viernes, 26 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡El pasado! ¿Qué haríamos sin él?

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

2064 aryabhata-crp.jpg

              Estatua de Aryabhata

En el año 499 d.C. el matemático hindú Aryabhata calculó pi como 3,1416 y la duración del año solar como 365,358 días.  Por la misma época, concibió la idea de que la Tierra era una esfera que giraba sobre su propio eje y se desplazaba del Sol.  Pensaba, además, que la sombra de la Tierra sobre la Luna era lo que causaba los eclipses.  Dado que Copérnico no “descubriría” algunas de estas cosas hasta casi mil años después, resulta difícil no preguntarse si el revuelo provocado por la llamada “revolución copernicana” estaba realmente justificado.

En la Edad Media el pensamiento indio estaba muy por delante del europeo en varias áreas.  En esta época, los monasterios budistas de la India tenían tantos recursos que actuaban como bancos e invertían sus excedentes financieros en empresas comerciales.  Detalles como éste aclaran por qué los historiadores se refieren a la reunificación del norte de la India bajo los Guptas (c.320-550) como una era dorada.

                                  Templo Budista

Esta dinastía, en conjunción con el reinado de Harsha Vardhana (606-647), abarca el período que hoy se considera la era clásica de la India.  Además de los progresos realizados en matemáticas, esta época fue testigo del surgimiento de la literatura en sánscrito, de la aparición de formas de hinduismo nuevas y duraderas, entre ellas el vedanta, y del desarrollo de una espléndida arquitectura religiosa.

Más que la mayoría de los lenguajes, el sánscrito encarna una idea: es el lenguaje especial para gente que deben tener una clasificación también especial.  Es una lengua de más de tres mil años de antigüedad. En un principio, fue la lengua del Punjab, pero luego se difundió al este.

Se puede discutir si los autores del Rig Veda fueron los arios procedentes de fuera de la India o indígenas de la región, pero lo que no se puede poner en duda es que poseían un idioma de gran riqueza y precisión, y una tradición poética cultivada.

El sánscrito es una de las aportaciones más grandes de la cultura que nos vamos a poder encontrar que se ha formado de alguna manera en un territorio indio europeo como lo es la india, ya que es considerado como la lengua más antigua de toda esta zona, pues según algunos historiadores y analistas de toda esta situación el mismo fue conformado o desarrollado hace más de 4000 años, algo para tener en cuenta por parte de todos nosotros, ya que según muchas personas gracias a esta gran cantidad de aportes que se fueron formando con él sanscrito se fue formando todo lo que conocemos en la actualidad en cada una de las diferentes lenguas y textos que se desarrollaron en lo que es actualmente.

Moderna estatua de Pāṇini vestido al estilo Imperio mogul (siglo XVII-XIX) en la Universidad de Benarés

La importancia de los gramáticos para la historia del sanscrito no tiene comparación en ninguna otra lengua del mundo.  La preeminencia que alcanzó esta actividad se deriva de la necesidad   de preservar intactos los textos sagrados de los Vedas: según la tradición, cada palabra del ritual tenía que pronunciarse de forma exacta.  Así que da demostrado en algún momento del siglo IV a.C. cuando Panini compone su Gramática.

Nada sabemos sobre la vida de Panini, aparte de que nació en Satura, en el extremo noroeste de la India.  Su Astadhyayi consta de cuatro mil aforismos que describen, con abundante detalle, la forma de sanscrito que utilizaban los brahmanes de la época.  Su obra tuvo tanto éxito, que la forma del idioma que describió quedó establecida para siempre, después de lo cual vendría a ser conocida como samskrta (“perfecta”).

Según el Pancha tandra (hacia el 200 a. C.),  Pāṇini fue matado por un león.

El texto, que en algunas recensiones aparece como 2.33, dice:

“Un león le quitó la vida al querido gramático Pāṇini, un elefante aplastó a Yaimini, el creador de [la doctrina] mimamsa, Pingala fue matado por un cocodrilo: ¿qué les importan los logros académicos a los insensibles animales?”

A partir de los trabajos de Panini, el lenguaje en la India evolucionó de manera considerable y sus efectos se podría decir, fueron altamente positivos.  El lenguaje estaba dividido en dos: sanscrito para el estudio y ritual, preservado para la casta de los brahmanes, y, el práctico, para la vida cotidiana.

Hay que decir que, tal distinción ya existía en la época de Buda y Mahavira y desde la época de Panini sólo la lengua vernácula evolucionó de forma normal.  La brecha entre el sánscrito y el práctico se amplió con el paso de los siglos y, sin embargo, ello no tuvo consecuencias negativas para el primero que en la época de los Guptas era el lenguaje utilizado por la Administración.

Las lenguas modernas de la India: Bengalí, gujarati, y, maratí, solo empezaron a utilizarse 1.000 años después de C.

Después del siglo II a.C. empiezan a aparecer textos seculares: poesías, dramas y obras de naturaleza científica, técnica o filosófica.  En este momento, todo hombre de letras debía saber de memoria el astadhyayi.  Aprenderlo requería un largo proceso, pero demostraba la educación.

Kālidāsa fue un poeta y dramaturgo indio hinduista, que floreció aproximadamente en el siglo VI de nuestra era.  Su poema más conocido es el llamado “Mensajero de las Nubes”.  Los poemas de Kalidás sugieren que era un brahmám (sacerdote), aunque se cuentan historias que lo contradicen.

Entre los años 500 y 1.200 d. C., la literatura sánscrita vive su edad de oro, protagonista indiscutible de la cual es Kalidasa, el más famoso de los autores del período den la literatura kavya (secular), la literatura agama (religiosa) y los trabajos de los estudiosos (sastra).

Como ocurre con Panini, tampoco se sabe mucho sobre los orígenes de Kalidasa.  Su nombre significa “esclavo de la diosa Kali”, lo que sugiere que pudo nacer al sur de la India, en lo que después se convirtió en Bengala, donde Kali, la esposa de Shiva, contaba con muchos seguidores.

