lunes, 14 de junio del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Un paseo por el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

     AFP PHOTO/NASA/JPL-CALTECH. Es la Nebulosa Cygnus Loop en ultravioleta

 Cygnus Loop (W78 fuente de radio, o Sharpless 103) es un remanente grande supernova (SNR) en la constelación de Cygnus, una nebulosa de emisión que mide casi 3 ° de ancho. Algunos arcos del bucle, conocidos colectivamente como la Nebulosa del Velo o Nebulosa Cirrus, emite luz visible.

La parte visual del Cygnus Loop es conocida como la Nebulosa del Velo, también llamada la Nebulosa Cirrus o la Nebulosa filamentosa. Varios componentes tienen nombres e identificadores separados, incluyendo el “Velo occidental” o “Escoba de bruja”, “Velo del Este”, y Triángulo de Pickering.

ESO: Utilizando el Atacama Large Millimeter / submillimeter Array (ALMA), los Astrónomos han descubierto que los planetas que orbitan la estrella Fomalhaut deben ser mucho más pequeños de lo que se pensaba en un principio. Fomalhaut es la estrella más brillante en la constelación de Piscis Austrinuus (El Pez Austral). El nombre de la estrella tiene su origen en el árabe y su significado es Boca de Ballena (o del pez). Durante la historia esta estrella ha tenido varios nombres. En la antigua Persia se hacían rituales para ella y era una de las cuatro estrellas reales “persas”, recibiendo el nombre de Hastorang. En la religión de Strehería, Fomalhaut es un ángel caído y el cuarto guardían de la puerta del norte. Está situada a 25 años-luz del Sol.

 

La ESO ha obtenido la imagen infrarroja más precisa de la Nebulosa Carina captada por el Telescopio de Largo Alcance del Observatorio Austral Europeo. La Nebulosa de la Quilla, también llamada Nebulosa de Carina, Nebulosa de Eta Carinae o NGC 3372, es una gran nebulosa de emisión (cuatro veces más grande que Orión) que rodea varios cúmulos abiertos de estrellas. Entre estas estrellas se encuentran Eta Carinae y HD 93129A,  dos de las estrellas más masivas y más luminosas en la Vía Láctea. La nebulosa se encuentra a una distancia estimada de entre 6 500 a 10 000 años-luz de la Tierra. Se encuentra localizada en la constelación de la Quilla (Carina). Esta nebulosa contiene diversas estrellas tipo O.

Carina (la quilla),  es una constelación austral austral que forma parte de la antigua constelación de Argo Navis (el navío Argo).  La Unión Astronómica Internacional  la dividió en cuatro componentes: Carina (la Quilla), Vela (la Vela), Puppis (la Popa)  y Pyxis (el compás o la Brújula).

 

 

Captada por el Hubble, el conjunto de galaxias Arp 273, se encuentra en la constelación de Andrómeda y tiene esta particular forma de rosa cósmica. En la imagen aparece un galaxia espiral notable, junto con orta más pequeña, y juntas tienen una forma de S. Las galaxias Arp 273están a 300 millones de años luz de nuestra Vía Láctea.Las galaxias Arp 273 están en intearcción. En primer lugar, se hace un zoom en el miembro más pequeño de la pareja. Se trata de una galaxia casi de canto, que muestra claros signos de intensa formación estelar en su núcleo. Esto fue provocado tal vez, por el encuentro con la galaxia compañera anterior.

Las fuerzas de marea de la galaxia compañera más pequeña y su tirón gravitacional han causado que la pareja simule un conjunto en forma de rosa, la llamada “rosa del espacio”.

 

 

 

IAC Nos muestra la Nebulosa Reloj de Arena, fue elegida por la NASA como la Imagen Astrónómica del día. Las figuras arabescas y de una belleza sin igual que se forman en el espacio con el material interestelar son fabulosas y coloridas en función del material que las conforman que, merced a la radiación que ioniza las regiones y los vientos estelares emitidos por las estrellas nuevas, conforman conjuntos que ni nuestra inmensa imaginación pueden imaginar.
HUBBLE

Aquí la joven estrella S106 IR expulsa material a gran velocidad y perturba el gas y el polvo que la rodean, rebelándose contra su ’nube madre’. La postal captada por el Hubble tiene forma de ángel con las alas extendidas. El 16 diciembre de 2011, una de las cámaras de gran campo del telescopio espacial Hubble ha captado esta imagen de una nube de hidrógeno gigante iluminada por una brillante estrella joven. La imagen revela cuán violentas pueden llegar a ser las etapas finales del proceso de formación estelar.

Pese a los colores celestiales de esta imagen, nada ocurre tranquilamente en la región de formación estelar Sh 2-106, o S106. En ella se aloja la joven estrella S106 IR, que expulsa a gran velocidad material que altera el gas y el polvo circundantes. Esta estrella tiene una masa 15 veces superior a la del sol y está en las etapas finales de su formación; pronto, cuando entre en la fase de su evolución llamada ‘de secuencia principal’ –el equivalente a la etapa adulta de su vida estelar-, se calmará y brillará durante algunos millones de años. Vivirá menos que el Sol, ya que, su voracidad en consumir el mateiral estelar será mucho mayor.

Aquí el Hubble nos muestra a la Nebulosa NGC 3693, situada en la constelación de Carina. Ella, presumida, nos muestra ese Jojero de relucientes y doradas estrellas formadas en un bello cúmulo. NGC 3603. Sher 25 es la estrella brillante en la posición de uno con respecto al centro de la agrupación, entre dos parches de nebulosa y con un débil anillo que lo rodea.
Ahí se encuentra Sher 25, que es una estrella supergigante azul en la constelación Carina, ubicada aproximadamente a 25.000 años luz del Sol en la región H II NGC 3603 de la galaxia de la Vía Láctea. Es una estrella de tipo espectral B1Iab con una magnitud aparente de 12,2. Su masa secuencia principal inicial se calcula en 60 veces la masa de nuestro Sol, pero una estrella de este tipo ya se han perdido una parte sustancial de esa masa. No está claro si Sher 25 ha sido a través de una fase de supergigante roja o simplemente ha evolucionado a partir de la secuencia principal, por lo que la masa actual es muy incierto.

