooke (1635-1703) y a Anton Van Leeuwenhoek (1632-1723). Hooke construyó cientos de microscopios. Los más avanzados estaban formados por dos lupas combinadas como ocular y objetivo (microscopio compuesto).

imagen de un piojo

 imagen de células vegetales

Aunque con ellos llegó a alcanzar 250 aumentos, eran preferibles los de una sola lente, como los que construyó van Leeuwenhoek, ya que presentaban menos aberración cromática. Con esos instrumentos consiguieron descubrir infusorios (aquellas células o microorganismos que tienen cilios u otras estructuras de motilidad para su locomoción en un medio líquido), bacterias, la existencia de capilares en la membrana interdigital de las ranas.

Ahora sabemos que tanto los paramecios como los organismos superiores están formados por una o más células, almacenan y transportan la energía, duplican su material genético y utilizan la información que ese material contiene para sintetizar proteínas siempre de la misma forma. Todos estos procesos, que están presentes en todas las células, son los que forman la maquinaria de la vida.

                 Sustancias orgánicas que nios dan las vitaminas

Por supuesto, esto es a causa de las particularidades del efecto catalítico de las proteínas; pues la sustancia orgánica (el sustrato) que sufre alteraciones en el transcurso del proceso metabólico, forma ya al principio, una unión bastante compleja aunque de corta duración, con la correspondiente proteína-fermento. Esta fusión tan completa, no es estable, pues sufre distintos trastornos con mucha rapidez: el sustrato sufre las transformaciones correspondientes y el fermento se regenera, para poder unirse de nuevo a otras porciones del sustrato.

Entonces, para que las sustancias integradoras del protoplasma vivo puedan participar realmente con el metabolismo, debe combinarse con una proteína y constituir con ella un enlace complejo. De no ser así, sus posibilidades químicas se producirán muy lentamente y entonces perderán toda su importancia en el impetuoso proceso vital. Por esta razón el cómo se modifique una sustancia orgánica en el transcurso del metabolismo, depende, además de la estructura molecular de esta sustancia, y de las posibilidades químicas de la misma, también de la acción de fermentación de las proteínas protoplasmáticas, las cuales se encargan de llevar esa sustancia al proceso metabólico general.

Los fermentos, además de ser un poderoso acelerador de los procesos químicos sufridos por la materia viva; son también un mecanismo químico interno, el cual se encarga de que esos procesos sean conducidos por un cauce muy concreto. La gran especificidad de las proteínas-fermentos consigue que cada una de ellas forme enlaces complejos sólo con determinadas sustancias y catalice solamente algunas reacciones. Por esto, cuando se produce éste o el otro proceso vital, y con más motivo, cuando se verificas todo el proceso metabólico, actúan miles de proteínas-fermento de distintas clases. Cada una de estas proteínas puede catalizar de forma específica una sola reacción, y sólo el conjunto de acciones de todas ellas, en muy precisa combinación, hará posible ese orden regular de los fenómenos que entendemos como base del metabolismo.

Con el uso de los distintos fermentos específicos que se obtienen a partir del organismo vivo, en el laboratorio, pueden reproducirse de forma aislada cada una de las reacciones químicas, y todos los eslabones que forman el proceso metabólico. Así desenredamos el ovillo tan sumamente complicado de las transmutaciones químicas producidas durante el metabolismo, donde miles de reacciones individuales se mezclan. Por este mismo procedimiento se puede descomponer el proceso metabólico en sus diferentes etapas químicas, se puede analizar las sustancias integradora de la materia viva, y además los distintos procesos realizados en ella.

De esa manera se demostró que la respiración funciona a partir de una serie de reacciones como la oxidación o la reducción, dichas reacciones se dan con muchísimo rigor en un orden estricto y cada una de éstas es catalizada por un fermento específico (S.Kóstichev, A. Liédev y otros autores).

En 1878 el biólogo alemán Walter Fleming descubrió que se podían teñir unas estructuras existentes en el interior del núcleo y llamo cromatina a la materia que las formaban.

Como las células de la preparación morían al teñirse, y en una preparación existían células en muy diferentes etapas de crecimiento y división, Fleming pudo estudiar estas etapas y comprender cómo evolucionaba la vida de la célula.

Al comenzar el proceso de división celular la cromatina forma una especie de hilos que se denominan, con mucha lógica, cromosomas (cuerpos coloreados) y Fleming llamó al proceso de división celular mitosis, una palabra griega que significa hilo.