Hay ciertas características de las obras de Kalidasa que hace pensar en que podía ser un brahmán de Ujjain o Mandasor, ya que muchos detalles delatan un profundo conocimiento del fértil valle del Narmada, en la región de Malwa.  Como en el caso de Sófocles, sólo se conservan siete de los clásicos sánscritos de Kalidasa, poeta lírico y autor de epopeyas y obras de teatro.

Su trabajo más conocido, como dije antes, es el poema Meghaduta (Mensajero de las nubes), sin embargo, la obra más evocadora de Kalidasa es el drama Shakuntala

Fitxer:Kalidas smarak.jpg

La superioridad y brillantez de la literatura india de este período quedan confirmadas por el hecho de que sus ideas y prácticas se difundieron por todo el sureste asiático.  Es posible encontrar Budas de estilo gupta de Malaya, Java y Borneo.  Se cree que las inscripciones en sánscrito, que aparecen en Indochina desde el siglo III y IV, constituyen un indicio de los comienzos de la alfabetización en esta región y “casi todos los estilos de escrituras preislámicos del sureste asiático son derivados del gupta Grahmi”.

Bajo la dinastía de los guptas el templohindú se desarrolló  hasta convertirse en la forma arquitectónica clásica de la India.  Es difícil exagerar la importancia del templo hindú.  El mundo tienen una gran deuda con el arte de la India, algo especialmente cierto en el caso de China, Corea, el Tibet. Camboya y Japón.

Es evidente que la iconografía de los templos indios se origina en un conjunto de supuestos diferentes de los des arte cristiano, pero constituye un sistema no menos cerrado e interconectado.  En general, las imágenes hindúes son bastante más arcaicas que las cristianas y en mucho casos más antiguas que el arte griego.  Los mitos de los grandes dioses (Vishnú y Shiva) representados en los grabados se repiten cada palpa, esto es, cada cuatro mil trescientos veinte millones de años.

Sustentador del universo, gobernante de sattva ( ‘existencia, realidad’), se reclina sobre Ananta S’esha, la serpiente de muchas cabezas, y de su ombligo …

Habitualmente, los dioses están acompañados de vehículos o se los asocia a ellos: Vishnú a una serpiente o culebra cósmica (símbolo de las aguas primigenias de la creación), Brama a un ganso, Indra a un elefante, Shiva a un tono, y cada uno tiene un significado espiritual, como Airavata, el ancestro celestial de todos los elefantes que lleva a Indra, el rey de los dioses, así que está enclavado como perteneciente a la tierra de los reyes.

La cultura hindú es fascinante y leer en profundidad su historia nos puede dar el conocimiento de gran parte del comportamiento de la Humanidad.  Como otros tantos lugares y culturas, fue invadida por el Islam que nunca consiguió erradicar las costumbres y cultura de los nativos.

Los templos hindúes de la India constituyen una de esas espléndidas obras que nunca se han abierto camino en la mente de Occidente para ser consideradas equivalentes intelectuales y artísticos de, digamos, al arquitectura clásica Griega.  ¡Un gran error!

Como dije antes, otra innovación hundú fue la invención o creación de los numerales indios.  Ello fue obra en primera instancia del famoso matemático indio Aryabhata, que igualmente mencione antes en alguna parte de este trabajo en el apartado referido a la India.

En el año 499, Aryabhata escribió un pequeño volumen, Aryabhatuya, de 123 versos métricos, que se ocupaban de astronomía y (una tercera parte) de ganitapada o matemáticas.  En la segunda mitad de esta obra, en la que habla del tiempo y la trigonometría esférica, Aryabhata utiliza una frase, en la que se refiere a los números empleados en el cálculo, “cada lugar es diez veces el lugar precedente”.  El  valor posicional había sido un componente esencial de la numeración babilónica, pero los babilonios no empleaban un sistema decimal.

La numeración había empezado en India con simples trazos verticales dispuestos en grupos, un sistema repetitivo que se mantuvo aunque después se crearon nuevos símbolos para el cuatro, diez, veinte y el cien.  Esta escritura kharosti dio paso a los denominados caracteres brahmi, un sistema similar al jonio griego:

Desde este punto se necesitaban dos pasos adicionales para llegar al sistema que empleamos ahora.  El primero era comprender que un sistema posicional sólo requiere nueve cifras (y que, por tanto, podemos deshacernos de todos los demás, de la I en adelante en el gráfico o figura anterior).  No hay certeza sobre cuando se dio este paso por primera vez, pero el consenso entre los historiadores de las matemáticas es que se produjo en la India, y que quizá se desarrolló a lo largo de la frontera entre la India y Persia, donde el recuerdo del sistema posicional puede haber incitado a su uso en al alternativa brahmi, o en la frontera con China, donde existía un sistema de varas.

Esto también puede haber sugerido la reducción de los numerales a nueve.  La referencia más antigua a los nueve numerales indios la encontramos en los escritos de un obispo sirio llamado Severo Sebokt que, molesto con los griegos (cerrados a otros saberes en países distintos a Grecia), trató de recordarles que, también en otros lugares, y otras culturas, tenían conocimientos dignos de atención y, apelaba a los indios y los descubrimientos que éstos habían realizado en astronomía y, en particular, “su valioso método de calcular, que supera cualquier descripción. Sus cálculos de realizaban mediante nueve signos (nueve no diez) La primera aparición indudable del cero en la India es una inscripción del año 876, más de dos siglos después de la primera mención del uso de los otros nueve numerales.

Algunos supieron “ver” que el concepto de “nada” de “vacío” era algo inexistente y, a la vez, muy poderoso. Lo que entendemos por nada… No existe, siempre hay aunque sólo sean pensamientos. La Nada es esa palabra que hemos encontrado para significar la falta de algo, la ausencia… ¡de tántas cosas!