ESO nos enseña la la Imagen de un  agujero negro en la galaxia espiral NGC 300, a una distancia récord de unos seis millones de años luz de nuestro sistema solar, absorve la materia de una estrella que le acompaña en un ’vals infernal. Estos terribles monstruos del Espacio, situados (por lo general), en el centro galáctico, son devoradores de materia y, ni las estrellas vecinas se pueden salvar para escapar de su terrible fuerza gravitatoria que las atrae para engullirlas y convertirlas quién sabe en qué clase de materia exótica desconocida de una densidad nunca jamás vista.
Aquí el Hubble ha captada la imagen del Cluster R136 para mostrarnos un paisaje de fantasía, repleto de luminosidad en contraste con los valles de sombras y oscuridad. Junto a una región en sombra en el centro que se asemeja a la silueta de un gran árbol navideño que está cuajada de estrellas jóvenes y radiantes, azuladas que emiten cantidad inmensa de radiación ultravioleta para ionizar el material circundante al que, dependiendo de los elementos de que están formados, le saca los distintos colores.
ESO / VISTA
Aquí podemos contemplar la primera imagen captada por el telescopio europeo VISTA de la Nebulosa de la Llama.  La nebulosa de la Llama, también conocida como NGC2024, es una región de gas y polvo oscurecido en el Complejo de la Nube Molecular de Orión, región de formación estelar que incluye la famosa nebulosa de la Cabeza del Caballo, situada a 1.500 años luz de distancia del Sistema Solar. Esta nebulosa es fácil de localizar dado que se encuentra muy cerca de la estrella brillante que está más a la izquierda en el cinturón de Orión: Alnitak. Esta estrella envía luz energética a la nebulosa de la Llama, lo que hace que se desprendan electrones del gas hidrógeno que reside allí. Gran parte del resplandor se produce cuando se recombinan los electrones y el hidrógeno  ionizado.
El Hubble nos muestra la imagen situada en los albores del Universo. La cámara infrarroja del telescopio espacial más famoso, ha captad0 esta imagen del universo cuando era muy joven, sólo tenía 600 millones de años después del comienzo del Tiempo, es decir, después del Big Bang. Sabemos (eso nos dicen todos los estudios realizados), que el Universo tiene ahora una edad de 13.750 millones de años y, desde aquel tiempo pasado en el que la imagen era una realidad que ahora no existe, el Hubble, nos la enseña haciendo posible que nosotros, situados a mucha distancia en el tiempo futuro de las galaxias que ahí se muestran, podamos saber cómo era entonces el Cosmos.
Desde entonces, muchas estrellas han nacido para morir y dejar sembrado el espacio interestelar de materiales complejos y de mundos que, como la Tierra, situados en la zona habitable de sus estrellas, probablemente tengan sistemas ecológicos en los que, la Vida, esté presente de mil maneras.
Aquí dejamos este paseo por el Universo que, siendo para nosotros “infinito”, tenemos que mostrarlo por partes y también, por partes contar, lo mucho que en él está presente y los sucesos que tuvieron lugar en tan vasto espacio, que tienen presencia en este mismo momento presente y, ¿qué duda nos puede caber?, tendrán lugar en el tiempo por venir.
¡Qué bello es el Universo! ¡Cuántas maravillas contiene! ¿Lo conoceremos alguna vez… del todo? ¿Tendrá algún compañero?
emilio silvera

 

 

 

 

 

 

 

De la vida y la muerte de las partículas y…otros

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

Por aquel tiempo pudimos leer en la prensa de todo el mundo:  ESTOCOLMO, Suecia.- El premio Nobel de Física (2.008) fue atribuido hoy al norteamericano Yoichiro Nambu y a los japoneses Makoto Kobayashi y Toshihide Maskawa por sus trabajos separados sobre la física de las partículas que mejoraron la comprensión de la materia, Demos un repaso hoy aquí a esos componentes de la materia, y, profundicemos en sus propiedades., en sus “vidas”.

 

             Todo lo que vemos, está formado por partículas elementales

Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.

También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.

Si miramos una tabla de las partículas más conocidas y familiares (fotón, electrón muón tau, la serie de neutrinos, los mesones con sus piones, kaones, etc., y, los Hadrones bariones como el protón, neutrón, lambda, sigma, ksi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales manera de desintegración, veríamos como difieren las unas de las otras.

Quarks Antiquarks
Nombre Símbolo[1] Generación Carga eléctrica
(e)
Masa en reposo
(MeV/c²)
Nombre Símbolo Generación Carga eléctrica
(e)
Masa en reposo
(MeV/c²)
Arriba \mathrm{u}\,\! Primera \begin{matrix} +\frac{2}{3} \end{matrix} Antiarriba \mathrm{\bar{u}}\,\! Primera \begin{matrix} -\frac{2}{3} \end{matrix}
Abajo \mathrm{d}\,\! Primera \begin{matrix} -\frac{1}{3} \end{matrix} Antiabajo \mathrm{\bar{d}}\,\! Primera \begin{matrix} +\frac{1}{3} \end{matrix}
Encanto \mathrm{c}\,\! Segunda \begin{matrix} +\frac{2}{3} \end{matrix} Antiencanto \mathrm{\bar{c}}\,\! Segunda \begin{matrix} -\frac{2}{3} \end{matrix}
Extraño \mathrm{s}\,\! Segunda \begin{matrix} -\frac{1}{3} \end{matrix} Antiextraño \mathrm{\bar{s}}\,\! Segunda \begin{matrix} +\frac{1}{3} \end{matrix}
Cima \mathrm{t}\,\! Tercera \begin{matrix} +\frac{2}{3} \end{matrix} Anticima \mathrm{\bar{t}}\,\! Tercera \begin{matrix} -\frac{2}{3} \end{matrix}
Fondo \mathrm{b}\,\! Tercera \begin{matrix} -\frac{1}{3} \end{matrix} Antifondo \mathrm{\bar{b}}\,\! Tercera \begin{matrix} +\frac{1}{3} \end{matrix}
Las iniciales de los símbolos los toma del inglés: u: up, arriba; d: down, abajo; c: charmed, encantado; s: strange, extraño; t: top, alto, superior, cima; b: bottom bajo, fondo.

Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.

Diagrama de partículas elementales

Todas las partículas elementales vistas hasta ahora en esta serie, incluido el neutrino. Claro que, aquí no está todavía el Bosón de Higgs que será confirmado en breve…al parecer. Esas son las últimas noticias, el Bosón de Higgs está “casi” localizado y sólo está a la espera de confirmar el hallazgo no una, sino miles de veces.

CMS detector
The CMS detector.Image © CERN
ATLAS detector
The ATLAS detector. Image © CERN

Por fin, los físicos empiezan a recoger los frutos de una búsqueda que dura ya casi cincuenta años. Dos de los principales detectores del LHC, el gran acelerador europeo de partículas (el Atlas y el muones“>CMS) han encontrado señales que podrían delatar la presencia del esquivo Higgs“>bosón de Higgs, la última particula subatómica que queda por descubrir para completar el Modelo Estandar de la Física y la que encierra, además, el secreto de por qué las demás partículas tienen masa.

Pero sigamos. ¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.

Una colisión entre un prtón y un antiprotón registrada mediante una cámara de chispas del experimento UA5 del CERN.

 

Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.

Leptones cargados Neutrinos
Nombre Símbolo Carga Masa en reposo Nombre Símbolo Carga Masa en reposo
1ª generación Electrón \mathrm{e^-}\,\! −1 0,511
\mathrm{\nu_e}\,\! 0 < 3·10−6
Positrón \mathrm{e^+}\,\! +1 Neutrino electrónico
\mathrm{\overline{\nu_e}} 0
2ª generación Muón \mathrm{\mu^-}\,\! −1 105,658 Neutrino muónico \mathrm{\nu_\mu}\,\! 0 < 0,19
Antimuón \mathrm{\mu^+}\,\! +1 Antineutrino muónico \mathrm{\overline{\nu_\mu}} 0
3ª generación Tauón \mathrm{\tau^-}\,\! −1 1776,99 Neutrino tauónico \mathrm{\nu_\tau}\,\! 0 < 18,2
Antitauón \mathrm{\tau^+}\,\! +1 Antineutrino tauónico \mathrm{\overline{\nu_\tau}} 0

En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su carta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas  experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.

Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.

Bariones

 