En 1887 el biólogo belga Edouart van Beneden contó el número de cromosomas de células de diferentes especies y llegó a la conclusión de que el número de cromosomas es una característica de la especie. Todas las células humanas tienen 46 cromosomas.

También descubrió que los espermatozoides y los óvulos tenían la mitad de los cromosomas de las células normales, y dedujo que al unirse conservaban todos sus cromosomas, con lo que recuperaban el número característico de la especie.

imagen de espermatozoides

Tanto Fleming como van Beneden comprendieron que eran los cromosomas del huevo los que determinaban las características del animal que se iba a formar, pero no podían saber el mecanismo por el que lo hacían.

Por entonces se empezó a llamar citoplasma vivo al conjunto de protoplasma vivo y orgánulos que están comprendidos entre el núcleo y la pared o membrana celular, y se empezaron a estudiar estos orgánulos.

Así, en 1898 el biólogo alemán Carl Benda descubrió las mitocondrias, que en griego significa hilos de cartílago. Ahora sabemos que son los órganos que se encargan de la obtención de energía a partir de azúcar y oxígeno. Ese mismo año Golgi descubrió el complejo que lleva su nombre.

              Aminoácidos y azúcares de la vida están ahí presentes

Hoy día, ya hemos dado el salto del análisis de los procesos vitales a su reproducción, a su síntesis. De esta forma, combinando de manera precisa en una solución acuosa de azúcar, una veintena de fermentos distintos, obtenidos a partir de seres vivos, pueden reproducirse los fenómenos propios de la fermentación alcohólica. En este líquido, donde gran cantidad de proteínas distintas se hallan disueltas, los trastornos que sufre el azúcar son verificados en el mismo orden regular que siguen en la levadura viva, aunque aquí no existe ninguna estructura celular.

Todos estos procesos son, en realidad, terriblemente complejos y están expuestos a que, cualquier alteración del medio incida de manera directa en su devenir. Pero, por otra parte y en las circunstancias adecuadas, no existe ningún factor físico o químico, ni sustancia orgánica o sal inorgánica que, de alguna manera, puedan alterar el curso de las reacciones fermentativas. Cualquier aumento o disminución de la temperatura, alguna modificación de la acidez del medio, del potencial oxidativo y de la composición salina o de la presión osmótica, alterará la correlación entre las velocidades de las distintas reacciones de fermentación, y de esta forma cambia su sucesión temporal. Es aquí donde se asientan todas las premisas de esa unidad entre el organismo y el medio, tan característica de la vida.

Esta organización tan especial de la sustancia viva influye en gran manera, en las células de los organismos actuales, en el orden y la dirección de las reacciones fermentativas, las cuales son la base del proceso metabólico. Cuando se agrupan las proteínas entre sí pueden quedar aisladas de la solución general y conseguir diferentes estructuras protoplasmáticas de muy ágil movimiento. Con total seguridad, sobre la superficie de estas estructuras se encuentran concentrados gran cantidad de fermentos.

Está claro que el orden característico de la organización del protoplasma está basado en las distintas propiedades químicas de las sustancias integradoras de la materia viva.

1.-Todos los seres vivos están formados por células y sus productos. Por tanto la célula es la unidad anatómica del organismo.

2.-Todas las células proceden de otras células preexistentes y éstas, a su vez, de otras células. Esto lo certificaron los viejos científicos con el axioma omnis cellula e cellula, latinajo que significa lo que todos ustedes suponen, que toda célula procede de otra célula.

3.-La célula es la unidad funcional del organismo.

4.-La célula es también la unidad genética del organismo.

Básicamente la célula está formada por tres elementos:

Núcleo
Membrana y
Citoplasma


La membrana envuelve la célula confiriéndole su individualidad. Dicho de otra manera, la célula es una unidad separada de otras células por su membrana.

El citoplasma está formado por un líquido llamado citosol (solución celular) y gran cantidad de gránulos que reciben el nombre genérico de organelos y que más adelante describiremos. Adelantemos que en estos organelos hay una gran actividad ya que se encargan de funciones digestivas y respiratorias.

El núcleo está separado del resto del citoplasma por otra membrana, la membrana nuclearEn su interior se encuentra el material genético que crea los patrones para producir nuevas células con las características de nuestra especie. Una célula humana siempre producirá otra célula humana.

