lunes, 20 de septiembre del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Que se habrá conseguido en el 3.050?

Autor por Emilio Silvera    ~    Archivo Clasificado en ¡Viajar en el Tiempo! ¿Podremos?    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

¿Viajar en el tiempo?

 

Me hace “gracia” ver como mucha gente, incluso científicos, se atreven a dar su opinión sobre cuestiones que no conocen. Y, desde luego, la pregunta del título que arriba pongo, es retórica, ya que, de ninguna manera podríamos contestarla. Nadie sabe lo que habrá pasado dentro de 1.000 años, y, por eso, al no poder explicarlo, me quedo con otros comentarios más sencillos que nos hablan de viajar en el tiempo y otras cuestiones que, ahora, más o menos, sí podemos vislumbrar (sólo en el plano de la especulación).

La mayoría de los científicos que no han estudiado seriamente las ecuaciones de Einstein, desprecian el viaje en el tiempo como una “tonteria”, algo que sólo es aplicable a relatos sensacionalistas e historias fantásticas. Sin embargo, la situación que realmente nos encontramos es bastante compleja. Hasta tal punto es así que, resultaría arriesgado negar, de manera rotunda, la posibilidad de hacer o conseguir plasmar en realidad alguna idea derivada de profundos pensamientos como los que Einstein nos dejó y que subyacen en sus ecuaciones.

Para resolver la cuestión debemos abandonar la teoría más sencilla de la relatividad especial, que prohíbe el viaje en el tiempo, y adoptar toda la potencia de la teoría de la relatividad general, que puede permitirlo. La relatividad general tiene una validez mucho más amplia que la relatividad especial. Mientras que la relatividad especial sólo describe objetos que se mueven a velocidad constante muy lejos de cualquier estrella, la teoría de la relatividad general es mucho más potente, capaz de describir cohetes que se aceleran cerca de estrellas supermasivas y agujeros negros. La teoría general sustituye así algunas de las conclusiones más simples de la teoría especial.Para cualquier físico que haya analizado seriamente las matemáticas del viaje en el tiempo dentro de la teoría de la relatividad general de Einstein, la conclusión final, de forma bastante sorprendente, no está ni mucho menos clara.

 

                           Aquellos viajes en el tiempo que nos llevaban hacia el futuro…Según las ecuaciones de Einstein, podrían ser posibles pero…

Kip S. Thorne, del que hace unos días dejamos aquí una entrevista, un físico especialista en relatividad general y agujeros negros mundialmente conocido, cree que los viajes en el tiempo serán posibles algún día a través de los agujeros de gusano y utilizando para ello materia exótica, que mantendría abierta las bocas del agujero que nos llevaría a través del hiperespacio a otros lugares lejanos del universo.

Los defensores del viaje en el tiempo señalan que las ecuaciones de Einstein de la relatividad general permiten ciertas formas de viaje en el tiempo. Admiten, sin embargo, que las energías necesarias para doblar el tiempo en un círculo son tan grandes que las ecuaciones de Einstein ya no serían válidas. En la región físicamente interesante en la que el viaje en el tiempo se convierte en una posibilidad seria, la teoría cuántica dominaría sobre la relatividad general.

G_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

Recordemos que las ecuaciones de Einstein establecen que la curvatura del espacio y el tiempo están determinadas por el contenido de materia-energía del universo. Es posible, de hecho, encontrar configuraciones de materia-energía suficientemente poderosas para forzar la curvatura del tiempo y permitir el viaje en el tiempo. Sin embargo, las concentraciones de materia-energía para doblar el tiempo hacia atrás son tan enormes que la relatividad general deja de ser válida y las correcciones cuánticas empiezan a dominar sobre la relatividad. Así pues, el viaje en el tiempo requiere un veredicto final que no puede ser pronunciado a través de las ecuaciones de Einstein, que dejan de ser válidas en los campos gravitatorios extraordinariamente grandes, donde esperamos que la teoría cuántica de la gravedad se haga dominante.

 

No parece que los viajes en el tiempo hacia el pasado tengan mucha viabilidad, el tiempo pasado ya no está y, además, allí no existían las máquinas del tiempo, lo cual, aunque no lo parezca, es un parámetro esencial para poder realizar ese viaje. Podríamos ir al pasado sólo a partir de ese momento en que tengamos la tecnología necesaria para fabricar ese “maravilloso artefacto” que nos pueda llevar hacia lo que fue.

Aquí es donde la teoría del hiperespacio puede zanjar la cuestión.Puesto que la teoría cuántica y la teoría de la gravedad de Einstein están unidas en el espacio decadimensional, esperamos que la cuestión del viaje en el tiempo será establecida definitivamente por la teoría del hiperespacio. Como en el caso de los agujeros de gusano y las ventanas dimensionales, el capítulo final se escribirá cuando incorporemos toda la potencia de la teoría del hiperespacio.

De todas las maneras y desde todos los ángulos que lo podamos mirar, si algún día las máquinas del tiempo son posibles, el peligro estaría servido.¿Quién sería el encargado de controlar su uso? ¿Quién se encargaría de controlar al encargado? y así podríamos seguir indefinidamente, tal es el volumen de gravedad del problema que generaría la existencia de máquinas del tiempo para viajar hacia atrás o hacia delante.

El caos y los estragos rasgarían el tejido de nuestro universo. Millones de personas volverían hacia atrás en el tiempo para entrometerse en su propio pasado y en el pasado de los demás para tratar de reescribir la Historia. ¿Quién no hizo en el pasado alguna cosa de la que se arrepiente o la dejó de hacer, cambiando así el rumbo de su vida? Todos, si pudiéramos, querríamos arreglar eso.

La carrera que no estudiamos, aquella oportunidad desaprovechada, la mujer de nuestra vida que por cobardía dejamos ir, ese tren que no cogimos… Cualquiera de estas situaciones, de haber sido al contrario habría cambiado el curso de nuestras vidas que están regidas, siempre, por la causalidad. Todo lo que ocurre es la consecuencia de lo que ocurrió.

 

                              ¿Cuánto no pagarían algunos por tener esa segunda oportunidad, ese momento que por una u otra razón perdieron?

También sería difícil evitar algunas tentaciones de gente con moralidad y conciencia adaptable y elástica, que querrían viajar al pasado para eliminar al padre de su enemigo y hacer posible que éste no naciera. Las paradojas temporales estarían al orden del día.