Partícula Símbolo[1] Quarks[2] Spin Masa en reposo
(MeV/c²)
S C B Vida media
(s)
Desintegraciones más importantes
Protón \mathrm{p}\,\! \mathrm{uud}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 938,27 0 0 0 Estable [3]
Neutrón \mathrm{n}\,\! \mathrm{udd}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 939,56 0 0 0 885,7 [4] \begin{matrix}                         {}_{n\,\rightarrow\,p + e^- + \bar{\nu}_e} &                         {}_{100%}                   \end{matrix}
Delta doble positiva \mathrm{\Delta^{++}}\,\! \mathrm{uuu}\,\! \begin{matrix} \frac{3}{2} \end{matrix} ≈1.232 0 0 0 6·10-24 \begin{matrix}                         {}_{\Delta^{++}\,\rightarrow\,p + \pi^+} &                         {}_{100%}                   \end{matrix}
Delta positiva \mathrm{\Delta^+}\,\! \mathrm{uud}\,\! \begin{matrix} \frac{3}{2} \end{matrix} ≈1.232 0 0 0 6·10-24 \begin{matrix}                         {}_{\Delta^{+}\,\rightarrow\,Nucle\acute{o}n + pi\acute{o}n} &                         {}_{100%}                   \end{matrix}
Delta neutra \mathrm{\Delta^0}\,\! \mathrm{udd}\,\! \begin{matrix} \frac{3}{2} \end{matrix} ≈1.232 0 0 0 6·10-24 \begin{matrix}                         {}_{\Delta^{0}\,\rightarrow\,Nucle\acute{o}n + pi\acute{o}n} &                         {}_{100%}                   \end{matrix}
Delta negativa \mathrm{\Delta^{-}}\,\! \mathrm{ddd}\,\! \begin{matrix} \frac{3}{2} \end{matrix} ≈1.232 0 0 0 6·10-24 \begin{matrix}                         {}_{\Delta^{-}\,\rightarrow\,n + \pi^-} &                         {}_{100%}                   \end{matrix}
Lambda neutra \mathrm{\Lambda^0}\,\! \mathrm{uds}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.115,68 −1 0 0 2,63·10-10 \begin{matrix}                         {}_{\Lambda^{0}\,\rightarrow\,p + \pi^-} &                         {}_{63,9%} \\                        {}_{\Lambda^{0}\,\rightarrow\,n + \pi^0} &                         {}_{35,8%}                  \end{matrix}
Sigma positiva \mathrm{\Sigma^+}\,\! \mathrm{uus}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.189,37 −1 0 0 8,01·10-11 \begin{matrix}                         {}_{\Sigma^{+}\,\rightarrow\,p + \pi^0} &                         {}_{51,57%} \\                        {}_{\Sigma^{+}\,\rightarrow\,n + \pi^+} &                         {}_{48,31%}                  \end{matrix}
Sigma neutra \mathrm{\Sigma^0}\,\! \mathrm{uds}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.192,64 −1 0 0 7,4·10-20 \begin{matrix}                         {}_{\Sigma^{0}\,\rightarrow\,\Lambda^0 + \gamma} &                         {}_{100%}                  \end{matrix}
Sigma negativa \mathrm{\Sigma^-}\,\! \mathrm{dds}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.197,45 −1 0 0 1,48·10-10 \begin{matrix}                         {}_{\Sigma^{-}\,\rightarrow\,n + \pi^-} &                         {}_{99,84%} \\                        {}_{\Sigma^{-}\,\rightarrow\,n + e^- + \bar{\nu}_e} &                         {}_{0,1%}                  \end{matrix}
Xi neutra \mathrm{\Xi^0}\,\! \mathrm{uss}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.314,83 −2 0 0 2,90·10-10 \begin{matrix}                         {}_{\Xi^{0}\,\rightarrow\,\Lambda^0 + \pi^0} &                         {}_{99,52%} \\                        {}_{\Xi^{0}\,\rightarrow\,\Sigma^0 + \gamma} &                         {}_{0,33%}                  \end{matrix}
Xi negativa \mathrm{\Xi^-}\,\! \mathrm{dss}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.321,31 −2 0 0 1,64·10-10 \begin{matrix}                         {}_{\Xi^{-}\,\rightarrow\,\Lambda^0 + \pi^-} &                         {}_{99,88%}                  \end{matrix}
Omega \mathrm{\Omega^-}\,\! \mathrm{sss}\,\! \begin{matrix} \frac{3}{2} \end{matrix} 1.672,45 −3 0 0 8,21·10-11 \begin{matrix}                         {}_{\Omega^{-}\,\rightarrow\,\Lambda^0 + K^-} &                         {}_{67,8%} \\                        {}_{\Omega^{-}\,\rightarrow\,\Xi^0 + \pi^-} &                         {}_{23,6%} \\                  \end{matrix}
Omega encantada \mathrm{\Omega^0_c}\,\! \mathrm{ssc}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 2.697,5 −2 +1 0 6,90·10-14 \begin{matrix}                         {}_{\Omega^0_c\,\rightarrow\,\Sigma^+ + K^- + K^- + \pi^+} &                         {}_{??\,%} \\                        {}_{\Omega^0_c\,\rightarrow\,\Xi^0 + K^- + \pi^+} &                         {}_{??\,%} \\                  \end{matrix}
Xi positiva encantada \mathrm{\Xi^+_c}\,\! \mathrm{usc}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 2.468 −1 +1 0 4,42·10-13 \begin{matrix}                         {}_{\Xi^+_c\,\rightarrow\,\Xi^0 + \pi^+ + \pi^0} &                         {}_{??\,%} \\                        {}_{\Xi^+_c\,\rightarrow\,\Xi^0 + e^+ + \nu_e} &                         {}_{??\,%} \\                  \end{matrix}
Xi neutra encantada \mathrm{\Xi^0_c}\,\! \mathrm{dsc}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 2.471 −1 +1 0 1,12·10-13 \begin{matrix}                         {}_{\Xi^0_c\,\rightarrow\,p + K^- + K^- + \pi^+} &                         {}_{??\,%} \\                        {}_{\Xi^0_c\,\rightarrow\,\Lambda^0 + K^0_S} &                         {}_{??\,%} \\                  \end{matrix}
Lambda encantada \mathrm{\Lambda^+_c}\,\! \mathrm{udc}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 2.284,9 0 +1 0 2,00·10-13 \begin{matrix}                         {}_{\Lambda^+_c\,\rightarrow\,p + K^- + \pi^+} &                         {}_{??\,%} \\                        {}_{\Lambda^+_c\,\rightarrow\,p + \bar{K^0} + \pi^0} &                         {}_{??\,%} \\                  \end{matrix}
Xi doble encantada \mathrm{\Xi^+_{cc}}\,\! \mathrm{dcc}\,\! \begin{matrix} ? \end{matrix} 3.519 0 +2 0 <3,30·10-14
Lambda inferior \mathrm{\Lambda^0_b}\,\! \mathrm{udb}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 5.624 0 0 −1 1,23·10-12 \begin{matrix}                         {}_{\Lambda^0_b\,\rightarrow\,p + D^0 + \pi^-} &                         {}_{??\,%} \\                        {}_{\Lambda^0_b\,\rightarrow\,\Lambda^+_c + \pi^-} &                         {}_{??\,%} \\                  \end{matrix}
[1] El símbolo de los antibariones es el mismo pero con una barra superpuesta.
[2] Los antibariones están formados por los respectivos antiquarks.
[3] Debe ser superior a 1030 años.
[4] Vida media de los neutrones libres. En los núcleos atómicos son estables.
Se ha conseguido observar por primera vez la desintegración radiactiva del neutrón. Dentro de los núcleos de los átomos hay neutrones y protones. En condiciones normales y mientras que están ahí los neutrones son estables. Sin embargo los neutrones libres son inestables, tienen una vida media de unos 10 minutos, y se desintegran produciendo un protón un electrón y un antineutrino. Pero los físicos nucleares teóricos predijeron que una de cada mil veces los neutrones decaerían en todas esas partículas y además en un fotón.

Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según  la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.

Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.