Todavía no sabemos con certeza dónde surgió por primera vez el cero, y el concepto de nada, de  vacío, a la que, además de los hindúes también llegaron los mayas de manera independiente.   Algunos sitúan la aparición del cero en China.  No obstante, nadie discute la influencia india, y todo aparece indicar que fueron ellos los primeros que emplearon a la vez los tres nuevos elementos en que se funda nuestro actual Sistema numérico:

  • una base decimal,
  • una notación posicionad y cifras para diez, y
  • sólo diez, numerales.  Y esto ya establecido en 876.

En algún momento se dio por hecho que el cero provenía originalmente de la letra griega omicrón, la inicial de la palabra ouden, que significa “vacío”. Sin embargo, está más allá en el pasado.

emilio silvera

¡La curiosidad! que está con nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en Divulgando la ciencia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

hubble2

Me ha venido a la memoria escenas y hechos que, en la última charla que pude dar en un Centro Educativo,  en el apartado de Ciencia, para chavales de 2º de Bachillerato, comencé la sesión ilustrándola con la Imagen de arriba, de la que di una breve explicación antes de entrar en materia que, en realidad era: Nacimiento, Vida y Muerte de las estrellas y, de lo que hacían durante esos largos períodos de tiempo y, en qué se convertían al final de sus vidas como estrellas cuando dejaban la Secuencia Principal al no quedarle combustible nuclear de fusión, ya agotado.

El caso fue que, comencé con las explicaciones y, de entre el auditorio de jóvenes llenos de energía y revoltosos, algunos, no prestaban atención y, además, con sus bromas y risas, no dejaban que los demás, se pudieran interesar en lo que allí se trataba.

Aquella actitud de algunos, me obligó a parar la charla y, mirándo seriamente a los alborotadores, les dije: “Chicos, si el tema no os interesa, y queréis salir de aquí siendo un poco más “burros”, sois libres de hacerlo.” Sin embargo, os ruego que, si finalmente decidías seguir con nosotros, y al final ser un poco más “sabios”, dejéis de alborotar.

Como ya son “hombrecitos y mujeres”, la repimenda tuvo su efecto y, a partir de aquel momento, todos estuvieron atentos a mis palabras con las que fui desgranando, despacio y con palabras sencillas, lo que era una explosión de supernova y cómo dejaba regada una amplia región del espacio interestelar por una hermosa e inmensa nebulosa de cuyos materiales, vuelven a nacer nuevas estrellas y nuevos mundos.

Imagen de la formación de una estrella tomada por un nuevo telescopio. (Foto: ESA).

Apoyaba mis palabras con imágenes  como la de arriba.  La fotografía combina diferentes radiaciones, como rayos X, infrarojos o luz visible, y genera una amalgama de colores que aportan información importante para entender cómo llega una estrella a ser una estrella. Esta imagen ofrece una interesante mirada hacia el interior de la región activa de estrellas en ciernes llamada NGC 346. Los científicos responsables del telescopio aseguran que revela información nueva sobre cómo se forman las estrellas en el Universo.

La NASA publicó un video (1/09/2011) donde se aprecia el proceso de nacimiento estelar. Con grandes chorros de gas incandescente nacen las estrellas a millones de años luz, algo que ahora está al alcance del ojo humano a través de un vídeo reconstruido con imágenes fijas tomadas por el telescopio Hubble.  El vídeo, publicado en la página web de la agencia espacial estadounidense (NASA), ofrecía nuevos detalles sobre el proceso de nacimiento estelar, en el que se pueden apreciar los chorros de gas que expulsan las estrellas jóvenes con un detalle hasta ahora nunca visto.

A medida que las explicaciones avanzaban, pude notar como el interés de los chicos crecía. Ya no bromeaba nadie, la sala estaba en silencio y todos, sin excepción, se veían interesados e incluso, algunos, tenían la boca abierta por asombro. Allí, lo que al principio era una simple charla para alumnos, se fue convirtiendo en un auditoriun donde, profesores y alumnos de otras clases llegaban y se unián a los ya presentes.

Les pude explicar con todo detalle y de la manera más sencilla posible, como se formaban los elementos en las estrellas a partir del Hidrogeno, el elemento más sencillo de la Naturaleza.

Les expliqué el proceso protónprotón que convertía Hidrógeno en Helio y el proceso triple Alfa que convertía Helio en Carbono, el material químicamente más idóneo para la vida -al menos aquí en la Tierra- y, se hizo un largo recorrido por la transmutación que se producía en  todos los elementos, a medida que transcurría el tiempo y la estrella evolucionaba.

Pude darles una buena noción de las clases de estrellas que existen y de que, no todas tienen las mismas masas y que, como consecuencia de ello, cada una de esas estrellas, viven más o menos tiempo y que, cuando al final mueren, lo hacen de muy diferentes maneras. Ya que, estrellas medianas como nuestro Sol, terminan creando una Nebulosa planetaria al convertirse en Gigante roja y, terminan sus días como enanas blancas de una gran densidad. Les expliqué el proceso que hacían hasta llegar a tal estado y los parámetros que, como el principio de exclusión de Pauli, estaban allí presentes. De la misma manera, les expliqué que, estrellas más masivas terminaban como estrellas de neutrones y más masivas aún, como agujeros negros.

El recorrido fue algo largo (más de lo esperado), ya que, vista la gran atención que todos ponían en las explicaciones y en las imágenes que se ivan poniendo en cada fasa del proceso explicativo, procuraba que el tema tratado lo fuera en profundidad y amplitud y, de esa manera, la cosa resultó, además de más amena, mucho más completa y, sobre todo, comprensible.

Cuando al final di la charla por finalizada, pregunté si alguien quería alguna explicación sobre algún aspecto de lo que habíamos tratado, y, las manos que se levantaban presagiaban un largo, muy largo debate. Y, así fue. Los jóvenes se interesaban por todo y, de entre todo lo explicado, las cosas que más llamaron su atención fueron, por ejemplo:

Que nuestro Sol, cada segundo, pueda fusionar 4.654000 toneladas de Hidrógeno en 4.650.000 toneladas de Helio. Y, un observador inquisitivo, me preguntaba: ¿dónde están las 4.000 Tn que se han perdido? Bueno, le expliqé que habían sido lanzadas al espacio interestelar en forma de luz y de calor y, una pequeña fracción, llegaba a la Tierra para permitir la fotosíntesis y la vida.

