jueves, 28 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Física: Una clase sencilla

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Hablar de una Naturaleza simétrica sería condenar a nuestro Universo a la monotonía de la igualdad, y, todos sabemos que en él se encuentra todo lo que existe, la Materia, el Tiempo y el Espacio, todo ello acompañado por fuerzas que hacen de nuestro universo el que conocemos y, dentro de toda esa inmensidad, también se encuentran la simetría y la asimetría, como en nuestro mundo el día y la noche. La riqueza de la diversidad que conforma ese todo que el Universo es.

La exploración de la simetría y la asimetría en la Naturaleza comenzaba con el mayor de los objetos naturales: ¡El propio Universo! Y, hemos ido reduciendo gradualmente la escala de tamaños con estructuras cada vez más pequeñas. En otras ocasiones hemos tenido aquí mismo la oportunidad de hablar de la simetría que encontramos en la Naturaleza de las plantas y de los animales. Ahora, desvíamos nuestra atención hacia estructuras todavía menores, las diversas subunidades que constituyen todas las sustancias materiales, vivas o inertes.

Antes de continuar y para aquellos que lo puedan desconocer, será conveniente que tengan una conciencia clara de qué son exactamente estas unidades inferiores. Comenzando con las más pequeñas y yendo después en sentido ascendente, la escala sería:

Las partículas elementales que están descritas en el Modelo estándar actual de la física de partículas que conforman la materia y las fuerzas con las que interaccionan y que, hasta donde hemos podido saber, están divididas en familias:

Leptones: partículas puntuales con una dimensión espacial inapreciable. Los seis leptones conocidos  son el electrón, el muón y el tauón, y el neutrino asociado a cada uno de ellos, el neutrino electrónico, muónico y tauónico.

Hadrones: Son aquellas partículas que se cree que están compuestas de pequeñas partículas puntuales llamadas quarks. Se han identificado cientos de hadrones, de los cuales los más importantes son el protón y el neutrón, ya que junto con el electrón forman la materia ordinaria.

Bosones: Partículas de “cambio”, partículas “soporte”, partículas “mensajeras” o partículas “indicadoras”. Contienen o son intermediarias de las cuatro fuerzas: electromagnetismo (conducido por el fotón), la fuerza débil (conducida por los vectores bosones intermedios), la gran fuerza nuclear (por los gluones) y la gravedad (por el gravitón aún no detectado). A finales de lños años setenta, las fuerzas elecdtromagnética y débil se unificaron en lo que ahora llamamos la fuerza electrodébil. La teoría electrodébil predice un bosón masivo denominado partícula de Higgs que, según nos han dicho los del LHC, ha sido encontrado. Veremos que explicaciones nos facilitan sobre ese hallazgo que… ¡ha quedado huérfano de los datos precisos que nos convenzan de su existencia real!

            Representación de los tres bosones intermediarios en la fuerza electrodébil

Una vez descritas, muy someramente, las partículas de la materia y las fuerzas que rigen el universo conocido, tendríamos que pasar, de inmediato, al paso próximo que estaría representado por el átomo que, hasta donde conocemos, es la menor unidad estructural en la que puede dividirse la materia sin que pierda sus propiedades. En el centro de todo átomo está el núcleo, que debe contener al menos un protón, pero habitualmente está formado por una mezcla de protones y neutrones. Alrededor del núcleo, agrupados en “capas”, están los electrones. El átomo más sencillo, el de Hidrógeno, tiene un núcleo con un protón, alrededor del cual se mueve un único electrón. El átomo más complejo que se ha encontrado en la Naturaleza es el del Uranio, con 92 electrones. En el laboratorio se han encontrado algunos  elementos más complejos a los que se llaman transuránicos, es decir, que van más allá del uranio y que no se encuentran en la Naturaleza, son artificiales.