Bosones

Nombre Símbolo Carga eléctrica
(e)
Carga de color Spin Masa en reposo
(GeV/c²)
Existencia Vida media Desintegraciones más importantes
Fotón \mathrm{\gamma}\,\! Neutra Neutra 1 Nula Confirmada Estable
Bosón W \mathrm{W^{\pm}}\,\! ± 1 Neutra 1 80,425 Confirmada 3·10-25 \begin{matrix}                         {}_{W^{+}\,\rightarrow\,q + \bar{q}} &                         {}_{\approx67%} \\                        {}_{W^{+}\,\rightarrow\,\ell^+ + \nu_\ell} &                         {}_{\approx33%}                  \end{matrix} [1]
Bosón Z \mathrm{Z^{0}}\,\! Neutra Neutra 1 91,187 Confirmada 3·10-25
Gluón \mathrm{g}\,\! Neutra Color + Anticolor 1 Nula Confirmada Estable
Gravitón \mathrm{G}\,\! Neutra Neutra 2 Nula Hipotética Estable
Higgs“>Bosón de Higgs \mathrm{H}\,\! Neutra Neutra 0 > 114 Hipotética Inestable \begin{matrix}                         {}_{H\,\rightarrow\,t + \bar{t}} &                         {}_{???\,%} \\                        {}_{H\,\rightarrow\,b + \bar{b}} &                         {}_{???\,%}                  \end{matrix}

Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”

Foto

Típicamente el neutrón decae en un protón, un antineutrino y un electrón. Muy raramente lo hace radiativamente emitiendo además un fotón. Diagrama: Zina Deretsky, National Science Foundation.  Fue difícil observar los fotones porque el haz está contaminado con fotones que fondo que producen mucho “ruido” en las medidas, por lo que era como buscar una aguja en un pajar. El decaimiento radiativo del neutrón es importante porque conecta directamente con el modelo estándar de partículas.

Si la vida de una partícula  es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.

Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.

Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).

            En el Universo existen muchas clases de resonancias…inesperadas

Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.

Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:

∆⁺⁺→р + π⁺;  ∆⁰→р + πˉ; o п+π⁰

En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.

El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (materia), es aún limitado. Los cuadros que aparecen arriba, están referidos a las partículas más usuales como los Quarks y los Leptones (verdaderos componentes de la materia) que a su vez, son: Los Quarks los que forman a los Hadrones y los Leptones los que completan el núcleo atómico de la materia para conformar los átomos. He dejado a los mesones y a las supuestas partículas supersimétricas centrándome en las que me parecen principales en la conformación de la materia.

emilio silvera

Nuevas maneras de mirar al Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en el futuro    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Quedó, hace algún tiempo, instalado el espectrógtafo de Infrarrojo Cercano en el Telescopio James Webb. Veremos que maravillas nos depara.

02.04.14.- En Marzo, el Espectrógrafo de Infrarrojo Cercano (NIRSpec) del Telescopio Espacial James Webb fue instalado en el módulo de instrumentos. El NIRSpec se une a la cámara de infrarrojo cercano (NIRCam), un sensor de guiado de precisión y una cámara en el infrarrojo cercano y un espectrógrafo sin ranura (FGS-NIRISS), y una cámara y espectrógrafo en el infrarrojo medio (MIRI), que ya se encuentran integrados en el Módulo de Instrumentos Científicos, por lo que el módulo de intrumentos está completo.

 Instalacion de espectrógrafo de infrarrojo cercano en el telescopio espacial James Webb
 Instalación de espectrógrafo de infrarrojo cercano en el telescopio espacial James Webb. Image Credit: NASA/Chris Gunn

El Telescopio Espacial James Webb es un gran telescopio espacial, optimizado para longitudes de onda infrarrojas. Su lanzamiento está previsto a finales de esta década. Webb encontrará las primeras galaxias que se formaron en el universo temprano, conectando el Big Bang a nuestra propia galaxia la Vía Láctea. El telescopio espacial James Webb y sus instrumentos están optimizados para captar la luz infrarroja y así poder estudiar la radiación emitida por galaxias remotas y observar a través del denso velo de polvo que envuelve a algunos objetos, como los embriones de estrellas.

Este telescopio alcanzará un nivel de sensibilidad sin precedentes, ya que se encontrará a 1.5 millones de kilómetros de la Tierra en dirección opuesta al Sol y protegido por un parasol del tamaño de una cancha de tenis, que le mantendrán alejado de las influencias de la atmósfera terrestre, a baja temperatura, y en la más absoluta oscuridad. El Telescopio Espacial James Webb es un proyecto conjunto de la ESA, la NASA y la Agencia Espacial Canadiense diseñado para tomar el relevo del exitoso telescopio espacial Hubble.

El Telescopio Espacial James Webb (en inglés James Webb Space Telescope o JWST), es un observatorio espacial en fase de desarrollo que estudiará el cielo en frecuencia infrarroja, sucesor científico del telescopio espacial Hubble y del Spitzer. Las principales características técnicas son un gran espejo de 6,5 metros de diámetro, una posición de observación lejos de la Tierra, en órbita alrededor del punto L2 del sistema Sol- Tierra, y cuatro instrumentos especializados. La combinación de estas características le dará una resolución sin precedentes y sensibilidad de larga longitud de onda visible al infrarrojo medio, permitiendo sus dos principales objetivos científicos –estudiar el nacimiento y evolución de las galaxias y la formación de estrellas y planetas.

От Большого взрыва к Нобелевской премии и границам Вселенной, Джон Мазер, 27 ноября 2009

Si ellos pudieran contemplar hasta donde hemos llegado en la sostificación de los ingenios que podemos fabricar y que son capaces de captar galaxias y estrellas situadas al filo de su nacimiento, hace ahora más de 12.000 millones de años-luz… ¡Se morían del susto!

hubble_vs_Jwst_black2.jpg

Paso a paso, sin que apenas nos demos cuenta, cada día nos acercamos un poco más al futuro que vendrá y, aunque nosotros seguimos instalados en el presente, estamos haciendo todo lo preciso para que ese futuro sea muy diferente al hoy, y, en relación al Universo y a la Naturaleza misma (también la nuestra), estamos avanzando de manera imparable. Cada nuevo conocimiento conquistado, nos posibilitan la apertura de nuevas puertas, antes cerradas, y, detrás de ellas, encontramos respuestas nuevas.