El viaje en el tiempo significaría que nunca podría existir una historia estable de los sucesos históricos que podrían ser cambiados a placer del consumidor. Pensemos que en los tiempos de Alejandro Magno, viajamos en el tiempo y llevamos a sus enemigos un cargamento de armas modernas; que pudiéramos haber facilitado a Galileo telescopios de última generación y modernos ordenadores. También se podría evitar la crucifixión de Cristo, facilitar a Faraday datos técnicos inexistentes en su tiempo o, por poner otro ejemplo, haber encerrado por loco a Hitler evitando aquel horror.

Obviamente, la mayoría de los científicos no se sienten muy felices con esta desagradable posibilidad que lo trastocaría todo en un continuo caos, eliminaría la Historia y haría inútil la memoria, la experiencia, el conocimiento adquirido a través del esfuerzo personal y un sin fin de situaciones que ahora tenemos y nos hacen ser como somos.

Por mi parte (es una humilde opinión), creo más fácil que consigamos burlar el límite impuesto por la velocidad de la luz (digo burlar, esquivar, no superar) o conseguir, como lo hacen en la serie Star Trek, trasladarnos mediante desintegración molecular que se integra en el punto de llegada de manera instantánea al momento exacto de la partida, que viajar hacia atrás en el tiempo.

 

El tiempo futuro es algo inexistente, aún no ha llegado, es algo que sabemos que vendrá pero que aún no está en nuestro universo. ¿Cómo se puede viajar a un lugar y a un tiempo que no existen?

Por otra parte, si lo pensamos detenidamente, la cuestión del tiempo no es nada fácil de entender; en realidad, es una ilusión pensar en él en tres fases que llamamos pasado, presente y futuro. El tiempo es algo que inexorablemente no deja de fluir a medida que se expansiona el universo, siempre está avanzando, no tiene intermitencias para que podamos decir: ¡estamos en el presente! Sería mentira. En realidad, vivimos siempre en un instante unificador del pasado-presente-futuro, es el ritmo quie impone la flecha del tiempo que, como no deja de fluir, tampoco hace posible que “el tiempo” esté estacionado en uno de esos apartados a los que hemos puesto nombre para saber si ya pasó, si está en el momento actual o si tendrá que venir. Nuestro sino, es el de vivir en un permanente presente.

Cuando comencé a escribir esta misma página, ahora es pasado, pasó por un presente efímero y me trajo a este instante futuro que ya deja de ser presente para ser pasado. Cada millonésima de segundo que pasa, transforma, a escala infinitesimal, nuestra realidad de tiempo.

No, no es nada fácil determinar dónde estamos, lo que es presente ya es pasado para convertirse en futuro, todo en fracciones de segundo. Pasado + Presente + Futuro: en realidad es una misma cosa ¡TIEMPO! que para entendernos mejor hemos fraccionado en distintos niveles que nos sitúan en lo que fue, en lo que es y en lo que será.

¿Quién no ha oído decir alguna vez? “Hay que ver lo mayor que está este niño, parece que fue ayer cuando nació”.

Dicen que el Tiempo y el Espacio nacieron juntos de aquella Gran Explosión que llamamos Big Bang

Pues ahí tenemos un ejemplo de la realidad de lo que es el tiempo, algo que no se para, algo que surgió hace ahora 13.700 millones de años y que incansable, imparable, continúa fluyendo ajeno a todo cuanto le rodea y que, al menos en el universo que conocemos, sólo dejará de fluir, si la densidad crítica (la cantidad de materia que contiene el universo) es lo bastante grande como para producir el Big Crunch, en cuyo caso, toda la materia existente en el universo, se juntaría de nuevo en una singularidad; el tiempo y el espacio dejarían de existir y, probablemente, todo comenzaría de nuevo con otro Big Bang y otro Tiempo.

¿Alguien puede asegurar que nuestro universo no es el primero de una larga serie? ¡Claro que no!

No sería descabellado pensar que nuestro universo es uno de los muchos universos que antes que él existió y que, al cumplir su ciclo, desaparezca para hacer posible la llegada de un nuevo universo, con un nuevo tiempo, un nuevo espacio y unas nuevas especies en multitud de nuevas estrellas y nuevos mundos. Si es así como realmente sucede, ¿todos los universos que han existido antes o que existirán después tendrán las mismas propiedades que este nuestro?

Las criaturas que podríamos encontrar en otros mundos, serían inimaginables. Siempre se ha dicho que la realidad sobrepasa a la imaginación, y, algunas veces… resulta ser verdad.

No creo que en los ciclos de universos se produzcan siempre las mismas consecuencias y estén presentes las mismas fuerzas. Simplemente con que la masa o la carga del electrón fuesen diferentes, el universo también lo sería. Los equilibrios de nuestro universo son muy sensibles, la materia que podemos observar: estrellas y galaxias, planetas y nosotros mismos, son posibles gracias al equilibrio existente a niveles nucleares. Los quarks confinados por gluones que fabrican la fuerza nuclear fuerte, se junta para crear protones y neutrones que conforman los núcleos de la materia y, al ser rodeados por los electrones, dan lugar a los átomos.

En cromodinámica cuántica, la propiedad de libertad asintótica hace que la interacción entre quarks sea más débil cuanto más cerca están unos de otros (confinación de quarks) y la fuerza crece cuando los quarks tratan de separarse, es la única fuerza que crece con la distancia. Los quarks y los gluones están confinados en una región cuyo valor se define por:

R » ћc /L » 10-13 cm.

En realidad, la única manera de que pudiéramos observar quarks libres, sería en un ambiente con la temperatura del universo primitivo, es la temperatura de deconfinamiento. De nuevo, como me ocurre con frecuencia me paso de una a otra idea y hago un recorrido, al parecer incoherente, que nos lleva desde las ecuaciones de Einstein y los viajes por el Tiempo, hasta los Universos cíclicos en los que nacen mundos muertos, sin vida,por causa de unas fuerzxas fundamentales diferentes a las que aquí reinan.Claro que, todo eso, no dejan de ser especulaciones de lo que podría ser.

Pero, ¿y nosotros?, ¿qué hacemos aquí?

Parece la pregunta del millón. Sólo se que estamos, que nos interesamos por el mundo que nos rodea, que queremos ir más allá de los conocimientos que ahora tenemos, que profundizamos en los secretos de la Naturaleza para aprender de ella lo que nos conviene hacer, y, a todo ello, buscamos el origen del Mundo, de Nosotros y del Universo mismo.

Pero, rematemos el tema de los viajes en el Tiempo.