Hablar de nosotros mismos es demasiado complejo para que, científicamente podamos abarcar todo lo que somos ym sólo poco a poco podemos ir comprendiendo la grandeza que en nosaotros está representada como esa parte del universo que piensa, tiene ideas y sentimientos y, en definitiva, es la materia del Universo evolucionada hasta su más alto grado hasta el momento conocido.

emilio silvera

Más dato sobre el origen de la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en General, ¿Panspermia?    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  Es la primera vez que la ribosa, un azúcar esencial para la vida, ha sido hallado fuera de nuestro planeta

El cometa Churyomov Gerasimenko, visitado por la misión Rosetta de la Agencia Espacial Europea

 

 

 
 

 

El cometa Churyomov Gerasimenko, visitado por la misión Rosetta de la Agencia Espacial Europea – ESA

 

JOSÉ MANUEL NIEVES – Madrid (Reportaje de prensa)

 

 

El origen de la vida en la Tierra es objeto de debate prácticamente desde que el hombre es hombre. Incluso hoy, los científicos no están seguros de si los “ladrillos” básicos de la vida se crearon aquí, en nuestro planeta, o si por el contrario fueron traídos a la Tierra por cometas y meteoritos. Una duda cuya resolución resulta de la máxima importancia, porque si efectivamente esos componentes fueron traídos aquí “desde fuera”, entonces nada impide que esos mismos ladrillos hayan sido transportados también a otros planetas.

Los constituyentes biológicos fundamentales para la vida son compuestos orgánicos que pueden ensamblarse entre sí para formar proteínas, así como ARN y ADN, elementos básicos para las células vivas. Y resulta que hasta el momento, los investigadores han encontrado la mayoría de estos compuestos básicos tanto en cometas como en meteoritos, aunque también, “sueltos” en el espacio, mezclados con el polvo interestelar. Sin embargo, la ribosa, un azúcar que constituye el “esqueleto” del ARN, nunca había sido hallado fuera de nuestro planeta. Por eso, el anuncio de un equipo de investigadores franceses en la revista Science, afirmando que la ribosa puede formarse en cometas, ha sorprendido a la comunidad científica internacional. Y refuerza, de paso, la idea de que la vida fue “sembrada” en la Tierra por estos vagabundos espaciales.

Igual que el ADN, también el ARN (Acido ribonucléico) codifica información, a pesar de ser una molécula mucho más simple. Una popular hipótesis científica sugiere que las formas de vida más primitivas habrían usado ARN en lugar de ADN para transmitir la información genética a las nuevas generaciones. Incluso en la actualidad, con múltiples formas de vida compleja plenamente desarrolladas, las células siguen utilizando ARN para que transporten la información necesaria para que las proteínas se ensamblen de la forma correcta. Incluso siguen existiendo virus cuyos genomas se basan exclusivamente en el ARN.

El experimento de la vida

 

 

 

La historia de la búsqueda de los procesos químicos que pudieron llevar a la vida comienza a mediados del pasado siglo XX, cuando Stanley Miller y Harold Urey trataron de crear aminoácidos induciendo corrientes eléctricas (que simulaban rayos) en una mezcla de agua, metano, amoniaco e hidrógeno la cual, según ellos, recreaba la atmósfera de la Tierra joven.

El nuevo experimento, sin embargo, va más allá, y trata de reproducir las condiciones que reinaban en el “disco protoplanetario” (el material sobrante de la formación del Sol) a partir del que se formaron tanto los cometas como los planetas en nuestro Sistema Solar. Los investigadores enfriaron una mezcla de metanol y amoniaco hasta una temperatura de -195 grados Celsius y en el interior de una cámara de vacío. Al mismo tiempo que la mezcla se condensaba para formar hielo, los científicos la bombardearon con luz ultravioleta. El proceso resulta muy similar a lo que sucede en un disco protoplanetario, cuando pequeños granos de hielo se unen entre sí para formar cometas. Ocasionalmente, los científicos calentaron el hielo hasta llevarlo a temperatura ambiente, para simular lo que sucede cuando un cometa se acerca al Sol. Al final, durante el experimento se formaron una gran cantidad de compuestos orgánicos, incluyendo ribosa y otros azúcares.

¿Pero cómo pudieron esos componentes llegar hasta la Tierra? Cualquier azúcar o molécula orgánica formada en el disco protoplanetario habría tenido que sobrevivir a los múltiples impactos sufridos por los granos de hielo al juntarse para formar cometas y asteroides. Y aunque recientes experimentos sugieren que este proceso podría no ser violento en absoluto, las colisiones continuas entre los pequeños fragmentos de material habría tenido que destruir, si no a todas, sí a la mayor parte de estas moléculas orgánicas.