¿Que nos dira el James Webb Space Telescope?

Esperémos que mucho de lo que ahora no sabemos.

 

¿Cómo será el futuro?

Autor por Emilio Silvera    ~    Archivo Clasificado en El futuro tecnológico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

mitocondria

 

¿Qué nos espera en los próximos 10 años?

Lo cierto es que, cada vez que ha salido alguien, que como el precursor de la ciencia ficción, el entrañable Julio Verne, nos hablaba de viajes imposibles y de mundos insólitos, nadie pudo creer, en aquellos momentos, que todas aquellas “fantasías” serían una realidad en el futuro más o menos lejano. Todo lo que él imagino hace tiempo que se hizo realidad y, en algunos casos, aquellas realidades fantásticas, han sido sobrepasadas como podemos contemplar, en nuestras vidas cotidianas. Ingenios espaciales surcan los espacios siderales y, otros, lo hacen por el misterioso fondo oceánico como fue predicho hace más de un siglo.

Los profetas modernos resultan ser Físicos que nos hablan de sucesos cuánticos que no llegamos a comprender y que, son ¡tan extraños! que nos resultan poco familiares y como venidos de “otro mundo”, aunque en realidad, son fenómenos que ocurren en las profundidades del mundo de la materia.

Cada vez van siendo menor los visionarios y más los estudiosos científicos, tanto teóricos como experimentadores que, en todos los campos, nos llevan, sin que nos demós cuanta , hacia el futuro que, ¡puede ser de tántas maneras! Precisamente por eso, será bueno que nuestras mentes, no se resignen a que estémos confinados aquí, en esta nave espacial que llamamos Tierra y que surca el espacio interestelar a muy buena velocidad aunque no todos sean conscientes de ello.

Ascensor espacial. Erkki Halkka

              Ascensor Espacial Erkki Halkka

Los avances que veremos en este mismo siglo, en todos los ámbitos del saber humano, serán sorprendentes y cambiaran nuestras vidas, nuestra Sociedad para el próximo siglo, será ya muy diferentes a ésta que conocemos. Nuestras propias vidas darán un salto cuantitativo y cualitativo en su período de duración y en su calidad de bienestar, podremos vivir un siglo y medio y tendremos menos enfermedades que . las posibles innovaciones tecnológicas en campos tan dispares como la salud, la economía, la demografía, la energía, la robótica, el espacio, las telecomunicaciones y los transportes, darán un vuelco a nuestra forma de vida y entraremos en otra fase del futuro que viene y del pasado que dejamos atrás.

File:Types of Carbon Nanotubes.png

Estos serán los materiales con los que se construi´ra ese ascensor “imposible” que nos llevará 500 Km lejos de la Tierra, las Estaciones Espaciales con las que se podrá acoplar, sin ninguno de los riesgos que conllevan los transbordadores actuales impulsados por Hidrógeno líquido de fácil combustión, es decir, los pasajeros van montados sobre una bomba volante y, al mejor fallo…

Los ascensores espaciales eran hasta hace muy poco materia de ficción pura, pues ningún material conocido podía soportar la enorme tensión producida por su propio peso. Actualmente ciertos materiales comienzan a parecer viables materia prima: los expertos en nuevos materiales consideran que teóricamente los nanotubos de carbono pueden soportar la tensión presente en un ascensor espacial.3 Debido a este avance en la resistencia de los nuevos materiales, varias agencias están estudiando la viabilidad de un futuro ascensor espacial:

En Estados Unidos, un antiguo ingeniero de la NASA llamado Bradley C. Edwards ha elaborado un proyecto preliminar que también están estudiando científicos de la NASA.3 Edwards afirma que ya existe la tecnología necesaria, que se necesitarían 20 años construirlo y que su costo sería 10 veces menor que el de la Estación Espacial Internacional. El ascensor espacial de Edwards no se parece a los presentes en las obras de ficción, al ser mucho más modesto y a la vez innovador en lo que concierne a su eventual método de construcción.

Este sería el final del recorrido y estaría preparado para conectar con bases espaciales. nos parece un suelo paero hace tiempo ya que se está trabajando, de manera muy seria, en su construcción en un futuro próximo y, desde luego, conseguirlo será un buen logro.

Existen algunos tratamientos con células madre, pero la mayoría todavía se encuentran en una etapa experimental. Investigaciones médicas, anticipan que un día con el uso de la tecnología, derivada de investigaciones para las células madre adultas y embrionarias, se podrá tratar el cáncer, , heridas en la espina dorsal y daño en los músculos, como también se podrán tratar otras enfermedades. Se les presupone un destino lleno de aplicaciones, que van desde patologías neurodegenerativas, como la enfermedad de Alzheimer o de Parkinson, hasta la fabricación de tejidos y órganos destinados al trasplante, pasando por la diabetes y los trastornos cardíacos.

En un futuro se espera utilizar células madre de cordón umbilical en terapia génica: podemos así tratar enfermedades causadas por la deficiencia o defecto de un determinado gen, introduciendo un determinado gen en la proliferación de las células madre In Vitro y trasplantar tales células en el paciente receptor. El uso de otros tipos de células como portadores de genes buenos en pacientes con enfermedades causadas por deficiencias o déficits genéticos, está siendo testeado a nivel clínico. El primer trasplante de órgano bioartificial en humanos, por su , confían en que pueda ver la luz dentro de “unos cinco o diez años”.