File:U-TableImage.png

Como podéis ver, el Uranio tiene 92 Protones y 146 Neutrones. Para equilibrar el átomo, el número de eletrones es también de 92, ya que al tener el elecdtrón, carga negativa equivalente a la carga positiva del protón, se consigue el equilibrio entre ambas y se alcanza la estabilidad, es decir, que el átomo sea neutro. Si un átomo pierde un electrón de su capa más externa se convierte en un átomo con carga positiva. Si gana uno, queda con carga negativa. Los átomos con carga eléctrica reciben el nombre de iones.

La molécula es una agrupación ordenada de átomos y constituye la mínima unidad de un elemento que puede subsistir de manera independiente. Mediante la afinidad química, los átomos están capacitados se unen entre sí y forman moléculas, que tienen un tamaño de alrededor de un millonésimo de milímetro. La afinidad de los átomos depende de la cantidad de electrones que giren alrededor del núcleo. Los átomos que tienen en la órbita externa ocho electrones no se unen a ningún otro elemento, dado que se encuentran equilibrados; estos constituyen los llamados gases nobles: helio, neón, argón, criptón, xenón y radón. Los demás átomos tratan de completar el número de ocho electrones hasta configurarse como los gases nobles. Es decir, los que tienen un electrón se combinan con los que tienen siete electrones.

Un equipo de científicos del Instituto de Astrofísica de las Canarias (IAC) y la Universidad de Texas lograron identificar una de las moléculas orgánicas más complejas encontradas hasta ahora en la materia entre las estrellas, el llamado espacio interestelar. El descubrimiento del antraceno podría ayudar a resolver un misterio astrofísico de décadas de antigüedad sobre la producción de las moléculas orgánicas en el espacio.

Buscar moléculas de azucar en el espacio exterior, sería una manera de acercarnos a posibles formas de vida en las que, estas moléculas están presentes y, como sabéis (la imagen de arriba lo demuestra), han sido halladas tales moléculas por el potente radioteslecopio ALMA en el norte de Chile que permitió detectarlas moléculas en torno a una estrella joven, similar al sol, un inédito hallazgo para la ciencia, según el Observatorio Europeo Austral (ESO).

Moléculas orgánicas observadas por Herschel en Orión. | ESA, HIFI, Bergin & HEXOS

Este espectro tomado por el telescopio espacial de infrarrojos HERSCHEL ilustra la variedad molecular existente en una nube interestelar como la de Orión. Agua, monóxido de carbono, metanol, formaldehído, cianuro de hidrógeno, óxidos de azufre y otras moléculas (de las cuales hay muchas aún sin identificar) dejan sus firmas inequívocas en la emisión del infrarrojo lejano que se origina en la nebulosa. El espectro se muestra superpuesto a una imagen (también infrarroja) tomada por el telescopio espacial Spitzer.

Muchas son ya las moléculas de la vida ahí encontradas. Si una sustancia está formada por un único tipo de átomos, diremos que es un elemento. Cuando una molécula está formada por átomos de distintos tipos, la sustancia se llama compuesto. El agua es un compuesto: su molécula consta de dos átomos de hidrógeno unidos por un enlace químico (electromagnético) a un átomo de oxígeno. El número de átomos que constiruyen la molécula de un compuesto puede variar desde dos o tres hasta las decenas de miles que conforman la molécula de un complejo proteínico.

Si miramos esta imagen de visión de rayos X de un cristal de hielo que tiene simetría exagonal, es la equivalente a multiplicar el original por 100000000. Los átomos de oxíogeno se representan como bolas  rojas y los de Hidrógeno como bolas azules más pequeñas. Todos los enlaces entre estos átomos se representan como barras blancas para resaltar la red hexagonal en forma de colmena que forma el conjunto de moléculas de H2O.

En el agua líquida también hay molécuklas de H2O, pero en ese caso se encuentran más calientes que en el hielo. Lo que significa que se mueven mñás libremente y de hecho esa es la razón de que el agua sea un líquido sin forma propia y se adapta al recipiente que lo contiene. Pero si el agua se congela, las fuerzas de interacción entre las moléculas de H2O ganan a las fuerzas derivadas del movimiento térmico y forman un conjunto rígido que presenta su estado más estable (de menor energía) cuando se ordenan… precisamente con simetría Hexagonal.