Evidentemente, no fue así. Diversos experimentos en los que se dispararon unos contra otros granos helados han demostrado que también este proceso puede conducir a la formación de compuestos orgánicos, como por ejemplo aminoácidos. La Tierra se formó gracias a la colisión y fusión de objetos más pequeños, como cometas y asteroides. El calor liberado por estas colisiones, sin embargo, se hizo tan intenso que formó un océano de magma sobre la superficie de la Tierra naciente. Y eso sí que debería haber destruido cualquier componente orgánico que estuviera presente. Una segunda “oleada” de cometas y asteroides lloviendo sobre el joven planeta debió ser, por lo tanto, la responsable de liberar en él los compuestos orgánicos necesarios para la vida.

Otros mundos «sembrados»

 

 

pans1

 

 

A pesar de lo emocionante de estos resultados, es importante recordar que deben ser verificados mediante la observación de lo que sucede en cometas reales. E incluso después de esa comprobación seguiría siendo posible que los ladrillos básicos de la vida se hubieran formado directamente aquí, sin necesidad de una aportación “extraterrestre”.

El hallazgo, sin embargo, viene a sumarse al número creciente de evidencias que sugieren que los ladrillos de la vida son extraordinariamente comunes en todo el Universo, lo que nos lleva a la tentadora posibilidad de que otros mundos que reunieran las condiciones adecuadas también podrían haber sido “sembrados”. Ahora, la gran pregunta es saber cuál es la probabilidad de que esos pequeños ladrillos básicos se ensamblen, efectivamente, hasta formar un ser viviente. Para ello, las moléculas deben alcanzar concentraciones que permitan desencadenar reacciones adicionales, y eso aún no ha podido encontrarse en ningún meteorito. Aunque los nuevos experimentos sugieren que esas grandes concentraciones sí que podrían darse en los cometas.

La cosa no termina aquí. Porque la ribosa no es el tipo de azúcar más abundante que se formó durante los experimentos de los científicos. Lo cual nos lleva a la pregunta de si pudo formarse, en algún lugar, alguna clase de vida basada en otro tipo de azúcar y, por lo tanto, con un mecanismo de codificación diferente al ARN. Y si fue así, ¿cuánta agua haría falta para que el proceso funcionara? ¿Y sería necesaria una superficie sólida? Responder a estas cuestiones es el punto actual en el que se encuentra la investigación. Y el paso necesario para comprender si la mera presencia de los componentes básicos de la vida por todo el Universo fue suficiente, o no, para que pueda surgir vida fuera de la Tierra.

Fuente: Noticias de Prensa

¿Hacia dónde vamos?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Futuro incierto    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

El LHC se adentra en la materia del universo primigenio

Se supone que, en los comienzos del universo, justo después del Big Bang, existió un ‘plasma de quarks y gluones, dos partículas confinadas hoy en la materia pero que entonces vagaban libremente… Ahora hemos construído aceleradores de partículas que tratan de recrear aquellos momentos para poder “ver” lo que allí pasó y, buscamos el origen de la masa y partículas exóticas que nos digan algo sobre esa supuesta masa “perdida”, o, que no alcanzamos a ver.


Cuando se lee un buen libro, se saborean sus pasajes más interesantes y, al final, sientes un poco de pena porque aquello se termine tan pronto. Sientes que quieres más, te quedas algo insatisfecho de no haber podido llegar más lejos, de profundizar más en aquello que tánto llamó tu atención y despertó tu curiosidad. Saber sobre el enigma planteado por ekl autor y no desarrollado hasta el final dejando un estado en el lector  que lo preocupa,  es tan vital para la mente que, cuando no puedes desarrollar ciertos pemnsamientos por falta de conocimientos, te sientes frustado y, de alguna manera, sufres por no saber.

Habiendo finalizado la lectura de Las sombras de la Mente, de Roger Penrose, en la que nos habla de la posibilidad de comprender de forma científica lo que la conciencia es y, extrapola dicha conciencia, hasta ese otro mundo de la I.A., en el que, si nada lo remedia, estamos inmersos hasta tal punto que, en el futuro más o menos lejano, será lo que predomine tanto aquí en la la Tierra, como en los mundos y lunas que nos acompañan en el Sistema solar, e, incluso, mucho más allá. Ellos serán, los Robots, los que surquen los cielos y el espacio interestelar en busca de las estrellas.

Es posible que podamos llegar a los límites de la realidad pero… ¿No crearemos una nueva raza para que, sin nosotros saberlo nos suplante en el futuro?