 

Una versión de la máquina del tiempo de Thorne consiste en dos cabinas, cada una de las cuales contiene dos placas de metal paralelas. Los intensos cambios eléctricos creados entre cada par de placas de metal paralelas (mayores que cualquier cosa posible con la tecnología actual) rizan el tejido del espacio-tiempo, creando un agujero en el espacio que une las dos cabinas. Una cabina se coloca entonces en una nave espacial y es acelerada a velocidades próximas a la de la luz, mientras que la otra cabina permanece en la Tierra. Puesto que un agujero de gusano puede conectar dos regiones des espacio con tiempos diferentes, un reloj en la cabina de la nave marcha más despacio que un reloj en la cabina de la Tierra. Debido a que el tiempo transcurriría a diferentes velocidades en los dos extremos del agujero de gusano, cualquiera que entrase en un extremo del agujero de gusano sería instantáneamente lanzado al pasado o al futuro.

Parece que la función de las placas metálicas paralelas consiste en generar la materia o energía exótica necesaria para que las bocas de entrada y salida del agujero de gusano permanezcan abiertas y, como la materia exótica genera energía negativa, los viajeros del tiempo no experimentarían fuerzas gravitatorias superiores a 1g, viajando así al otro extremo de la galaxia e incluso del universo o de otro universo paralelo de los que promulga Stephen Hawking. En apariencia, el razonamiento matemático de Thorne es impecable conforme a las ecuaciones de Einstein (yo no me alistaría a ninguno de esos primeros viajes).

Casimir teorizó que si dos placas perfectamente paralelas podían ser aproximadas lo suficiente la una a la otra, el espacio pequeño entre dichas placas estaría libre de todas las partículas con una longitud de onda larga. Esas partículas, sin embargo, podían seguir creándose espontáneamente en el exterior de las placas, creándose una presión detectable contra el exterior de las placas:

 

          Queremos entrelazar el Espacio-Tiempo

demostrándose con ello la existencia de partículas creadas espontáneamente del “espacio libre”:

 

El efecto Casimir consiste en la aparición de una fuerza atractiva entre dos placas metálicas en el vacío muy próximas entre sí separadas por menos de 10 nanómetros (10 milmillonésimas partes de un metro). Este efecto ocurre porque, al poner las placas en una región de vacío —que como hemos visto, no está vacío— la energía solo puede resonar y crear nuevas partículas a ciertas frecuencias, mientras que en el exterior de las placas la energía resuena en todas las frecuencias. En el interior no, y por tanto el exterior empuja a las placas. Es una diferencia de presiones la que empuja las placas entre sí. Se demostró experimentalmente con buenos resultados en 1997.

Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.

         Agujero de gusano con materia exótica

Este concepto más bien simple se conoce con un nombre que suena complicado: la condición de energía media débil (average weak energy condition, o AWEC). Como Thorne tiene cuidado en señalar, laAWEC debe ser violada; la energía debe hacerse temporalmente negativa para que el viaje en el tiempo tenga éxito. Sin embargo, la energía negativa ha sido históricamente anatema para los relativistas, que advierten que la energía negativa haría posible la antigravedad y un montón de otros fenómenos que nunca se han visto experimentalmente.

Pero Thorne señala al momento que existe una forma de obtener energía negativa, y esto es a través de la teoría cuántica.

 

          Dicen que las emisiones fractales contrarrestan las energías Casimir

En 1.948, el físico holandés Hendrik Casimir demostró que la teoría cuántica puede crear energía negativa: tomemos simplemente dos placas (imagen arriba) de metal paralelas y descargadas ordinariamente, el sentido común nos dice que estas dos placas, puesto que son eléctricamente neutras, no ejercen ninguna fuerza entre sí. Pero Casimir demostró que, debido al principio de incertidumbre de Werner Heisenberg, en el vacío que separa estas dos placas existe realmente una agitada actividad, con billones de partículas y antipartículas apareciendo y desapareciendo constantemente. Aparecen a partir de la “nada” y vuelven a desaparecer en el “vacío”. Puesto que son tan fugaces, son, en su mayoría, inobservables, y no violan ninguna de las leyes de la física. Estas “partículas virtuales” crean una fuerza neutra atractiva entre estas dos placas que Casimir predijo que era medible.

Cuando Casimir publicó el artículo, se encontró con un fuerte escepticismo. Después de todo, ¿cómo pueden atraerse dos objetos eléctricamente neutros, violando así las leyes normales de la electricidad clásica? Esto era inaudito. Sin embargo, en 1.985 el físico M. J. Sparnaay observó este efecto en el laboratorio, exactamente como había predicho Casimir. Desde entonces (después de un sin fin de comprobaciones), ha sido bautizado como el efecto Casimir.

Una manera de aprovechar el efecto Casimir mediante grandes placas metálicas paralelas descargadas, sería el descrito para la puerta de entrada y salida del agujero de gusano de Thorne para poder viajar en el tiempo.

         

 Los agujeros de gusano de Thorne mantienen las puertas abiertas gracias a esa materia exótica

No se finalmente lo que será pero, creo que, llegará el mopmento de que Andrómeda se junte con la Vía Láctea y aún, no habrá viajes en el tiempo tal como los tenemos pensados y, finalmente serán otros los caminos que nos llevarán…No al pasado ni al futuro, sino a otras galaxias lejanas que, bien mirado, tampoco es un viaje como para aburrirse.

Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como para contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.

Nueno, así lo he leido y así os lo he contado añadiendo alguna que otra coletilla que a mi humilde entender, podían completar las explicaciones de tan “descabellados pensamientos”. ¡Viajes en el Tiempo! Pero, no dijo alguien que existe una Censura Cosmológica que los prohíbe.

¡Ya veremos que pasa!

emilio silvera

“La Ciencia, sólo cuenta la Verdad”

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 El Nobel de Química Harold Kroto confiesa en esta entrevista que sufre “la misma enfermedad que Stephen Hawking” y que “pronto” ya no podrá habla. Veámos que nos dice este gran científico en el presente reportaje.
Harold Kroto, después de la entrevistaHarold Kroto, después de la entrevista / Carmen Valiño

Hace algo más de un año, en medio de una rueda de prensa durante el festival científico Starmus, un brioso Harold Kroto se lanzó a una discusión acalorada con dos astronautas del programa Apolo. Los dos héroes de la carrera espacial negaban que los humanos estuviesen acelerando el cambio climático y eso fue más de lo que este acérrimo defensor de la ciencia como forma de comprender el mundo podía soportar. Aunque nada en su actitud lo delataba, ese día Kroto ya sabía que padecía una enfermedad de la neurona motora, un grupo de dolencias neurodegenerativas.