Otra de las cuestiones que les llamó más la atención fue, cómo era posible que estrellas supergigantes, pudieran tener una vida más corta cuando tenían a su disposición mucho más material. Y, cuando les expliqué que, esas estrellas, no consumen sino que devoran literalmente el material nuclaer de fusión, comprendieron el por qué de sus cortas vidas.

Y, preguntaban cómo no todas las estrellas tenían el mismo colo, amarillas como nuestro Sol. La exlicación, como sabemos, está en el hecho de que no todas están formadas por el mismo material: Hay estrellas de Carbono, otras son de Oxígeno, Litio, manganeso…, la diversidad es enorme.

Mostraron mucha curiosidad y más interés aún, al saber -no todos conocían tal hecho- que, los elementos para hacer posible, la bio-química de la vida, se fabrica en las estrellas, es allí, en sus hornos nucleares donde se producen los elementos que conforma la materia del Universo, su diversidad que, bajo ciertas condiciones y, en los mundos adecuados situados en las zonas habitables de sus estrellas, pueden hacer surgir formas de vida que, a veces, llegan incluso a ser conscientes, como ha pasado aquí, en la Tierra.

G292.0+1.8

Los remanentes de supernovas y de cómo en esas inmensas explosiones se producían oro y platino, también fue uno de los temas que llamó la atención del personal. Todos querían hablar al mismo tiempo y todos -era un auténtico gozo- tenían preguntas que plantear. Al final, el tiempo pasaba sin sentir y tuve que dar por finalizado el evento que, al contrario de lo que parecía al principio, fue todo un exito, sobre todo, al comprobar que aquellos jóvenes al terminar la charla y el coloquio, eran un poco “más sabios” que antes de empezar.

Claro que, no siempre las cosas salen tan bien paradas. Recuerdo aquel Asilo de Ancianos al que hace tiempo fuí a dar una charla de astronomía y, antes de terminar, estaban todos, prácticamewnte dormidos. La curiosidad y el interés, les había abandonado y, ese fue un día triste para mí.

emilio silvera

Plasma, Nebulosas, Gases, elementos, moléculas.

Autor por Emilio Silvera    ~    Archivo Clasificado en Alquimia estelar    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Plasma, ese otro estado de la Materia (el cuarto dicen) que, según sabemos, resulta ser el más abundante del Universo. Todos desde pequeños aprendimos aquellos tres estados de la materia que cantábamos en el patio del centro educativo durante el recreo, donde todos a una gritábamos como papagayos: “Sólido, líquido y gaseoso”. Nada nos decían del Plasma, ese estado que, en realidad, cubre el 99% del estado de la materia en nuestro Universo (bueno, hablamos de la materia conocida, esa que llamamos bariónica y está formada por átomos de Quarks y Leptones). Sospecho que hay otros estados de la materia que nos son desconocidos.

            Filamentos de plasma en los remanentes de Supernovas

Según la energía de sus partículas, los plasmas (como digo) constituyen el cuarto estado de agregación de la materia, tras los sólidos, líquidos y gases. Para cambiar de uno al otro, es necesario que se le aporte energía o que disminuya o aumente la temperatura. Si aumentamos de manera considerable la temperatura de un gas, sus átomos o moléculas adquieren energía suficiente para ionizarse al chocar entre sí. de modo que a ~ 20.000 K muchos gases presentan una ionización elevada. Sin embargo, átomos y moléculas pueden ionizarse también por impacto electrónico, absorción de fotones, reacciones químicas o nucleares y otros procesos.

Aquí podemos contemplar una enorme región ionizada en la Nebulosa del Pelícano. Estrellas nuevas emiten potente radiación ultravioleta que ataca el espesor de la Nebulosa molecular y hace que, el gas se ionice fuertemente creando una luminosidad que “viste” de azul claro todo el contorno que circunda el radio de acción de las estrellas.

Un plasma es un gas muy ionizado, con igual número de cargas positivas y negativas. Las cargas otorgan al Plasma un comportamiento colectivo, por las fuerzas de largo alcance existente entre ellas. En un gas, cada partícula, independientemente de las demás, sigue una trayectoria rectilínea, hasta chocar con otra o con las grandes paredes que la confinan. En un plasma, las cargas se desvían atraídas o repelidas por otras cargas o campos electromagnéticos externos, ejecutando trayectorias curvilíneas entre choque y choque. Los gases son buenos aislantes eléctricos, y los plasmas, buenos conductores.

En la Tierra, los plasmas no suelen existir en la naturaleza, salvo en los relámpagos, que son trayectorias estrechas a lo largo de las cuales las moléculas de aire están ionizadas aproximadamente en un 20%, y en algunas zonas de las llamas. Los electrones libres de un metal también pueden ser considerados como un plasma. La mayor parte del Universo está formado por materia en estado de plasma. La ionización está causada por las elevadas temperaturas, como ocurre en el Sol y las demás estrellas, o por la radiación, como sucede en los gases interestelares o en las capas superiores de la atmósfera (ver trabajo más abajo), donde produce el fenómeno denominado aurora.