La computación y el Pensamiento consciente

En los últimos tiempos, mucho es lo que se habla de la I.A., y, algunos, nos preguntamos: ¿Será posible que en un futuro más o menos lejano, eso que llamamos Inteligencia Artificial, nos pueda superar?

                                ¿Hasta dónde llegarán?

Hay corrientes en ese sentido que nos llevan a pensar y, ¿por qué no? A preocuparnos profundamente. Si hacemos caso de esas afirmaciones (quizá algo extremas pero, con visos de verdad) de los que defienden a capa y espada el futuro de la I.A., diciendo que, con el tiempo, los ordenadores y los robots superarán a los humanos en inteligencia al llegar a tener todas y cada una de las capacidades humanas y otras que, los humanos nunca podrán tener. Entonces, estos ingenios serían capaces de hacer muchísimo más que ayudar simplemente a nuestras tareas inteligentes.

De hecho, tendrían sus propias y enormes inteligencias. Podríamos entonces dirigirnos a estas inteligencias superiores en busca de consejo y autoridad en todas las cuestiones complejas y de interés que, por nosotros mismos, no pudiéramos solucionar; ¡y finalmente podrían resolver los problemas del mundo que fueron generados por la Humanidad!

Inteligencia artificial supera el test de turing

Alan Turing estaba convencido de que algún día, las máquinas serían tan inteligentes como los humanos. Y para demostrarlo, inventó el Test de Turing, en 1950. El Test de Turing se basa en la idea de que si no puedes distinguir las respuestas de un programa frente a las de un humano, entonces es porque la inteligencia artificial es tan inteligente como nosotros.

Resultado de imagen de Aquella primera computadora de A. Turing

                            Así se empieza pero… ¿Cómo se acaba?

La Nasa ha fabricado un robot que pesa 150 kilogramos, tiene aspecto humanoide y se llama Robonaut-2 (R-2 para los amigos). Este androide será lanzando al espacio y pronto será el nuevo compañero de los tripulantes de la Estación Espacial Internacional. Por algo se comienza y, nunca se sabe como todo terminará.

Pero, si todo eso fuera así (que podría llegar a serlo), podríamos extraer otras consecuencias lógicas de estos desarrollos potenciales de la I.A. que muy bien podría generar una cierta alarma muy justificada ante una situación tan atípica, en la que, unos “organismos” artificiales creados por nosotros mismos, nos superen y puedan llegar más lejos de lo que nosotros, podríamos ser capaces de llegar nunca. ¿No harían estos ordenadores y Robots, a la larga, que los Humanos fueran superfluos para ellos?

            ¿Llegarán a ser dos “especies” amigas?

Si los Robots guiados por ordenadores insertados en sus cerebros positrónicos o espintrónicos, o, guiados por un enorme y potente Ordenador Central, resultaran ser muy superiores a nosotros en todos los aspectos, entonces, ¿no descubrirían que pueden dirigir el mundo sin necesidad alguna de nosotros? La propia Humanidad se habría quedado obsoleta. Quizá, si tenemos suerte, ellos podrían conservarnos como animales de compañía (como alguien dijo en cierta ocasión); o, si somos inteligentes, podríamos ser capaces de transferir las “estructuras de información” que somos “nosotros mismos” a una forma de robot (como han pensado algunos otros), o quizá no tengamos esa suerte y no lleguemos a ser tan inteligentes…

Investigadores de la Universidad de Bremen en Alemania dio a conocer el simio robot – un aparatito de cuatro extremidades que se tambalea a lo largo de su frente “nudillos” y patas traseras. El robot de 40 libras, que tuvo más de tres años en desarrollarse, puede moverse hacia adelante, hacia atrás y hacia los lados – todo ello sin un cable de control. Cuenta con sensores de presión en sus patas traseras, y puede incluso dar vuelta en torno a sí mismo.

Colonizar el espacio con robots es un antiguo argumento de obras de ciencia-ficción, algo que podrían hacer realidad en Japón en no demasiado tiempo. La imagen de arriba, a no tardar mucho, podría ser una realidad. De momento hemos enviado sondas y naves espaciales de todo tipo y rovers-laboratorios andarines pero, en el futuro cercano, la cosa irá en aumento de cantidad y calidad.