“Tengo la misma enfermedad que sufre Stephen Hawking”, explicó Kroto a El País hace dos semanas, durante la presentación en Londres de la Medalla Stephen Hawking, a la que acudió en una silla de ruedas para sorpresa de muchos asistentes. “Ahora no puedo andar y mi voz se está yendo”, detalló.

El científico británico ganó el Nobel de Química en 1996 por descubrir los fullerenos junto a los estadounidenses Robert Curl y Richard Smalley. Estas moléculas esféricas de carbono muy parecidas en estructura a un balón de fútbol eran interesantes por su potencial aplicación en nuevas terapias, aunque su hallazgo surgió de la más pura curiosidad por la formación de estos compuestos en las estrellas.

Kroto (Wisbech, Reino Unido, 1939) ha sido siempre una mente inquieta. De no haber descubierto los fullerenos podría haberse dedicado al diseño gráfico, otra de sus pasiones. También ha hecho importantes apuestas por la divulgación científica, en especial entre niños y jóvenes, y ha mantenido una activa vida política que le ha llevado a criticar públicamente a papas y presidentes. Ahora está jubilado. “Lo que hago es trabajar en mi página web, publicando en ella todo lo que he hecho, pero pronto no podré hablar”, reconoce. En esta entrevista, breve por el visible cansancio que le produce hablar, el científico discurre sobre la importancia del hallazgo que hizo en 1985 y sobre la necesidad de redirigir la investigación hacia los verdaderos problemas de la humanidad.

Hay que dirigir la investigación hacia criterios de interés humanitario

Pregunta. ¿Qué ha sido lo más excitante en su campo de trabajo?

Respuesta. Lo más excitante es que la predicción que hice hace 27 años se ha hecho realidad, que las moléculas de C60 [el fullereno hecho de 60 átomos de carbono] están por todo el universo.

P. ¿Qué implicaciones tiene eso?

R. Puede que sea esta la molécula que transporta carbono al lugar en el que se forman los planetas. La implicación es que el C60 puede sobrevivir y después romperse en moléculas más pequeñas

P. ¿Cree que hay vida en otros planetas?

R. Supongo que hay bacterias, formas primitivas de vida.

P. ¿Y vida inteligente?

R. Bueno, no hay vida inteligente aquí. Creo que ese es el problema. El mismo impulso que ha hecho que lleguemos hasta donde estamos actualmente puede ser autodestructivo. A medida que se desarrolla la tecnología, la gente puede usarla para destruirnos. Ahora mismo estamos mandando señales por toda la galaxia y aún no hemos visto nada. Tenemos radiotelescopios muy sensibles, pero por ahora no hay nada obvio de que haya formas de vida tan avanzadas desde el punto de vista tecnológico como nosotros.

P. En 1996 dijo que sin educación científica la humanidad no durará más allá del siglo XXI ¿Cree que han mejorado las cosas?

R. Es cierto. Mira por ejemplo el uso de combustibles fósiles. Necesitamos un gran descubrimiento rompedor en ciencia y tecnología para evitar una catástrofe. No estamos lo suficiente preparados en ese aspecto. Un montón de gente se cree falacias. La ciencia es como es y la gente no la quiere reconocer. La ciencia es una forma de pensar, mantiene que solo lo que es verdad merece ser contado. La gente que inventa cosas puede ser muy mala. Es lo que vemos hoy cada día, la gente se cree cosas y hace cosas horribles. Por ejemplo, el terrorismo. Antes tenías que matar a la gente de uno en uno, ahora puedes matar a 90 de una vez y serán posibles armas que podrán destruirnos a todos.

Si tu móvil fuese tan efectivo como rezar no lo comprarías

P. La crisis económica ha empujado a muchos gobernantes, incluidos los españoles, a reducir el presupuesto para investigación ¿Qué les diría?

R. Deberían reconocer que nuestra única esperanza es la tecnología, pero esta debe estar guiada por criterios humanitarios y no por el beneficio económico. Yo no quiero que se desarrollen aviones de combate. Tenemos que pensar en este asunto y dirigir a la sociedad y a la investigación hacia criterios de interés humanitario.

P. ¿Cuál cree que será la próxima revolución científica?

R. Soy un científico, no tengo ni idea. Pero una cosa es segura, la próxima será una gran sorpresa y vendrá a través de la ciencia básica, la fundamental, no la que usa la ciencia para hacer dinero. Mi descubrimiento se hizo gracias al interés por las estrellas, no en la nanotecnología, y ese es el problema.

P. Hace unos años firmó una carta de condena del Papa Benedicto XVI ¿Qué piensa del nuevo?

R. Bueno, ha hecho cosas buenas. El anterior era antagonista de lo secular. Por ejemplo, no reconocía que el 50% de la gente en Reino Unido declara no tener religión. No podía simplemente ignorarlos. Por eso gente como yo, que solo aceptamos la validez de la verdad, de la evidencia, reconocemos que lo que la gente inventa, las religiones, pueden ser peligrosas. Como podemos ver en Oriente Medio. El papa actual es mucho mejor que el anterior pero, aún así, se puede hacer mucho con el humanismo. El humanismo reúne todo lo bueno que hay en la religión y nada de lo malo.

P. ¿Hay algún lugar para Dios en la ciencia?

R. Yo creo que no. Nueve de cada diez científicos de élite son escépticos, solo aceptan evidencias, pruebas. Depende de a qué llames Dios. Si dices que es la naturaleza entonces sí, pero si quieres que sea el concepto de la iglesia, no hay ninguna prueba. La ciencia se basa en probar si las cosas funcionan y, si lo hacen, entonces tu móvil funciona. Si fuese tan efectivo como rezar, no lo comprarías. Las ecuaciones de Maxwell están probadas y funcionan cada vez que enciendes tu teléfono, cada vez. Billones y billones y billones de pruebas a favor de esas ecuaciones.

P. ¿Por qué le gustaría ser recordado?

R. No me importa mucho. Creo que he sido un tipo bastante decente. Intento ayudar a la gente a través de la educación, con mi web, a través de unos cuantos proyectos humanitarios, como por ejemplo escribir cartas a favor de Raif Badawi, un bloguero que está en prisión en Arabia Saudí, o hace ya tiempo escribir a Bush y Blair para que no invadieran Irak. Ese tipo de cosas son las más importantes. Ya que gané el premio Nobel, lo usé para intentar mejorar un poco las cosas.