La bioinformática o la biotecnología consiste en la aplicación de tecnología informática en el análisis de biológicos . Los principales esfuerzos de investigación en estos campos incluyen el alineamiento de secuencias , la predicción de genes , predicción de la expresión génica y modelado de la evolución . Algunos ejemplos son el diseño de organismos para producir antibióticos , el desarrollo de vacunas más seguras y nuevos fármacos, los diagnósticos moleculares, las terapias regenerativas y el desarrollo de la ingeniería genética para curar enfermedades a través de la manipulación génica. Veamos algunas de ellas…

                  Formas nuevas de comunicarse y de adquirir datos e información

                         La fusión, energía limpia y barata y, sobre todo, inagotable

Y mientras el mundo está pendiente de la crisis económica internacional, científicos e ingenieros trabajan intensamente en lo que podría ser la solución a los problemas energéticos del futuro. La palabra clave es “fusión”. Al contrario que la tradicional energía nuclear, la energía de fusión es limpia y no contamina y, sus resifuos, es el Helio fácilmente aprovechable. El Proyecto ITER sigue adelante.

Últimos avances en medicina

La ciencia de la medicina está avanzando a pasos agigantados. Los últimos avances en medicina que se dieron en estos diez o quince años pasados han sido sorprendentes, y podemos esperar un salto muy grande en la medicina dentro de los próximos años.

Algunos descubrimientos todavía no están al alcance de los pacientes, a pesar de que ya se han revelado grandes avances científicos son necesarios muchos estudios y pruebas antes de que se puedan aplicar. No perdamos de vista en ámbito del saber humano, ni la genética ni las nuevas nanotecnologías, lo que llaman el ojo biónico, la sangre artificial…

Cambiaran nuestras ciudades y nuestras Sociedades serán diferentes, los nuevos conocimientos llegarán también, a la vida cotidiana del habitat humano y a su forma de trabajo, de viajar, e, incluso los alimentos del futuro no muy lejano, nos harán recordar con cierta nostalgia, estos que criticamos.

            Los modernos celulares irán insertados en el brazo

     Cualquier vivienda será controlada por mecanimos informáticos

Este programa va más allá de los avances actuales para revelar la tecnología e inventos que nos permitirán ver a través de las paredes, viajar en el tiempo y en el espacio y colonizar planetas distantes. La tecnología inteligente que llevará ayudantes robóticos a los hogares, ciudades enteras a la Internet, y sistemas de entretenimiento que harán los sueños realidad en virtual. Sí, virtual hoy pero… ¿Y mañana?

¡Tantas galaxias y estrellas, tantos mundos, tantas maravillas! Si no podemos en un futuro más o menos lejano, visitarlas, ¿ qué tanta diversidad y tanta belleza? Si están ahí, por algo será y, nosotros, aunque parezca que somos una ínfima cuestión en tan vasto Universo, seguramente serémos, unos privilegiados llamados a realizar grandes cosas. A pesar de nuestras muchas faltas y carencias…¡Lo estamos logrando!

Ya hemos dado los primeros pasos y, nuestros ingenios espaciales tecnológicos robotizados, han realizado nosotros las tareas que, de momento nos están vedadas pero, demslé tiempo al tiempo y, sin duda alguna, en ese futuro soñado, estaremos en las estrellas y en esos otros mundos que presentimos hermanos de la Tierra y que podrán acoger a la Humanidad que, dentro de otros cincuenta años, llegará a la cifra de 8.000 millones de seres y, nuestro planeta, no puede con todo.

El futuro convive ya con nosotros y, al tenerlo tan cercano, no le prestamos atención a esos muchos cambios que con nosotros conviven. Lo cierto es que debe ser así, de otra manera, los cambios tan bruscos que se están produciendo, nos traumatizaría y, sin embargo, lo tomamos -unas veces por comprenderlos y otras por ignorarlos- con toda la normalidad. Esa es la manera en la que se desenvuelve el mundo de nuestra especie.

http://www.fondos10.net/wp-content/uploads/2009/01/3d-espacial-1024-x-768-o.jpg

                                                                                            Sueños convertidos en realidad

¿Cómo no podemos predecir que le puede pasar a la Tierra en el futuro?, mejor será ir “preparando las maletas” que, como decía mi padre, un viejo marinero curtido en mil tempestades: ¡”Más vale, un por si acaso, que un yo creí”!

emilio silvera

¡La curiosidad! Siempre con nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

hubble2

Me ha venido a la memoria escenas y hechos que, en la última charla que pude dar en un Centro Educativo,  en el apartado de Ciencia, para chavales de 2º de Bachillerato, comencé la sesión ilustrándola con la Imagen de arriba, de la que di una breve explicación antes de entrar en materia: Nacimiento, Vida y Muerte de las estrellas y, de lo que hacían durante eseos largos períodos de tiempo y, en qué se convertían al final de sus vidas como estrellas.

El caso fue que, comencé con las explicaciones y, de entre el auditorio de jóvenes llenos de energía y revoltosos, algunos, no prestaban atención y, además, con sus bromas y risas, no dejaban que los demás, se pudieran interesar en lo que allí se trataba.

Aquella actitud de algunos, me obligó a parar la exposición y, mirando seriamente a los alborotadores, les dije: Chicos, si el tema no os interesa, y queréis salir de aquí siendo un poco más “burros”, sois libres de hacerlo. Sin embargo, os ruego que, si finalmente decidías seguir con nosotros, y al final ser un poco más “sabios”, dejéis de alborotar.

Como ya son “hombrecitos y mujeres”, la reprimenda tuvo su efecto y, a partir de aquel momento, todos estuvieron atentos a mis palabras con las que fui desgranando, despacio y con palabras sencillas, lo que era una explosión de supernova y cómo dejaba regada una amplia región del espacio interestelar por una hermosa e inmensa nebulosa de cuyos materiales, vuelven a nacer nuevas estrellas y nuevos mundos.

Imagen de la formación de una estrella tomada por un nuevo telescopio. (Foto: ESA).