Red neuronal estructura disipativa

Red neuronal estructura disipativa
Todo efecto incide en su trama

Por otra parte, quiero pensar que, lo que hace y es capaz de realizar nuestro cerebro creador de pensamientos, nunca será del dominio de la I.A. que, nunca podrán describir o realizar funciones que de manera natural realizan nuestras mentes. ¿Llegarán a tener mentes de verdad los Robots del futuro? ¿Será posible que lleguen a tener sentimientos, a sentir miedo, a poder llorar? ¿Tiene algún sentido que hablemos de semejantes cosas en términos científicos? También podríamos pensar que, la Ciencia, no está capacitada para abordar ciertas cuestiones relacionadas con la complejidad de la Conciencia Humana.

Claro que, por otra parte, no podemos dejar de pensar en el hecho cierto de que, la propia materia parece tener una existencia meramente transitoria puesto que puede transformarse de una forma en otra, de una cosa en otra, e, incluso, puede llegar esa transformación ser tan compleja como para cambiar desde la materia “inerte” hasta el ser consciente.

                                    ¿Escena futura cotidiana?

 Incluso la masa de un cuerpo material, que proporciona una medida física precisa de la cantidad de materia que contiene el cuerpo, puede transformarse en circunstancias apropiadas en pura energía (E = mc2) de modo que, incluso la sustancia material parece ser capaz de transformarse en algo con una actualidad meramente matemática y teórica. Dejemos en este caso, la cuántica y otras teorías a un lado para centrarnos en el tema que tratamos de la I.A. y sus posibles consecuencias.

¿Permite la Física actual la posibilidad de una acción que, en principio, sea imposible de simular en un ordenador? Hoy esa respuesta no está disponible y, cuando eso vaya a ser posible, tendríamos que estar en posesión de una nueva Física mucho más avanzada que la actual.

No debemos apartarnos de un hecho cierto: Nuestra Mente, aunque está apoyada por un ente físico que llamamos cerebro y recibe la información del exterior a través de los sentidos, también es verdad que, de alguna manera, sale de nosotros, está fuera de nuestros cuerpos y, viaja en el tiempo y en el espacio, aprende y conoce nuevos lugares, nuevas gente, nuevos conocimientos de su entorno y de entornos lejanos y, a todos ellos, sin excepción, se puede trasladar de manera incorpórea con un simple pensamiento que, de manera instantánea, nos sitúa en este o aquel lugar, sin importar las distancias que nos puedan separar.

Así La parte física y la parte mental, aunque juntas, están separadas de una manera muy real y, desde luego, existe una clara divisoria entre lo físico y lo mental que ocupan distintos dominios de alcance también distintos y, hasta donde pueda llegar el dominio mental ¡No se conoce!

Circuitos y conexiones de infinita potencia. Ahí están encerrados otros mundos de inimaginable belleza, agujeros negros gigantes, púlsares y quásares, estrellas de neutrones y fantásticas nebulosas de increíbles figuras de las que surgen sin cesar nuevas estrellas y nuevos mundos. También ahí residen pensamientos y recuerdos y, hasta es posible rememorizar imágenes nunca vistas de universos paralelos… ¿Cómo son posible todas esas maravillas? Y, ante esa poderosa “herramienta”, me pregunto, podrá alguna vez, la Inteligencia Artificial hacer algo parecido.

El futuro es incierto

Quisiera pensar que, el humano, siempre prevalecerá sobre el “ser Artificial”, sin embargo, tal optimismo, si pensamos en hacerlo real, nunca podrá estar a nuestro alcance. La evolución de la Ciencia, las necesidades de nuestra especie, las exigencias de una Sociedad creciente que llena el planeta hasta límites insoportables…Todo eso, nos llevará a seguir procurando ayuda de ese “universo artificial” que, al fin y a la postre, es la única salida que tenemos para poder llegar a otros mundos en los que poder alojarnos para que, el planeta Tierra, no se vea literalmente asfixiado por la superpoblación. Así que, siendo las cosas así (que lo son), estamos irremisiblemente abocados a ese futuro dominado por la I.A. que, si tenemos suerte, nos dejará convivir con ella y, si no la tenemos… Muy cruda.

Así que, el día que los Robots sean equiparables a los Humanos, ese día, habrá comenzado el principio del fin de la especie que, tan tonta fue, que creó a su propio destructor.

                                      Hay escenarios que producen miedo

Claro que, para que todo esto llegue a pasar, podrían transcurrir siglos. No parece que sea muy factible que una simulación realizada por un Robot avanzado pueda ser semejante a lo que un Humano puede hacer hoy. Sin embargo, cuando los ordenadores y Robots hayan alcanzando la inteligencia de pensamiento y discurrir del cerebro Humano, ese día, amigos míos, no creo que sea un día para celebrar.