¡La Vida! ¿En las profundidades de la Tierra?

Autor por Emilio Silvera    ~    Archivo Clasificado en La mágica Naturaleza    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

viaje-al-centro-de-la-tierra-3d.jpg

En la aventura que nos contaba Julio Verne en su libro Viaje al centro de la Tierra, el famoso escritor de imaginación desbordante narra la historia de una expedidón al centro de la Tierra. Los exploradores untrépidos y arriesgados aventureros descubren, con asombro, todo un mundo nuevo debajo de la superficie del planeta al que llegan recorriendo galerias sin fin y manatiales de aguas subterráneas que, en alguna ocasión, estaban poblados por extraños seres. Grandes cavernas subterráneas donde habitaban exóticos animales y seres vivos del reino vegetal de enormes dimensiones. Por desgracia, la historia de Verne contradecía la evidencia geológica de su época. Se sabe muy bien que profundidad significa caliente: la temperatura puede aumentar hasta 20 grados Celcius por cada kilómetro que se descienda y la vida, resultaría imposible para la mayoría de los organismos.

 

Así que, aquella historia que de niños nos transportaba al mundo mágico de las entrañas de la Tierra, en realidad, habría sido de imposible realidad por una expedición de humanos. El gradiente de temperatura continúa dentro  de la corteza de la Tierra y atraviesa su manto fundido para llegar al núcleo en donde la temperatura asciende a más de 3.000 grados Celcius. Cualquier viaje al Centro de la Tierra significaría una incineración segura para los intrépidos (¿o locos?) expedicionarios. El sueño de Verne de que podía existir vida bajo la superficie de la Tierra parecía ridículo.

 

 

 

Sus aguas rojas, muy ácidas, y de alto contenido en metales pesados sobre todo hierro, contienen oxígeno, que permite la vida de organismos fotosintéticos y … No pocas veces, llevado por la curiosidad, he paseado por estos entornos “marcianos” que, en algunos lugares, te hacen pensar que, verdaderamente estás en otro mundo. Sin embargo, cuando miras hacia arriba y puedes contemplar la atmósfera y el cielo azul… ¡Vuelves a la Tierra!

 

 

Un proyecto de la NASA buscó vida en las aguas letales del Río Tinto y en el subsuelo de aquel pueblo de la Sierra de en Huelva. Sus similitudes con el planeta Marte nos podía enseñar lo que allí podríamos encontrar. Los trabajos comenzaron con la perforación más profunda hecha jamás en Riotinto. El objetivo era encontrar una bolsa subterránea de agua donde los responsables de la investigación esperaban encontrar una colonia de organismos nunca antes observados. De bacterias capaces de alimentarse a base de hierro y que no necesitaban ni luz ni oxígeno atmosférico para sobrevivir. Los expertos creían que estos seres vivos colonizaron Riotinto desde las profundidades, dando a la zona su inconfundible paisaje extraterrestre de ríos rojos y laderas amarillas debido a la alta concentración de ácido sulfúrico que generan al alimentarse de pirita.

Los biólogos tienen conocimiento desde hace mucho tiempo de que el mantillo contiene bacterias y de que las cuevas de piedra caliza pueden estar habitadas por organismos especialmente adaptados. Pero , aparte de estas excepciones, se decretó que el planeta estaba muerto por debajo del suelo. La misma era la opinión dominante respecto a las profundidades oceánicas.

 

 

Caracol abisal encontrado por la expedición. | David Shale

 

 

Caracol abisal. Todos conocemos de las extrañas criaturas que viven en las profundidades de los océanos y que, no dejan de sorprendernos cada vez que hallamos nuevas y exóticas criaturas cuyas configuraciones morfológicas van siempre, más hallá de lo que nuestra imaginación pudo dibujar en nuestras mentes. Algunos dicen que, el único lugar habitado que sigue siendo un misterio para el ser humano son los océanos abisales. Allí, en la oscuridad perpetua, acaba de ser descubierto un fantástico ecosistema con extraordinarios seres vivos capaces de vivir sin luz, a temperaturas extremadamente elevadas y en un ambiente muy tóxico, por las grandes chimeneas volcánicas que hay en el fondo oceánico. El hallazgo ha tenido lugar en el South West Indian Ridge, en el Océano Índico, a 2.700 metros de profundidad, gracias a la expedición Dragon Vent que (en la que no participó Julio Verne y, sin embargo, participa de alguna manera).

“Nada podría sobrevivir -decían- , por debajo de la “zona fótica” las capas del océano iluminadas por la luz solar. El descubrimiento de ecosistemas en los húmeros megros cambió todo eso.

Existe la hipótesis de que la vida haya surgido precisamente en estos humeros, en vez de en la superficie del océano. Yo pienso que es una posibilidad plausible, ya que es un medio tan activo como el medio superficial de aquel tiempo: hay vulcanismo, contraste de materiales y temperaturas… Hace algunos años nadie hubiera dicho que el fondo oceánico, un medio tan extremo, pudiese albergar semejantes ecosistemas. Pero si algunos supermicrobios pueden vivir varios kilómetros de profundidad najo el mar, ¿no podrían existir también bajo la tierra?

El primer científico en difundir publicamente la opinión de que la vida podría florecer a gran profundidad debajo de la Tierra parece haber sio un geólogo de Chicago llamado Edsom Bastin, allá por los años veinte. Bastín se preguntaba por qué las aguas extraídas de los campos de petróleo contenía sulfuro de hidrógeno. Él sugirió que el gas podría haber sido producido por bacterias reductoras de sulfato que viven a gran profundidad en las bolsas de petróleo.

Lo cierto es que, por todas partes, están presentes múltiples indicadores de actividad biológica a gran profundidad por debajo de la superficie de la Tierra. Esa hubiera sido la realidad en los tiempos de Verne si los geólogos hubieran sabido buscar de manera adecuada. Hasta los años sesenta no se descubrieron depósitos minerales subterráneios que parecían haber sido precipitados por microbios. Hierro, Azufre, Manganeza, Zinc y otras sustancias que se sabía eran utilizadas por las bacterias, aparecían concentradas en forma sospechosa. De hecho, un estudiante australiano de la Universidad de Londres, Lloyd Hanilton, descubrió formas inequívocas de microbios fósiles en vetas de mineral de jaspe. Él concluyó que éstas eran vestigios de microbios precipitadores de hierro que se habian hecho un hogar en los poros de las rocas.