Por eso los cristales de nieve son siempre hexagonales. La estructura de los cristales a nivel atómico determina su forma final. Y este no es un ejemplo aislado. La composición y la estructura a nivel atómico y molecular es la clave que determina la estructura, dureza y demás propiedades en general de todos los materiales que nos rodean. Hasta aquí llegan las escalas de estructuras básicas.

Naturalmente, podemos hablar de unidades todavía mayores, como los minerales  y las rocas. Un mineral es, simplemente un elemento o un compuesto en estado sólido que se encuentra en la Naturaleza y que no es el resultado de un proceso biológico; pero si un mineral presenta una, se trata de una estructura cristalina derivada de la colocación de sus moléculas. Las rocas son, sencillamente, mezclas de uno o más minerales diferentes. Como sabemos, las rocas presentan a veces algún tipo de dibujo , como los estratos horizontales de las rocas sedimentarias, pero el trazado es de tan bajo nivel que no se piueden llegar a tomar en consideración cuestiones de simetría como las que antes hemos referido.

Si comenzamos por la parte más alta de la escala, con la estructura de los cristales y seguir bajando por dicha escala hasta la selva  subatómica de las partículas elementales. Sólo los sólidos tienen estructura cristalina. Las moléculas de un gas están tan alejadas las unas de las otras que tienen la libertad de moverse al azar, y es imposible encontrar un modelo geométrico sistemático en su disposición. Os acordáis las formas arabescar de increíble belleza que adoptan, los gases en algunas Nebulosas.

Los fullerenos podrían ser los responsables de haber llevado a la Tierra sustancias capaces de impulsar el inicio de la vida. Los científicos han podido encontrar moléculas de fullerenos en las nubes espaciales que podrían ser, las precursorasa de la vida. ¡El Carbono! ¿Cuántas sorpresas nos tiene reservada este maravilloso elemento?

Si hablamos de las moléculas de un líquido, asl contrario de lo que ocurre con las moléculas de los gases, éstas están más juntas y próximas entre ellas, pero todavía son lo suficientemente libres en sus movimientos como para que no se puedan formar modelos fijos. Los sólidos, por otra parte, tienen moléculas que se aprietan estrechamente entre sí para poder crear una estructura rígida y estable. (En realidad, los átomos de un sólido siguen oscilando, pero las fuerzas electromagnéticas las enlazan tan estrechamente que sus oscilaciones son practicamente posiciones fijas. Para nuestro propósito supondremos que los átomos no tienen movimiento alguno.) En casi todos los casos se estereotipa esta dispoosición sistemática, que constituye la estructura cristalina del sólido.

                      El agua en sus tres estados: hielo, agua líquida y vapor en las nubes

Consideremos el agua. Tanto en su estado gaseoso (vapor) como líquido, sus moléculas están en una disposición caótica, pero cuando se hiela y pasa al estado sólido, las moléculas se agrupan entre sí en forma de figuras geométricas. El bello cristal de nieve, con simetría hexagonal, como el dibujo de un caleidoscopio, toma su forma directamente d ela forma cristalina subyacente de las moléculas de hielo de su congelador a los gigantescos Icebergs del Ártico, todos tienen la misma estructura cristalina.

Casi todas las sustancias sólidas son cristalinas, aunque el vidrio es una excepción sobresaliente; se origina al enfriarse determinados líquidos de manera tan rápida que las moléculas se agrupan estrechamente antes de tener la menor opción a disponerse de forma ordenada. Sólido o no no, un cristal no es  cristalino. El vidrio tallado de un bello jarrón que es “cristal” para el dependiente de la tienda, no es cristal para el físico.

Las pitonisas que utilizan esferas pulidas procedentes de grandes cristales de cuarzo simples para predecir el futuro mirando a su través, hoy en día lo hacen a menudo a través de esferas de vidrio, puesto que son más baratas. Sería interesante saber si el futuro parece más claro mirándolo por un material en desorden o bien a través de una estructura ordenada.