Recrean plasma existente en el universo tras el Big Bang

           En aquellos primeros momentos el plasma era lo que prevalecía como materia cósmica primera

“Las partículas del gas no tienen tiempo de recombinarse. La presencia de partículas ionizadas (electrones, protones) se da en el espacio, por ejemplo. –O sea que el universo es un plasma. –El 99,99 por ciento de la materia visible del universo está en estado de plasma: el Sol, las estrellas, la materia interestelar…”

Así que, aunque escasos en la Tierra, el Plasma constituye la materia conocida más abundante del Universo, más del 99%. Abarcan desde altísimos valores de presión y temperatura, como en los núcleos estelares, hasta otros asombrosamente bajos en ciertas regiones del espacio. Uno de sus mayores atractivos es que emiten luz visible, con espectros bien definidos, particulares en cada especie. Algunos objetos radiantes, como un filamento incandescente, con espectro continuo similar al cuerpo negro, o ciertas reacciones químicas productoras de especies excitadas, no son plasmas, sin embargo, lo son la mayoría de los cuerpos luminosos.

http://www.ciberdroide.com/wordpress/wp-content/uploads/filamento.jpg

                            Bombilla de incandescencia

Los Plasmas se clasifican según la energía media (o temperatura) de sus partículas pesadas (iones y especies neutras). Un primer tipo son los Plasmas calientes, prácticamente ionizados en su totalidad, y con sus electrones en equilibrio térmico con las partículas más pesadas. Su caso extremo son los Plasmas de Fusión, que alcanzan hasta 108 K, lo que permite a los núcleos chocar entre sí, superando las enormes fuerzas repulsivas inter-nucleares, y lograr su fusión. Puede producirse a presiones desde 1017 Pa, como en los núcleos estelares, hasta un Pa, como en los reactores experimentales de fusión.

Alcator C-Mod tokamak | Research | MIT Plasma Science and Fusion Center

Alcator C-Mod tokamak | Research | MIT Plasma Science and Fusion Center

Foto: Plasma Science and Fusion Center

Los reactores de fusión nuclear prácticos están ahora un poco más cerca de la realidad gracias a nuevos experimentos con el reactor experimental Alcator C-Mod del MIT. Este reactor es, de entre todos los de fusión nuclear ubicados en universidades, el de mayor rendimiento en el mundo.

Los nuevos experimentos han revelado un conjunto de parámetros de funcionamiento del reactor, lo que se denomina “modo” de operación, que podría proporcionar una solución a un viejo problema de funcionamiento: cómo mantener el calor firmemente confinado en el gas caliente cargado (llamado plasma) dentro del reactor, y a la vez permitir que las partículas contaminantes, las cuales pueden interferir en la reacción de fusión, escapen y puedan ser retiradas de la cámara.

PLASMAS | www-revista.iaa.esPLASMAS | www-revista.iaa.esGAMES WORKSHOP Warhammer 40000 Conductos de Plasma térmicos en Miniatura  990000: Amazon.es: Juguetes y juegos

Otros Plasmas son los llamados térmicos, con e ~lectrones y especies pesadas en equilibrio, pero a menor temperatura ~ 103 – 104 K, y grados de ionización intermedios, son por ejemplo los rayos de las tormentas o las descargas en arcos usadas en iluminación o para soldadura, que ocurren entre 105 y ~ 102 Pa. Otro tipo de Plasma muy diferente es el de los Plasmas fríos, que suelen darse a bajas presiones ( < 102 Pa), y presentan grados de ionización mucho menores ~ 10-4 – 10-6. En ellos, los electrones pueden alcanzar temperaturas ~ 105 K, mientras iones y neutros se hallan a temperatura ambiente. Algunos ejemplos son las lámparas de bajo consumo y los Plasmas generados en multitud de reactores industriales para producción de películas delgadas y tratamientos superficiales.

http://farm5.static.flickr.com/4024/4415870627_9df3269b9f.jpg

El Observatorio Espacial Herschel de la ESA ha puesto de manifiesto las moléculas orgánicas que son la llave para la vida en la Nebulosa de Orión, una de las regiones más espectaculares de formación estelar en nuestra Vía Láctea. Este detallado espectro, obtenido con el Instrumento Heterodino para el Infrarrojo Lejano (Heterodyne Instrument for the Far Infrared, HIFI) es una primera ilustración del enorme potencial de Herschel-HIFI para desvelar los mecanismos de formación de moléculas orgánicas en el espacio. Y, para que todo eso sea posible, los Plasmas tienen que andar muy cerca.

Se descubren moléculas orgánicas en un sistema solar en formación: no somos  especialesDetectan en el espacio interestelar una molécula orgánica con olor a  almendrasDescubren una molécula esencial para la vida en el centro de la Vía LácteaBUCM :: BlogQuimia :: Biblioteca ComplutenseAstrónomos detectan una molécula orgánica compleja en el espacio  interestelar | Ciencia y tecnología | Cadena SER

En los Plasmas calientes de precursores moleculares, cuanto mayor es la ionización del gas, más elevado es el grado de disociación molecular, hasta poder constar solo de electrones y especies atómicas neutras o cargadas; en cambio, los Plasmas fríos procedentes de especies moleculares contienen gran proporción de moléculas y una pequeña parte de iones y radicales, que son justamente quienes proporcionan al Plasma su característica más importante: su altísima reactividad química, pese a la baja temperatura.

Rho Ophiuchi

En la Naturaleza existen Plasmas fríos moleculares, por ejemplo, en ciertas regiones de las nubes interestelares y en las ionosfera de la Tierra y otros planetas o satélites. Pero también son producidos actualmente por el ser humano en gran variedad para investigación y multitud de aplicaciones.

En un número de la Revista Española de Física dedicado al vacío, el tema resulta muy apropiado pues no pudieron generarse Plasmas estables en descargas eléctricas hasta no disponer de la tecnología necesaria para mantener presiones suficientemente bajas; y en el Universo, aparecen Plasmas fríos hasta presiones de 10 ⁻ ¹⁰ Pascales, inalcanzable por el hombre.

foto

Lo que ocurre en las Nubes moleculares es tan fantástico que, llegan a conseguir los elementos necesarios para la vida prebiótica que, más tarde situados en el planeta y ambiente adecuados,  tras cumplirse las reglas y cubrir los parámetros adecuados, dan lugar al surgir de la vida.