Martialis heureka, hormiga ciega adaptada a la vida subterránea, de aspecto tan extraño que también es llamada “hormiga marciana”. Foto: Christian Rabelin. No deberíamos sorprendernos al hallar formas extrañas de vida en lugares imposibles y en los que ni podíamos imagfinar que existieran.

A pesar de la evidencia creciente de la vida subterránea,  la opinión dominante de que la corteza de la Tierra es estéril no empezó realmente a cambiar hasta finales de los años sesenta. Los gobiernos trataban de investigar sobre la reducción de los residuos nucleares, cómo eliminarlos. El material radiactivo había sido enterrado en estratos profundos sobre la hipótesis de que nada podría sucederle. Sin embargo, estudios del agua subterránea ya habían sugerido que las bacterias ya podrían aquellos depósitos del subsuelo, y muestras de rocas extraídas de sondeos revelaban señales de tal presencia del mundo bacteriano y, si los microbios podían invadir los acuíferos profundos también podrían entrar en los vertederos nucleares subterráneos y corroer los recipientes contenedores para liberar, con el tiempo, los residuos. Preocupaciones análogas invadieron el mundo del petróleo cuando se descubrió que, de la misma manera, las bacterias también podían onfiltrarse en las reservas de crudo y correonperlos.

Bacterias

Cada ser vivo, dentro de su entorno, busca el medio de cubrir sus necesidades metabólicas y, en algunos casos, lo hacen de la manera más asombrosa que podamos imaginar. Colonias de miles de millones de estos dimunutos “personajillos” proliferan en los lugares más increíbles de la Tierra, los océanos y las profundidas terres…también se han localizado en la atmósfera a respetables alturas. El estudio de lo que cada una de ellas pueden hacer, no sólo es fascinante sino que, en no pocas ocasiones, hacen posible que nosotros, los humanos, podamos estar tan cómodamente instalados en un planeta de cuya atmósfera y medio ambiente, son responsables los diminutos procariotas.

Todos recordareis aquellos que, bautizados como Bacillus infernus, fueron encontrados en profundos pozos de más de 3 km de profundidad en los sedimentos del Triásico en la cuenca Taylorsville en Virginia, Estados Unidos. Descubrieron hipertermófilos únicos en forma de bastón, entre los que se incluían los antes nombrados.

                                             Nanobacterias halladas en las nubes

Está claro a partir de todos los descubrimientos llevados a cabo que,  la Tierra posee un submundo viviente generalizado cuya basta extensión sólo ahora se está revelando. Si las bacterias proliferan a una profundidad de medio kilómetro o más, como los exámenes sugieren, entonces, sumando sobre todo el planeta, ellas darían parte del diez por ciento de toda la biomasa de la Tierra. Y, la estimación podría ser mayor, ya que, se sospecha que, a mayior profundidad también podrían estar presentes estos “seres diminutos” que aguantan temperaturas de más de 110 grados Celcius (en unos 4 kilómetros de profundidad).

http://farm3.static.flickr.com/2662/4089800366_5fcd5a008d.jpg

Desde la especulación infomal de Darwin de que la vida empezó en alguna pequela charca caliente, la sabiduría convencional ha consistido en que la vida es y siempre fue un fenómeno de superficie. El descubrimiento de la Biosfera profunda y caliente ha alterado espectacularmente esta visión. Si la vida puede florecer muy por debajo de la superficvie de la Tierra, quizá deberíamos mirar hacia abajo en busca el crisol en el que se forjó el primer ser vivo.

Unas raras criaturas aparecen varios kilómetros bajo la superficie de la Tierra

¿Os acordáis cuando salió aquella noticia? “Unas raras criaturas aparecen varios kilómetros bajo la superficie de la Tierra. Las especies, entre ellas una jamás vista antes, soportan temperaturas de hasta 48 grados en las profundidades donde no se creía posible que existiera la vida compleja. Desde su descubrimiento hace más de dos décadas, la biosfera del subsuelo profundo ha sido considerada como el reino de los organismos unicelulares, un reino que se extiende más de tres kilómetros bajo la corteza de la Tierra. Las limitaciones de temperatura, energía, oxígeno y el espacio parecían excluir la posibilidad de una vida más compleja. Los científicos no creían que organismos multicelulares podrían vivir en esas profundidades, pero se equivocaban.

Según los expertos, parecen que son varias las razones por las que un lugar en el subsuelo marino -o, mejor aún, en los sedimentos rocosos bajo el mismo- parece el emplazamiento natural más prometedor para el origen y la evolución temprana de la vida. La más obvia concierne a la continua amenaza de impactos cósmicos que proliferan en aquellos primeros momentos cuando la Tierra era joven. La violencia del intenso bombardeo habría esterilizado efectivamente la superficie de la Tierra una y otra vez. Con rocas vaporizadas haciendo hervir los océanos y fundiendo la Tierra, las condiciones habrían sido letales al menos hasta una profundidad de decenas de metros. Sin embargo, a más profundidad, los organismos habrían podido soportar incluso los mayores impactos.

Así, de alguna manera, Julio Verne se salía con la suya aunque, de una manera menos deslumbrante y con escenarios muy diferentes a los que el nos ofrecía en sus magnificos relatos.

Al final resulta que, el visionario Verne, podía llevar razón y, la Vida, sí estaba presente en las profundidades de la Tierra aunque, con menos fantasía de la que el volvó en sus historia. Seguramente, le habría encantado poder ver alguna de esas películas que han proliferado para hacernos disfrutar con sus historias “hechas realidad” en el cine.

¡La Vida! Según la entiendo,  se abrirá paso en cualquier medio que le de la más mínima oportunidad.

emilio silvera

¡La Física! Siempre presente en nuestras vidas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Fizeau,

Fizeau, Armand-Hippolyte-Louis

En 1.849, el físico francés Armand-Hippolyte-Louis Fizeau ideó un artificio mediante el cual se proyectaba la luz sobre un espejo situado a 8 km de distancia, que devolvía el reflejo al observador. El tiempo empleado por la luz en su viaje de ida y vuelta no rebasó apenas la 1/20.000 de segundo, pero Fizeau logró medirlo colocando una rueda dentada giratoria en la trayectoria del rayo luminoso. Cuando dicha rueda giraba a cierta velocidad, regulada, la luz pasaba entre los dientes y se proyectaba contra el siguiente, al ser devuelta por el espejo; así, Fizeau, colocado tras la rueda, no pudo verla. Entonces se dio más velocidad a la rueda, y el reflejo pasó por la siguiente muesca entre los dientes, sin intercepción alguna. De esa forma, regulando y midiendo la velocidad de la rueda giratoria, Fizeau pudo calcular el tiempo transcurrido y, por consiguiente, la velocidad a que se movía el rayo de luz.