Los sólidos no cristalinos se llaman amorfos; algunos químicos hablan de ellos como sólidos líquidos ya que, igual que éstos últimos, , carecen de estructura cristalina. El carbón vegetal, las breas y ciertos plásticos, son ejemplos familiares, sustancias que participan con los líquidos en la tendencia a “fluir”, aunque la capacidad de flujo puede ser extremadamente lenta. Incluso el vidrio acabaría fluyendo fuera de su forma si no se tocara durante algunos cientos de años.

La forma geométrica subyacente de cualquier sustancia cristalina se denomina la red de la misma. Unas veces es una configuración de átomos; otras de moléculas. El dióxido de Carbono, por ejemplo, se encuentra en la naturaleza en forma de gas; cuando su temperatura disminuye lo suficiente, se solidifica y se convierte en lo que se llama hielo seco. (Recibe el nombre de seco porque nunca se convierte en líquido, como el hielo ordinario; pasa directamente de sólido a gas.) En él, las moléculas de dióxido de carbono se agrupan entre sí formando la red cúbica con estructura semejante a las vigas de acero de un edificio de oficinas. Las moléculas situadas en las caras de cada cubo dan a esta red concreta el nombre de red cúbica de caras centradas, es decir, así:

           Aquí, cada unidad es una molécula de Dióxido de Carbono.

La sal es uno de los minerales que más abunda en la Tierra. Su nomenclatura química, Cloruro de Sodio, se debe a sus dos iones componentes: cloro y sodio. La estructura de este compuesto, es un cristal con forma de cubo, en la que los átomos de cloro y sodio, dispuestos alternadamente, forman una red cúbica que se va repitiendo con la misma orientación en toda la sustancia, formando una red cristalina.

La sal no sólo sirve para sazonar. Sus iones son fundamentales para la transmisión de impulsos nerviosos, para los latidos del corazón, para la contracción muscular y para desencadenar una respuesta inmune. ¡La próxima vez que aliñen una ensalada, piensen en esto!

No se debe pensar que, por estar por debajo del campo de visión de un microscopio, estas estructuras reticulares no son sino construcciones teóricas que los físicos no han sido capaces de observar. Hubo un tiempo en que esto era así, pero en la actualidad existen muchas técnicas que permiten “ver” estructuras mucho más pequeñas que las que pueden ser vistas directamente. Hoy día, los microscopios electrónicos nos permiten ver lo que nunca pudimos.

 

 

microscopio-electronico-04

 

Aprecien como se forma la red de fibras que hace posible la cicatrización de una herida.

 

 

microscopio-electronico-05

 

Aqui podemos ver un cristal de óxido de zinc, unido a una malla amorfa de carbono.

microscopio-electronico-11

Lo que vemos aquí es el cuerpo tratando de curarse a sí mismo. Los objetos con forma de cigarro de color amarillo son las bacterias de la tuberculosis. En torno a ella aparecen los macrófagos. Un macrófago es un fagocito, son células que nos protegen de objetos extraños.

microscopio-electronico-12

Las esferas que pueden verse aquí son las esporas creadas por el hongo Emericella nidulans. Producen la hidrofobina proteína que hace que las esporas resistentes al agua.

microscopio-electronico-17

¿Ha tenido caries en los dientes? Caries es causada por la bacteria Streptococcus mutans que convierte el azúcar queda en la superficie de sus dientes a los ácidos. Ese ácido corroe el esmalte dental provocando la caries. Aquí en color azul los Streptococcus mutans está atacando la superficie de un diente.

Explorar el misterio del spin del protón ha sido uno de los objetivos de la investigación científica fundamental en el RHIC

Hemos podido alcanzar a “ver” objetos y figuras estacionadas en esas distancias infinitesimales, nuestros ingenios tecnológicos pueden aumentar, en millones de veces, las proporciones físicas de pequeños objetos y sistemas. Hasta tal punto es así que, si pudiéramos tener delante de nuestros ojos lo que esos experimentos han logrado, nos parecería estar, en un mundo diferente, tan extraña y figuras podríamos contemplar en ese ámbito de lo muy pequeño.