El papel de las moléculas en Astronomía se ha convertido en un área importante desde el descubrimiento de las primeras especies poliatómicas en el medio interestelar. Durante más de 30 años, han sido descubiertas más de 150 especies moleculares en el medio interestelar y gracias al análisis espectral de la radiación. Muchas resultan muy exóticas para estándares terrestres (iones, radicales) pero buena parte de estas pueden reproducirse en Plasma de Laboratorio. Aparte del interés intrínseco y riqueza de procesos químicos que implican, estas especies influyen en la aparición de nuevas estrellas por su capacidad de absorber y radiar la energía resultante del colapso gravitatorio, y de facilitar la neutralización global de cargas, mucho más eficientemente que los átomos.

foto

Su formación en el espacio comienza con la eyección de materia al medio interestelar por estrellas en sus últimas fases de evolución y la transformación de éstas por radiación ultravioleta, rayos cósmicos y colisiones; acabando con su incorporación a nuevas estrellas y Sistemas planetarios, en un proceso cíclico de miles de millones de años.

En las explosiones supernovas se producen importantes transformaciones en la materia que, de simple se transforma en compleja y dan lugar a todas esas nuevas especies de moléculas que nutren los nuevos mundos en los que podemos encontrar elementos como el oro y el platino que han sido creados en sucesos de una magnitud aterradora donde las fuerzas desatadas del Universo han quedado sueltas para transformarlo todo.

Región H II - Wikipedia, la enciclopedia librePlasma, Nebulosas, Gases, elementos, moléculas. : Blog de Emilio Silvera V.Nebulosas de gases y de polvos — Astronoo

El H₂ y otras moléculas diatómicas homo-nucleares carecen de espectro rotacional. Detectando las débiles emisiones cuadru-polares del H₂ en infrarrojo, se ha estimado una proporción de H₂ frente a H abrumadoramente alto ( ~ 104) en Nubes Interestelares con densidades típicas de ~ 104 partículas /cm3; pero dada la insuficiente asociación radiactiva del H para formar H2, ya mencionada, el H2 debe producirse en las superficies de granos de polvo interestelar de Carbono y Silicio, con diámetros ~ 1 nm — μm, relativamente abundantes en estas nubes.

Experimentos muy recientes de desorción programada sobre silicatos ultra-fríos, demuestran que tal recombinación ocurren realmente vía el mecanismo de Langmuir-Hinshelwood, si bien los modelos que expliquen las concentraciones de H2 aún deben ser mejorados.

Por otro lado, ciertas regiones de las nubes en etapas libres de condensación estelar presentan grados de ionización ~ 10-8 – 10-7 a temperaturas de ~ 10 K. La ionización inicial corresponde principalmente al H2 para formar H2 +, que reacciona eficientemente con H2, dando H3 + + H (k = 2• 10-9 cm3 • s-1.

El H3, de estructura triangular, no reacciona con H2 y resulta por ello muy “estable” y abundante en esas regiones de Nebulosas intelestelares, donde ha sido detectado mediante sus absorciones infrarrojas caracterizadas por primera vez en 1980 en descargas de H2 en Laboratorio.

Orión en gas, polvo y estrellas

La constelación de Orión contiene mucho más de lo que se puede ver, ahí están presentes los elementos que como el H2 que venimos mencionando, tras procesos complejos y naturales llegan a conseguir otras formaciones y dan lugar a la parición de moléculas significativas como el H2O o HCN y una gran variedad de Hidrocarburos, que podrían contribuir a explicar en un futuro próximo, hasta el origen de la vida.

Espectro de infrarrojo obtenido mediante HyperChem empleando método... |  Download Scientific Diagram

La detección por espectroscopia infrarroja de COH+ y N2H+, formados en reacciones con H3 + a partir de CO y N2, permite estimar la proporción de N2/CO existente en esas regiones, ya que el N2 no emite infrarrojos. Descargas de H2 a baja presión con trazas de las otras especies en Laboratorio conducen casi instantáneamente a la aparición de tales iones y moléculas, y su caracterización puede contribuir a la comprensión de este tipo de procesos.

Así amigos míos, hemos llegado a conocer (al menos en parte), algunos de los procesos asombrosos que se producen continuamente en el Espacio Interestelar, en esa Nebulosas que, captadas por el Hubble u otros telescopios, miramos asombrados maravillándonos de sus colores que, en realidad, llevan mensajes que nos están diciendo el por qué se producen y que elementos son los causantes de que brillen deslumbrantes cuando la radiación estelar choca de lleno en esas nubes en la que nacen las estrellas y los nuevos mundos…y, si me apurais un poco, también la vida.

emilio silvera

¡El Futuro! ¿Cómo será?

Autor por Emilio Silvera    ~    Archivo Clasificado en Mundo Futuro    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Qué nos espera en los próximos 10 años?

Lo cierto es que, cada vez que ha salido alguien, que como el precursor de la ciencia ficción, el entrañable Julio Verne, nos hablaba de viajes imposibles y de mundos insólitos, nadie pudo creer, en aquellos momentos, que todas aquellas “fantasías” serían una realidad en el futuro más o menos lejano. Todo lo que él imagino hace tiempo que se hizo realidad y, en algunos casos, aquellas realidades fantásticas, han sido sobrepasadas como podemos contemplar, en nuestras vidas cotidianas. Ingenios espaciales surcan los espacios siderales y, otros, lo hacen por el misterioso fondo oceánico como fue predicho hace ahora más de un siglo.

Ahora, los profetas modernos resultan ser Físicos que nos hablan de sucesos cuánticos que no llegamos a comprender y que, son ¡tan extraños! que nos resultan poco familiares y como venidos de “otro mundo”, aunque en realidad, son fenómenos que ocurren en las profundidades del mundo de la materia.

Cada vez van siendo menor los visionarios y más los estudiosos científicos, tanto teóricos como experimentadores que, en todos los campos, nos llevan, sin que nos demós cuenta, hacia el futuro que, ¡puede ser de tántas maneras! Precisamente por eso, será bueno que nuestras mentes, no se resignen a que estémos confinados aquí, en esta nave espacial que llamamos Tierra y que surca el espacio interestelar a muy buena velocidad aunque no todos sean conscientes de ello.