Apoyaba mis palabras con imágenes  como la de arriba.  La fotografía combina diferentes radiaciones, como rayos X, infrarojos o luz visible, y genera una amalgama de colores que aportan información importante para entender cómo llega una estrella a ser una estrella. Esta imagen ofrece una interesante mirada hacia el interior de la región activa de estrellas en ciernes llamada NGC 346. Los científicos responsables del telescopio aseguran que revela información nueva sobre cómo se forman las estrellas en el Universo.

La NASA publicó un video (1/09/2011) donde se aprecia el proceso de nacimiento estelar. Con grandes chorros de gas incandescente nacen las estrellas a millones de años luz, algo que ahora está al alcance del ojo humano a través de un vídeo reconstruido con imágenes fijas tomadas por el telescopio Hubble.  El vídeo, publicado en la página web de la agencia espacial estadounidense (NASA), ofrecía nuevos detalles sobre el proceso de nacimiento estelar, en el que se pueden apreciar los chorros de gas que expulsan las estrellas jóvenes con un detalle hasta ahora nunca visto.

A medida que las explicaciones avanzaban, pude notar como el interés de los chicos crecía. Ya no bromeaba nadie, la sala estaba en silencio y todos, sin excepción, se veían interesados e incluso, algunos, tenían la boca abierta por asombro. Allí, lo que al principio era una simple charla para alumnos, se fue convirtiendo en un auditoriun donde, profesores y alumnos de otras clases llegaban y se unián a los ya presentes.

Les pude explicar con todo detalle y de la manera más sencilla posible, como se formaban los elementos en las estrellas a partir del Hidrogeno, el elemento más sencillo de la Naturaleza.

Les expliqué el proceso protón-protón que convertía Hidrógeno en Helio y el proceso triple Alfa que convertía Helio en Carbono, el material químicamente más idóneo para la vida -al menos aquí en la Tierra- y, se hizo un largo recorrido por la transmutación que se producía en  todos los elementos, a medida que transcurría el tiempo y la estrella evolucionaba.

Pude darles una buena noción de las clases de estrellas que existen y de que, no todas tienen las mismas masas y que, como consecuencia de ello, cada una de esas estrellas, viven más o menos tiempo y que, cuando al final mueren, lo hacen de muy diferentes maneras. Ya que, estrellas medianas como nuestro Sol, terminan creando una Nebulosa planetaria al convertirse en Gigante roja y, terminan sus días como enanas blancas de una gran densidad. Les expliqué el proceso que hacían hasta llegar a tal estado y los parámetros que, como ekl principio de exclusión de Pauli, estaban allí presentes. De la misma manera, les expliqué que, estrellas más masivas terminaban como estrellas de neutrones y más masivas aún, como agujeros negros.

El recorrido fue algo largo (más de lo esperado), ya que, vista la gran atención que todos ponían en las explicaciones y en las imágenes que se ivan poniendo en cada fasa del proceso explicativo, procuraba que el tema tratado lo fuera en profundidad y amplitud y, de esa manera, la cosa resultó, además de más amena, mucho más completa y, sobre todo, comprensible.

Cuando al final di la charla por finalizada, pregunté si alguien quería alguna explicación sobre algún aspecxto delo que habíamos tratado, y, las manos que se levantaban presagiaban un largo, muy largo debate. Y, así fue. Los jóvenes se interesaban por todo y, de entre todo lo explicado, las cosas que más llamaron su atención fueron, por ejemplo:

Que nuestro Sol, cada segundo, pueda fusionar 4.654.600 toneladas de Hidrógeno en 4.650.000 toneladas de Helio. Y, un observador inquisitivo, me preguntaba: ¿dónde están las 4.600 Tn que se han perdido? Bueno, le expliqué que habían sido lanzadas al espacio interestelar en forma de luz y de calor y, una pequeña fracción, llegaba a la Tierra para permitir la fotosíntesis y la vida.

Otra de las cuestiones que les llamó más la atención fue, cómo era posible que estrellas supergigantes, pudieran tener una vida más corta cuando tenían a su disposición mucho más material. Y, cuando les expliqué que, esas estrellas, no consumen sino que devoran literalmente el material nuclaer de fusión, comprendieron el por qué de sus cortas vidas.

Y, preguntaban cómo no todas las estrellas tenían el mismo color, amarillas como nuestro Sol. La exlicación, como sabemos, está en el hecho de que no todas están formadas por el mismo material: Hay estrellas de Carbono, otras son de Oxígeno, Litio, manganeso…, la diversidad es enorme.

Mostraron mucha curiosidad y más intewrés aún, al saber -no todos conocían tal hecho- que, los elementos para hacer posible, la bio-química de la vida, se fabrica en las estrellas, es allí, en sus hornos nucleares donde se producen los elementos que conforma la materia del Universo, su diversidad que, bajo ciertas condiciones y, en los mundos adecuados situados en las zonas habitables de sus estrellas, pueden hacer surgir formas de vida que, a veces, llegan incluso a ser conscientes, como ha pasado aquí, en la Tierra.

G292.0+1.8

Los remanentes de supernovas y de cómo en esas inmensas explosiones se producían oro y platino, también fue uno de los temas que llamó la atención del personal. Todos querían hablar al mismo tiempo y todos -era un auténtico gozo- tenían preguntas que plantear. Al final, el tiempo pasaba sin sentir y tuve que dar por finalizado el evento que, al contrario de lo que parecía al principio, fue todo un exito, sobre todo, al comprobar que aquellos jóvenes al terminar la charla y el coloquio, eran un poco “más sabios” que antes de empezar.

Claro que, no siempre las cosas salen tan bien paradas. Recuerdo aquel Asilo de Ancianos al que hace tiempo fuí a dar una charla de astronomía y, antes de terminar, estaban todos, prácticamewnte dormidos. La curiosidad y el interés, les había abandonado y, ese fue un día triste para mí.

emilio silvera