Descendiendo muchísimo en la escala y si consideramos las moléculas como unidades individuales, completamente diferenciadas en los que puedan estar sumergidasa, ¿tienen siempre una estructura simétrica? Si es así, cuando un compuesto dse halla en la Naturaleza o bien se crea en el laboratorio, sus moléculas serán siempre iguales y el compuesto tendrá siempre las mismas propiedades, pero si una molécula está formada por una estructura asimétrica de átomos, sería posible encontrar, o crear en el laboratorio, dos formas completamente distintas del mismo compuesto. Una de ellas contrendría exclusivamente  moléculas orientadas hacia la derecha; la otra, moléculas orientadas hacia la izquierda. Las dos imágenes serían la imagen especular de las de la otra.

          Una molécula con n estereocentros tiene un máximo de 2n estereoisómeros.

Me gustaría contaros aquí y en este momento, la sensacional historia del descubrimiento de los esteroisómeros pero, no teniendo mucho espacio para finalizar el trabajo, lo dejaré para otra ocasión. Digamos, sin embargo que, el descubrimiento de las moléculas con orientación iaquierda o derecha comenzó en Francia durante la primera parte del siglo XIX. Jean Baptiste Biot, un renombrado físico y químico francés, había descubierto la propiedad de los cristales de cuarzo de desviar un plano de luz polarizada. Una sustancia que tenga esa propiredad se dice que es ópticamente activa.

Bueno amigos lectores, no siempre tenemos que hablar de grandes galaxias y espacios inconmensurables, y, de vez en cuando, conviene bajar a las profundidades del “universo infinitesimal” en el que viven partículas, átomos y moléculas que, como todo en la Naturaleza están sometidas a una serie de leyes que rigen sus comportamientos y, conocerlos, saber lo que allí pueda pasar, es bastante lucrativo para poder aplicar, dichos conocimientos a este mundo macroscópico nuestro y saber, por qué ocurren ciertas cosas en nuestro “gran mundo”.

Ya sabéis: ¡Todo lo grande está hecho de cosas pequeñas!

emilio silvera

El Planeta Marte que… ¡Desata nuestra imaginación!

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

“26 de julio de 2014, fue descubierto en el año 2.013 por unos astrónomos australianos y se le denominó Siding Spring, nos referimos a un nuevo cometa que apareció en los objetivos de las cámaras de los científicos que estudiaban nuestro firmamento. Pronto se efectuaron los cálculos pertinentes y vieron que su órbita cruzaba la de Marte, pero lo importante es que este próximo octubre el cruce lo hará a tan solo 132.000 kilómetros de distancia de la superficie del planeta rojo. Por tal motivo la NASA está preparando el encuentro con ese cometa gracias a las naves que dispone en órbita marciana, básicamente el estudio estará auspiciado por la MRO (Mars Reconnaissance Orbiter), pero como el 21 de septiembre la MAVEN (Mars Atmosphere and Volatile Evolution) entrará en órbita del planeta, también a este nuevo ingenio se le asignarán diversos estudios del cuerpo celeste. Esto sucederá el 19 de octubre, pero los técnicos no están tranquilos, pues las partículas emitidas por la cola y el coma del cometa podrían perjudicar gravemente a los satélites mecánicos que trabajan para aportar conocimientos del propio Marte.”

 

Contado por José Oliver en la Enciclopedía de la Astronáutica

 

Dejémos la noticia para dar un repaso al planeta hermano, que estándo tan cerca lo tenemos tan lejos de nuestro alcance físico y no podemos pisar su superficie por falta de los medios técnicos que nos pudieran asegurar la integridad de los viajeros visitantes. Muchos son los peligros que conllevarían un viaje tripulado a aquel planeta y, no tenemos los conocimientos necesarios para poner al servicio de ese viaje espacial los medios tecnológicos que harían falta para poder llevarlo a buen término.

 

La sonda Mars Express de la Agencia Espacial Europea captó en Marte las imágenes del cañón más grande del sistema solar, conocido como Valles Marineris, un accidente geográfico de cuatro mil kilómetros de longitud, 200 de ancho y 10 de profundidad.