Ascensor espacial. Erkki Halkka

              Ascensor Espacial Erkki Halkka

Los avances que veremos en este mismo siglo, en todos los ámbitos del saber humano, serán sorprendentes y cambiaran nuestras vidas, nuestra Sociedad para el próximo siglo, será ya muy diferentes a ésta que conocemos. Nuestras propias vidas darán un salto cuantitativo y cualitativo en su período de duración y en su calidad de bienestar, podremos vivir un siglo y medio y tendremos menos enfermedades que ahora. las posibles innovaciones tecnológicas en campos tan dispares como la salud, la economía, la demografía, la energía, la robótica, el espacio, las telecomunicaciones y los transportes, darán un vuelco a nuestra forma de vida y entraremos en otra fase del futuro que viene y del pasado que dejamos atrás.

File:Types of Carbon Nanotubes.png

Estos serán los materiales con los que se construi´ra ese ascensor “imposible” que nos llevará 500 Km lejos de la Tierra, hacia las Estaciones Espaciales con las que se podrá acoplar, sin ninguno de los riesgos que conllevan los transbordadores actuales impulsados por Hidrógeno líquido de fácil combustión, es decir, los pasajeros van montados sobre una bomba volante y, al mejor fallo…

Los ascensores espaciales eran hasta hace muy poco materia de ficción pura, pues ningún material conocido podía soportar la enorme tensión producida por su propio peso. Actualmente ciertos materiales comienzan a parecer viables como materia prima: los expertos en nuevos materiales consideran que teóricamente los nanotubos de carbono pueden soportar la tensión presente en un ascensor espacial.3 Debido a este avance en la resistencia de los nuevos materiales, varias agencias están estudiando la viabilidad de un futuro ascensor espacial:

En Estados Unidos, un antiguo ingeniero de la NASA llamado Bradley C. Edwards ha elaborado un proyecto preliminar que también están estudiando científicos de la NASA.3 Edwards afirma que ya existe la tecnología necesaria, que se necesitarían 20 años para construirlo y que su costo sería 10 veces menor que el de la Estación Espacial Internacional. El ascensor espacial de Edwards no se parece a los presentes en las obras de ficción, al ser mucho más modesto y a la vez innovador en lo que concierne a su eventual método de construcción.

Este sería el final del recorrido y estaría preparado para conectar con bases espaciales. Ahora nos parece un suelo paero hace tiempo ya que se está trabajando, de manera muy seria, en su construcción en un futuro próximo y, desde luego, conseguirlo será un buen logro.

Existen algunos tratamientos con células madre, pero la mayoría todavía se encuentran en una etapa experimental. Investigaciones médicas, anticipan que un día con el uso de la tecnología, derivada de investigaciones para las células madre adultas y embrionarias, se podrá tratar el cáncer, diabetes, heridas en la espina dorsal y daño en los músculos, como también se podrán tratar otras enfermedades. Se les presupone un destino lleno de aplicaciones, que van desde patologías neurodegenerativas, como la enfermedad de Alzheimer o de Parkinson, hasta la fabricación de tejidos y órganos destinados al trasplante, pasando por la diabetes y los trastornos cardíacos.

En un futuro se espera utilizar células madre de cordón umbilical en terapia génica: podemos así tratar enfermedades causadas por la deficiencia o defecto de un determinado gen, introduciendo un determinado gen en la proliferación de las células madre In Vitro y trasplantar tales células en el paciente receptor. El uso de otros tipos de células como portadores de genes buenos en pacientes con enfermedades causadas por deficiencias o déficits genéticos, está siendo testeado a nivel clínico. El primer trasplante de órgano bioartificial en humanos, por su parte, confían en que pueda ver la luz dentro de “unos cinco o diez años”.

La bioinformática o la biotecnología consiste en la aplicación de tecnología informática en el análisis de datos biológicos . Los principales esfuerzos de investigación en estos campos incluyen el alineamiento de secuencias , la predicción de genes , predicción de la expresión génica y modelado de la evolución . Algunos ejemplos son el diseño de organismos para producir antibióticos , el desarrollo de vacunas más seguras y nuevos fármacos, los diagnósticos moleculares, las terapias regenerativas y el desarrollo de la ingeniería genética para curar enfermedades a través de la manipulación génica . Veamos algunas de ellas…

                                     Formas nuevas de comunicarse y de adquiri datos

                                                 La fusión, energía limpia y barata y, sobre todo, inagotable

Y mientras el mundo está pendiente de la crisis económica internacional, científicos e ingenieros trabajan intensamente en lo que podría ser la solución a los problemas energéticos del futuro. La palabra clave es “fusión”. Al contrario que la tradicional energía nuclear, la energía de fusión es limpia y no contamina y, sus resifuos, es el Helio fácilmente aprovechable. El Proyecto ITER sigue adelante.

Últimos avances en medicina

La ciencia de la medicina está avanzando a pasos agigantados. Los últimos avances en medicina que se dieron en estos diez o quince años pasados han sido sorprendentes, y podemos esperar un salto muy grande en la medicina dentro de los próximos años.

Algunos descubrimientos todavía no están al alcance de los pacientes, a pesar de que ya se han revelado como grandes avances científicos son necesarios muchos estudios y pruebas antes de que se puedan aplicar. No perdamos de vista en este ámbito del saber humano, ni la genética ni las nuevas nanotecnologías, lo que llaman el ojo biónico, la sangre artificial…

Cambiaran nuestras ciudades y nuestras Sociedades serán diferentes, los nuevos conocimientos llegarán también, a la vida cotidiana del habitat humano y a su forma de trabajo, de viajar, e, incluso los alimentos del futuro no muy lejano, nos harán recordar con cierta nostalgia, estos que ahora criticamos.

                               Los modernos celulares irán insertados en el brazo

     Cualquier vivienda será controlada por mecanimos informáticos

Este programa va más allá de los avances actuales para revelar la tecnología e inventos que nos permitirán ver a través de las paredes, viajar en el tiempo y en el espacio y colonizar planetas distantes. La tecnología inteligente que llevará ayudantes robóticos a los hogares, ciudades enteras a la Internet, y sistemas de entretenimiento que harán los sueños realidad en forma virtual. Sí, virtual hoy pero… ¿Y mañana?