Jean Foucault

Jean-Bernard-Léon Foucault suspendió una bola de 62 libras (unos 28 kilogramos) de hierro desde la cúpula del Panteón y lo puso en movimiento, balanceándolo. Para marcar su progreso el enganchó una aguja a la bola y colocó un anillo de tierra mojada en el suelo bajo él. La audiencia observó con pavor como el péndulo inexplicablemente parecía rotar, dejando un trazo ligeramente distinto en cada balanceo. En realidad era el suelo del Panteón el que estaba ligeramente en movimiento, y Foucault había demostrado, de una forma más convincente que nunca, que la tierra gira sobre su eje. En la latitud de París, el trazo del péndulo completaría una rotación completa en el sentido horario cada 30 horas; en el hemisferio sur rotaría en sentido antihorario, y en el ecuador no rotaría nada. En el Polo Sur, como han confirmado los científicos de la era moderna, el periodo de rotación es de 24 horas.

Un año más tarde, Jean Foucault (quien realizaría poco después su experimento -arriba- con los péndulos) precisó más estas medidas empleando un espejo giratorio en ve de una rueda dentada. Entonces se midió el tiempo transcurrido desviando ligeramente el ángulo de reflexión mediante el veloz espejo giratorio. Foucault obtuvo un valor de la velocidad de la luz de 300.883 km/s. También, el físico francés utilizó su método para determinar la velocidad de la luz a través de varios líquidos. Averiguó que era notablemente inferior a la alcanzada en el aire. Esto concordaba también con la teoría ondulatoria de Huyghens (abajo).

La naturaleza de la luz. Profesor escrupuloso, aunque poco entusiasta, Newton se dedicó a estudios de óptica que le llevaron, a través de una serie de experimentos, al famoso descubrimiento de la descomposición de la luz blanca, que fue explicada por él mediante una teoría corpuscular de la luz destinada a dar jaque a la teoría ondulatoria de C. Huygens y a dominar durante todo el siglo XVIII. Experimentos, descubrimientos e hipótesis sobre la luz fueron hechos públicos en una memoria a la Royal Society. Pero las tempestuosas disputas suscitadas por esta memoria le disgustaron hasta el punto de que se abstuvo de publicar sus Lecciones de óptica (desarrolladas en la cátedra lucasiana entre 1668 y 1671), las cuales sólo vieron la luz en 1729. No obstante, en 1675 presentó a la Royal Society una importante memoria, que constituirá después la base de su Óptica, en la que, partiendo de los experimentos sobre la coloración de laminillas metálicas, expone los principios de su teoría sobre la luz. En la imagen, El descubrimiento de la refracción de la luz de Newton (1827), óleo del pintor italiano Pelagio Palagi.

 Albert A. Michelson, Albert <a href=

      Michelson, Einstein y Millikan

Michelson fue más preciso aún en sus medidas. Este autor, durante cuarenta años largos, a partir de 1.879, fue aplicando el sistema Fizeau-Foucault cada vez con mayor refinamiento, para medir la velocidad de la luz. Cuando se creyó lo suficientemente informado, proyectó la luz a través de vacío, en vez de hacerlo a través del aire, pues este frena ligeramente su velocidad, y, empleó para ello tuberías de acero cuya longitud era superior a 1’5 km. Según sus medidas, la velocidad de la luz en el vacío era de 299.730 km/seg. (Sólo un 0’006% más bajo). Demostraría también que todas las longitudes de ondas luminosas viajan a la misma velocidad en el vacío.

En 1972, un equipo de investigadores bajo la dirección de Kenneth M. Eveson efectuó unas mediciones aún más exactas y vio que la velocidad de la luz era de 299.727’74 km/seg. Una vez se conoció la velocidad de la luz con semejante precisión, se hizo posible usar la luz, o por lo menos formas de ella, para medir distancias.

Desde Galileo con sus lámparas, cada vez se han utilizado aparatos más sofisticados para medir la velocidad de la luz, y, finalmente, se consiguió medirla de manera muy exacta en 299.792.458 metros por segundo que, es el límite que algo puede alcanzar corriendo por el espacio vacío y que sólo ha conseguido la luz.

Aunque para algunos resulte alto tedioso el tema anterior, no he podido resistirme a la tentación de exponerlo, así podrá saber algo más sobre la luz y, habrán conocido a personajes que hicieron posible el que ahora nosotros, la conozcamos mejor.

Podría continuar, hasta el final de este trabajo, hablando de la luz y sus distintas formas o aplicaciones: ondas de luz a través del espacio, de cómo se transmite la luz en el “vacío”, nos llega a través del espacio desde Galaxias situadas a miles de millones de años luz; las líneas de fuerzas electromagnéticas de Faraday y Maxwell de campos eléctricos y magnéticos cambiantes (todo ello explicado en un simple conjunto de cuatro ecuaciones, que describían casi todos los fenómenos referentes a esta materia electromagnética), o de los enigmas aún por descubrir (aunque predichos).

Monopolos

Muchos han ido a la caza de los monopolos magnéticos que, deben ser raros en el Universo, si finalmente existen. Parece que, algunos físicos han conseguido alguna cosa…no se bien qué sobre su existencia.

En 1.931, Dirac, acometiendo el asiento de una forma matemática, llegó a la conclusión de que sí los monopolos magnéticos existían, sería necesario que todas las cargas eléctricas fuesen múltiplos exactos de una carga más pequeña, como en efecto así es. Y dado que todas las cargas eléctricas son múltiplos exactos de alguna carga más pequeña, ¿no deberían en realidad existir los monopolos magnéticos?

En 1.974, un físico joven y prometedor (más tarde ganó el Nobel), Gerard’t Hooft, y un físico soviético, Alexander Poliakov, mostraron, independientemente, que podía razonarse, a partir de las grandes teorías unificadas, que los monopolos magnéticos debían así mismo existir, y que debían poseer una masa enorme. Aunque un monopolo magnético sería incluso más pequeño que un protón, debería tener una masa que sería de 10 trillones a 10 cuatrillones mayor que la del protón. Eso equivaldría a la masa de una bacteria comprimida en una diminuta partícula subatómica.