MARS Valles Marineris II by Grafik

                                  Verdaderamente, el Cañón de Marte es, además del más grande el Sistema Solar, una maravilla natural

Todos hemos visto, en más de una ocasión, imágenes del planeta Marte de regiones dispares y de variado contenido. Marte, el cuarto planeta desde el Sol, aparece marcadamente rojizo cuando se observa a simple vista. Tiene una delgada atmósfera compuesta (en volumen) por alrededor del 95% de dióxido de carbono, 2,7% de Nitrógeno, 1,6% de Argón, 0,1% de Oxígeno, 0,1% de monóxido de carbono y pequeñas trazas variables de vapor de agua. La presión atmosférica en la superficie es de unos 6 mbar. Las temperaturas superficiales pueden variar entre 0 y -125ºC, siendo la media de -50ºC. Es relativamente común la presencia de nubes blancas de vapor de agua condensada o de dióxido de carbono, particularmente cerca del terminador  y en latitudes polares.

Existen dos casquetes  de hielo de agua permanentes en los polos, que nunca se funden. En invierno éstos aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado hasta alcanzar los 60º de longitud. Ocurren esporádicamente tormentas de polvo que llegan a cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares.

Recientes imágenes de la NASA muestran “sombras de árboles” sobre la superficie de las dunas en Marte, que en realidad son caminos de arena, según publicaron numerosos periódicos británicos. Un vídeo circulante en Internet muestra imágenes de supuesta vida en Marte tras un retoque digital. Ver para creer.

La superficie de Marte es basalto volcánico con un alto contenido en hierro y, su oxidación, es la responsable de su color característico rojo oxido. El accidente oscuro más prominente, Syrtis Major, dirigida hacia el Este con una inclinación menor que 1º. Existen muchas áreas de dunas de arena rodeando las más grandes los casquetes polares y constituyendo los mayores campos de dunas del Sistema Solar.

Otra sorpresa que se han llevado los científicos ultimamente ha sido descubrir que, en algunos grandes cráteres de impacto, existen ingentes cantidades de agua helada con el grosor de una casa de 15 pisos. Está claro que el agua que planeta tenía en el pasado (océanos, lagos y ríos), habrá tenido que ir a alguna parte y, la mayor parte debe estar en el subsuelo y el resto, congelada por las temperaturas reinantes.

                                   Esta es una imagen de Marte (Cortesía de la NASA/JPL)

En el pasado existió una intensa actividad volcánica en Marte. Tharsis Montes es la mayor región volcánica, estando Olympus Mons situado en el Noroeste, y la vasta estructura colapsada Alba Patera, en el Norte. Juntas, estas áreas volcánicas constituyen casi el 10% de la superficie del planeta. Hoy no hay volcanes activos en Marte, aunque en el pasado produjeron llanuras de lava que se extendieron cientos de kilómetros.

Hay distribuidos cráteres de impacto a lo largo de todo Marte, aunque existe una altiplanicie casi completamente cubierta de cráteres, similar a las altiplanicies de la Luna, que cubre casi la mitad de la superficie del planeta, principalmente en el hemisferio Sur. Muchos de los cráteres de impacto más recientes, conocidos como cráteres de terraplén, tienen grandes pendientes en los bordes de su mantos de proyecciones, sugiriendo que la superficie estaba húmeda o llena de barro cuando se produjo el impacto.

Las cuencas de impacto más grandes mejor conservadas son Argyre y Hellas.

Esta es una imagen de la parte de Marte con el Sino Sabaus y de Regio Deucalionis. El cráter a la derecha inferior es Flaugergues, y el doble cráter en la parte inferior izquierda es Wislicenus. Esta imagen fue tomada por el Mariner 6 en 1969. En esta imagen pueden encontrarse muchas características que sugieren ríos Marcianos, e incluso la salida de una llanura central. Se recomienda ver esta imagen en alta resolución. (Cortesía de la NASA/JPL)
(282K GIF)

Internamente,  Marte probablemente tiene una litosfera de cientos de kilómetros de grosor, una astenosfera rocosa y un núcleo metálico de aproximadamente la mitad del diámetro del planeta. Marte no posee un campo magnético importante. Tiene dos pequeños satélites, Phobos y Deimos. Su diámetro ecuatorial es de 6 794 Km, su período de rotación axial (sidéreo) es de 24,623 horas, su densidad media es de 3,94 g/cm3, y, si consideramos que la masa de la Tierra = 1, la de Marte es de 0,11, el volumen de Tierra = 1, el de Marte = 0,15. La velocidad de escape es de 5,02 Km/s. Su distancia al Sol es de 1,524 UA.