¡Tantas galaxias y estrellas, tantos mundos, tantas maravillas! Si no podemos en un futuro más o menos lejano, visitarlas, ¿Para qué tanta diversidad y tanta belleza? Si están ahí, por algo será y, nosotros, aunque parezca que somos una ínfima cuestión en tan vasto Universo, seguramente serémos, unos privilegiados llamados a realizar grandes cosas. A pesar de nuestras muchas faltas y carencias…¡Lo estamos logrando!

Ya hemos dado los primeros pasos y, nuestros ingenios espaciales tecnológicos robotizados, han realizado para nosotros las tareas que, de momento nos están vedadas pero, demslé tiempo al tiempo y, sin duda alguna, en ese futuro soñado, estaremos en las estrellas y en esos otros mundos que presentimos hermanos de la Tierra y que podrán acoger a la Humanidad que, dentro de otros cincuenta años, llegará a la cifra de 8.000 millones de seres y, nuestro planeta, no puede con todo.

El futuro convive ya con nosotros y, al tenerlo tan cercano, no le prestamos atención a esos muchos cambios que con nosotros conviven. Lo cierto es que debe ser así, de otra manera, los cambios tan bruscos que se están produciendo, nos traumatizaría y, sin embargo, lo tomamos -unas veces por comprenderlos y otras por ignorarlos- con toda la normalidad. Esa es la manera en la que se desenvuelve el mundo de nuestra especie.

http://www.fondos10.net/wp-content/uploads/2009/01/3d-espacial-1024-x-768-o.jpg

                                                                                          Sueños convertidos en realidad

Lilypad, ciudad flotante

                               Ya construímos ciudades flotantespara esquivar la subida del nivel del Mar

Como no podemos predecir que le puede pasar a la Tierra en el futuro, mejor será ir “preparando las maletas” que, como decía mi padre, un viejo marinero curtido en mil tempestades: ¡”Más vale un por si acaso, que un yo creí”!

emilio silvera

En 2016 ¿Qué nos dirá la Física y qué el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El LHC se adentra en la materia del universo primigenio

En los comienzos del universo, justo después del Big Bang, existió un ‘plasma de quarks y gluones, dos partículas confinadas hoy en la materia pero que entonces vagaban libremente… Ahora hemos construído aceleradores de partículas que tratan de recrear aquellos momentos para poder “ver” lo que allí pasó y, buscamos el origen de la masa y partículas exóticas que nos digan algo sobre esa supuesta masa “perdida”, o, que no alcanzamos a ver. Así, en la nueva etapa del LHC que comenzará en Abril sus actividades, buscarán indicios de las partículas WIMPs que se cree forman la “materia oscura”.

Esta fotografía muestra el anillo de polvo de la estrella Fomalhaut, situada a 25 años luz de distancia de la Tierra. 

La galaxia NGC 2683 es una galaxia espiral que emula la forma clásica de las naves especiales en la ciencia ficción.

Esta es la imagen más detallada que existe de Messier 9, una conjunción de estrellas en el centro de la Vía Láctea.

El Hubble produjo esta bella imagen de la galaxia espiral NGC 1483, localizada en el sur de la constelación Mahi-mahi.


Como las nubes que asechan en un día de lluvia, el hubble nos regala esta imagen de la galaxia Centauro.

Este gigantesco grupo de jóvenes estrellas, llamado R136 está a sólo unos cuantos millones de años luz y reside en la galaxia Doradus Nebula, dentro de la gran Nube de Magallanes. 

El Hubble captó esta imagen del sistema Eta Carinae la estrella masiva envuelta en gas y polvo que a pesar de su inmensa masa no podemos ver con claridad debido a que ella misma procura, para desalojar tensión, expulsar material al espacio.

Un equipo de científicos ha recolectado suficientes fotos de alta resolución del Hubble durante 14 años, que es suficiente para crear un timelapse.

En la celebración del 21 Aniversario del Hubble, en abril de 2011, apuntaron hacia el grupo de galaxias llamado Arp 273 y rescataron esta bella imagen. 

El telescopio espacial Hubble ha logrado captar la extrema violencia del proceso de formación de una estrella es su etapa final, en el que el objeto astronómico se rebela contra su nebulosa.

             Esta es una imagen de un anillo de agujeros negros.

                                            En el corazón de la Nebulosa Laguna

La nebulosa IRAS 05437+2502, una pequeñuela cercana a la constelación de Tauro.

                           ¿Qué pintor podría plasmar esta belleza creadora de estrrellas?

Los ingenios creados por nuestra civilización ha podido arrancar secretos de la Naturaleza que, ni soñar podrían nuestros abuelos

La Física actual no puede describir lo que sucedió en el Big Bang. La Teoría Cuántica y lña Teoría de la Relatividad fracasan en éste estado inicial del Universo infinitamente denso y caliente. Tan solo una teoría de la Gravedad  Cuántica que integre ambos pilares fundamentales de la Física, podría proporcionar una idea acerca de cómo comenzó el Universo. Científicos del Instituto Max Planck para la Física Gravitatoria (Instituto Albert Einstein) en Golm/Potsdam y el Instituto Perimeter de Canadá han hecho un descubrimiento importante en esta dirección. Según su teoría, el espacio está compuesto de diminutas “unidades elementales”. Tomando esto cómo punto de partida, los científicos han llegado a una de las ecuaciones fundamentales de la Cosmología, la Ecuación de Friedmann, que describe el Universo. Esto demuestra que se pueden unificar la Mecánica Cuántica y la Teoría de la Relatividad.

El Tiempo sigue su inexorable e imparable caminar, siempre hacia adelante, hacia ese lugar que llamamos futuro en el que esperamos estará todo lo que buscamos pero, siempre tendremos preguntas que hacer y que nadie sabrá contestar pero, nuestro destino es seguir adelante y tratar de desvelar los secretos que la Naturaleza esconde…, ella, tiene todas las respuestas.

emilio silvera