Claro que, la idea de poner unir nuestras mentes a esos “Seres”, podría ser una salida, una solución híbrida para paliar nuestras carencias de salir al espacio exterior por nosotros mismos y dentro de la frágil coraza humana que contiene a nuestras Mentes pensantes que, dentro de tan ligera y débil estructura, no tienen la seguridad suficiente para realizar ciertas tareas.

No quiero ser pesimista ni llevar a vuestro ánimo ideas intranquilizadoras. Sin embargo, si la cosa sigue adelante por el camino emprendido, el futuro que nos espera será ese: Convivir con los Robots, emitir leyes para su control, tratar de que hagan sólo aquellos trabajos y tareas encomendadas pero, ¿cómo podremos evitar que, algún día, más evolucionados al exigirle cada vez más complejidad en las ayudas que nos tendrán que prestar, comiencen a pensar por sí mismos?

Así que, como estamos dando a esos Robots el “Conocimiento”, la “Comprensión”, la “Consciencia” y, la “Inteligencia”, lo estamos haciendo partícipes y están tomando posesión, de los bienes más valiosos que podemos poseer y, tal dislate…¡Podríamos pagarlo muy caro!

  • “Un Robot no puede hacer daño a un ser humano o, mediante la inacción que un ser humano sufra daños”
  • “Un Robot debe de obedecer las ordenes dadas por los seres humanos, salvo que esto provoque un conflicto con la primera ley”
  • “Un Robot debe proteger su propia existencia, a no ser que provoque un conflicto con las dos primeras”

Estas leyes fueros enunciadas por Isaac Asimos con el objetivo de intentar que la finalidad inicial para la que se originó la robótica no fuera modificada y eso ocasionara problemas a la humanidad. Sin embargo…

voyager1

Nuestros sueños e conquistar el Espacio exterior y de poblar otros mundos, hace más de 50 años que se puso en marcha. Desde entonces, hemos enviado aparatos más o menos sofisticados lejos de la Tierra y, nos han enviado información de Mercurio, de Venus y Marte, de Saturno y Júpiter, de las Lunas que, como Io, Titán, Encelado, Ganímedes Europa y otras pueden tener algún interés científico para el futuro de la Humanidad. Estos “artilugios” guiados desde nuestro planeta, nos envían imágenes de lugares que nunca pudimos imaginar.

Así, las máquinas pueden hacer lo que nosotros no podemos y “ellas” no duermen ni comen y, cuando no puedan obtener energía del propio Sol, lo harán de pilas atómicas que durarán cientos de años. La radiación del espacio no les afecta y la falta de gravedad tampoco. Ellos tendrán todos los atributos que nos faltan para conquistar el espscio, y… ¿De nosotros que será?

La pregunta queda en el aire, toda vez que, en este momento, nadie la sabe contestar.

emilio silvera

¿Es viejo el Universo? ¿Cómo puede ser tan grande?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo Hiperdimensional, General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

BIOLOGÍA Y ESTRELLAS

¿Es viejo el universo? Todos los cáculos nos llevan a una edad de 13.700 millones de años que, comparado con el tiempo en el que nosotros hicimos acto de presencia en él, es que un simple parpadeo de ojos. Sin embargo, a veces nos sentimos los amos del mundo y del Universo mismo, lo que en realidad, es un simple espejismo, una ilusión que se forja en nuestras mentes que, jóvenes e inmaduras… Aún no comprenden, como son las cosas.

Cuando tenemos que operar con la edad y el tamaño del universo lo hacemos generalmente utilizando medidas de tiempo y espacio. Son tan inmensas las distancias y tan descomunal el tiempo que está presente en el ámbito del Universo que, hemos inventado unidades especiales poder hablar de ellas sin tener que escribir cantidades tan grandes con los números y, el año-luz, la Unidad Astronómica, el Parsec, Kiloparsec o Gigaparsec son palabras que expresan medidas antropomórficas y extraordinarias que se pierden en el espacio-tiempo.

¿Por qué medir la edad del universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor del astro rey, el Sol? ¿Por qué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque queremos saber en qué lugar estamos, porque es conveniente y porque siempre hemos tratado de saber, lo que el universo es. Por otra parte, también en el ámbito de lo muy pequeño hemos tenido que inventar unidades que, esta vez, han querido significar lo que dice la Naturaleza y no el hombre.

Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales”; la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

http://www.aprender-mat.info/history/photos/Planck.jpeg

                  El joven Planck

Mientras que Stoney había visto en la elección de unidades prácticas una manera de cortar el nudo gordiano de la subjetividad, Planck utilizaba sus unidades especiales sustentar una base no antropomórfica para la física y que, por consiguiente, podría describirse como “unidades naturales”.

De acuerdo con su perspectiva , en 1.899 Planck propuso que se construyeran unidades naturales de masa, longitud y tiempo a partir de las constantes más fundamentales de la naturaleza: la constante de gravitación G, la velocidad de la luz c y la constante de acción h, que lleva el nombre de Planck. La constante de Planck determina la mínima unidad de cambio posible en que pueda alterarse la energía, y que llamó “cuanto”. Las unidades de Planck son las únicas combinaciones de dichas constantes que pueden formarse en dimensiones de masa, longitud, tiempo y temperatura. Sus valores no difieren mucho de los de Stoney que figuran en el siguiente de hoy:

Mp = (hc/G)½ = 5’56 × 10-5 gramos
Lp = (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032 ºKelvin

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

La constante de Planck racionalizada (la más utilizada por los físicos), se representa por ћ que es igual a h/2π que vale del orden de 1’054589×10-34 Julios segundo.

En las unidades de Planck, una vez más, vemos un contraste la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales sean medidas por las inteligencias más diversas con los métodos más diversos.”

 

 

    ¿Quién sabe cómo serán?

En sus palabras finales alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros. Lo cierto es que estas unidades, al tener su origen en la Naturaleza y no ser invenciones de los seres humanos, de la misma manera que nosotros y, posiblemente por distintos caminos, seres de otros mundos las hallarán y serán idénticas a las nuestras. De entrada había algo muy sorprendente en las unidades de Planck, como lo había también en las de Stoney. Entrelazaban la gravedad con las constantes que gobiernan la electricidad y el magnetismo. Planck nos decía:

“La creciente distancia la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.”

 

 

Sí, Planck tenía razón, el mundo de los sentidos cada vez están más cerca de ese mundo real que perseguimos. Sabemos que nuestra realidad no es la realidad del mundo y, poco a poco, con descubrimientos estos de las Unidades de Stoney-Planck, nos vamos acercando a la comprensión de esa Naturaleza creadora que permitió aquí nuestra presencia y que ahora, nosotros tratamos de saber.

Podemos ver que Max Planck apelaba a la existencia de constantes universales de la naturaleza como prueba de una realidad física al margen y completamente diferentes de las mentes humanas. Al respecto decía:

“Estos…números, las denominadas constantes universales son en cierto sentido los ladrillos inmutables del edificio de la física teórica. Deberíamos preguntar:

 

¿Cuál es el significado real de estas constantes?”

Claro que, nosotros, simplemente somos un misterio más de los muchos que en el Universo son. Sin embargo y a diferencias de los otros, tenemos la ventaja de ser conscientes con la facultad de pensar y, además, tenemos una insaciable curiosidad. Un fallo que a menudo tenemos ha sido caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. Y, creemos saber que…

 

La edad actual del universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

Densidad actual del universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la Planck

Lo cierto es que todo en el Universo está conformado por objetos infinitesimales: Partículas que forman los átomos de la materia como grandes montañas y valles, oceános o inmensos desirtos, estrellas en el el Espacio Interestelar y los enjambres de galaxias que forman el Universo entero… También los seres vivos estamos hechos de esos ínfimos objetos.

Para explicar estas cosas se han encontrado esos números mágicos. Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los de su propia construcción.

Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser. Pero, pese a la enorme edad del universo en “tics” de Tiempos de Planck,  hemos aprendido que casi todo este tiempo es necesario producir estrellas y los elementos químicos que traen la vida.

http://www.acatos.es/wp-content/uploads/2009/01/planeta-estrellas.jpg

¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena.

Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar .

La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos y el vulcanismo parará su actividad al ser frenado el planeta geológicamente y carecerán de muchos de los movimientos internos que impulsan la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione formas complejas.

Las estrellas típicas como el Sol, emiten su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, existen serias amenazas exteriores.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

 

La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución. Cuando comento este tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, aquel suceso catastrófico los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrolló la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros en comparación, llevamos aquí tres días y, luego, ¡la que hemos formado!

Y no podemos tener la menor duda, mientras que estemos aquí, seguiremos pretendiendo y queriendo saber sobre los secretos de la Naturaleza que, al fin y al cabo, ser nuestra salvación. Ya saben ustedes: ¡Saber es poder!

emilio silvera