[monopolos+m.gif]

Sería la confirmación de una teoría de 1931. Si seres de otros mundos han podido verlos, habrían visto otro tipo de magnetismo los llamados “monopolos magnéticos”.

Semejantes partículas sólo podían haberse formado en el momento de la gran explosión (otra vez volvemos al origen). Desde entonces, no ha existido la suficientemente alta concentración de energía necesaria para formarla. Esas grandes partículas deberían avanzar a unos 225 km por seg., más o menos, y la combinación de una enorme masa y un pequeño tamaño le permitiría deslizarse a través de la materia sin dejar el menor rastro de presencia. Esta propiedad, de hecho, está relacionada directamente con el fracaso obtenido en su búsqueda.

Los físicos están tratando de idear un mecanismo capaz de poder detectar, con claridad, el paso de monopolos magnéticos.

Podríamos decir que, un monopolo magnético es una entidad magnética hipotética consistente en un polo Norte o Sur elemental aislado. Ha sido postulado como una fuente de campo magnético en analogía a la forma en que las partículas eléctricamente cargadas producen un campo eléctrico.

http://2.bp.blogspot.com/_93W9IMdur5E/TEBx2-Q8aLI/AAAAAAAAASU/1ra_LSlDoA4/s1600/00001.bmp

Se han diseñado numerosos experimentos ingeniosos para detectar monopolos, pero hasta ahora, ninguno ha producido un resultado definitivo. Los monopolos magnéticos son predichos en ciertas teorías gauge con bosones de Higgs. En particular, algunas teorías de gran unificación predicen monopolos muy pesados (con masas del orden de 1016 geV). Se habló de su aparición en los primeros experimentos del LHC, algunos denunciaron eso junto con la aparición de agujeros negros microscópicos pero, de momento…nada

Los monopolos magnéticos también son predichos en las teorías de Kaluza-Klein (5 dimensiones) y en teoría de supercuerdas (10 y 26 dimensione). Es decir, que se predice pero no se puede verificar, y, siendo así, quedamos anclados en el campo de la teoría.

Recuerdo que estaba hablando de los distintos aspectos de la luz, lo que no recuerdo es como he llegado a éste berenjenal de los monopolos magnéticos. Me ocurre siempre, estoy tratando un tema y termino hablando (escribiendo) de otro. No parece más que, el bolígrafo, tenga vida propia. Sin embargo, lo que ocurre en verdad es que, todo es uno, compuesto de distintas partes. Siempre estamos hablando de lo mismo, solo cambian las partes que, en cada momento, estemos estudiando.

La misteriosa materia que compondría el 23 % (se especula) de toda la materia del universo es tan esquiva que jamás ha sido observada por nadie. Así que sólo podíamos sospechar que quizá existía. La materia oscura emite, absorbe e interactúa con radiación electromagnética de manera tan débil que no puede ser observada por medios técnicos ordinarios, no refleja la luz para ser observada.

Resultado de imagen de Sin embargo, un equipo internacional de astrónomos de Japón, Gran Bretaña y Taiwan acaba de conseguir, por primera vez, imágenes que reflejan la distribución de materia oscura alrededor de 20 grandes cúmulos de galaxias.

Dicen que esta es la primera imagen de la materia oscura (¿)

“Un equipo internacional de astrónomos de Japón, Gran Bretaña y Taiwan acaba de conseguir, por primera vez, imágenes que reflejan la distribución de materia oscura alrededor de 20 grandes cúmulos de galaxias. Los resultados se publicarán en la revista mensual de la Royal Astronomical Society. Las pruebas aún no son concluyentes, pero sí muy esperanzadoras”.

Ni en el infrarrojo, ni en los rayos X ni en el ultravioleta la materia oscura había revelado aún su auténtica naturaleza. Pero utilizando lentes gravitacionales los científicos han sido capaces de mostrar las primeras imágenes en las que se “aprecia” la misteriosa materia oscura. Bueno, eso es lo que dicen ellos.

Masa-Materia-Luz: Todo la misma cosa ¡Energía! que es el motor que hace andar al ¡El Universo!

emilio silvera

Espacio-tiempo curvo y los secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (13)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

 

La densidad de energía-momentum en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. En física las ecuaciones del campo de Einstein, ecuaciones de Einstein o ecuaciones de Einstein-Hilbert, son un conjunto de 10 ecuaciones de la teoría de la relatividad general postulada por A. Einstein que describen la Interacción fundamental de la Gravitación como resultado de que el espacio-tiempo está siendo curvado por la materia y la energía  que determinan la geometría del Espacio.

 

 

 

 

Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la maisma manera, en presencia de masa se distosiona el esapcio-tiempo que se curva en función de la masa allí presente. No es el mismo espacio aquel en el que se encuentra una gran galaxia que, ese otro en el que sólo está presente un pequeño mundo. Sin embargo, tanto en uno como en el otro caso, la gravedad que emite el objeto de materia de que se trate, incide en el espacio circundante y en los objetos vecinos.

 

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.
Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

 

La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski).  Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.

La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.

File:3D coordinate system.svg

En un espacio euclideo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundida o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad  nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimiensional.

En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciónes sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).

Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un nombre. (“¿Qué hay en un nombre? Lo que llamamos rosa, ¿”con cualquier otro nombre tendría el mismo dulce aroma”? (-Shakespeare, Romeo y Julieta-)  La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.

También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.

Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.

Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einstein utilizar la idea de geometría espaciotemporal para formular su teoría de la relatividad general que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo. En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.

En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitsas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.

http://1.bp.blogspot.com/-TWYy8GMEeBI/TiKZMOfnoQI/AAAAAAAAOgo/HeVDOup_eC0/s1600/deformacion-espacio-tiempo.jpg

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…

Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad- debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.

Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender  que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fín, podremos tener una teoría cuántica de la gravedad.

Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.

 

 Esta pretende ser la imagen de un extraño objeto masivo, un quásar  que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).

Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.

Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.

Las primeras estrellas del universo eran enormes, pesadas, y muy calientes. Brillaron con furia, vivieron rápido y murieron jóvenes. Pero aquellas primeras estrellas nos …

Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el universo. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.

                                         Supernova 1987 A

El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.

Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espaciotiempo y dibujar la geometría del universo.

Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- Imagen tomada por la NASA

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.

Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.

Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercewr aspecto en la distorsi´pon espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrtededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividad general deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.

Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.

Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta  la extenuación:

“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado”  Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.

 

El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

File:Cassini-science-br.jpg

Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debidad resulta engañosa poreque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.

¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!

emilio silvera