             Percival Lowell

Pero veamos otros aspectos del planeta Marte que, durante décadas impactó en la imaginación de hombres como Giovanni Virginio Schiaparelli, Percival Lowell y Willian Henry Pickering que, a finales del siglo XIX y principio del XX, insistían en despejar las dudas sobre si existían realmente los Canales que hiucieron famosos estos personajes de leyenda. Más tarde, hace veinticinco años algo curioso sucedió en las cercanías del planeta Marte. La nave Vikingo 1 de NASA se encontraba volando alrededor del planeta, tomando fotografías de posibles lugares para el aterrizaje de la nave hermana Vikingo 2, cuando descubrió, sobre la superficie, una figura en sombras muy semejante a una cara humana. Una cabeza enorme de unos tres kilómetros de extremo a extremo parecía estar devolviendo la mirada a la cámara desde una región del Planeta Rojo conocida como Cidonia.

Imagínense la sorpresa de los controladores de la misión en el Laboratorio de Propulsión a Chorro, cuando la cara apareció en sus consolas. Sin embargo, la sorpresa duró poco tiempo. Los científicos fácilmente concluyeron que ésta era solo otra meseta Marciana, muy común en los alrededores de Cidonia, solo que esta tenía sombras extrañas que la hacían aparecer como un Faraón Egipcio.

ver leyenda

Pero, amigos míos, la nave Mars  Global Surveyor le ha abierto a la ciencia un nuevo horizonte en Marte. De alguna forma, el hombre, debe abordar de nuevo desde el principio la búsqueda de la vida en aquel planeta, lleno de secretos que sólo ahora empiezan a desvelarse después de más de un siglo de trepidantes debates entre astrónomos y aficionados.

La nave encontró inequívocos signos de la presencia de agua líquida en el planeta, algo que los científicos llevaban décadas tratando de confirmar. Es conocido que el agua líquida es el principal requisito para la vida tal como la conocemos nosotros, y si en el planeta rojo existe ese preciado elixir, como se ha podido comprobar mediante las investigaciones de la NASA, las posibilidades de que Marte sea un mundo vivo siguen plenamente vigentes.

Nombrar aquí a todos los personajes que, de una u otra manera han intervenido en la esperanza de encontrar vida en el planeta hermano, sería algo tedioso, pero no puedo dejar atrás al astrónomo más destacado de la historia reciente, Carl Sagan fue quien mantuvo siempre la esperanza en un Marte vivo, aunque su muerte ni siquiera le concedió la oportunidad de asistir a las siguientes misiones de la NASA en el planeta rojo, que en contraposición al balance de las Viking han permitido reabrir claramente las esperanzas de hallar vida allí, si no en el presente, tal vez si en el pasado.

Un cráter en suelo marciano que podría haberse formado por corrientes de agua

El examen de las rocas marcianas realizado por la Mars Pathfinder y su juguetón vehículo todoterreno Sojourner confirmó lo que ya tenían claro muchos expertos: el agua había pasado por allí, probablemente hace muchos millones de años, tal como revelan las huellas dejadas por gigantescas corrientes en las zonas de aterrizaje.

imagenes-marte

Estudiando el terreno en muchas de las regiones del planeta, de manera clara y precisa, se puede comprobar la presencia de agua que, al parecer, brota desde el subsuelo. Es preciso no perder de vista el carácter altamente volcánico de Marte que, hace mucho tiempo tuvo una gran actividad de importantes erupciones y, la enorme cantidad de lava que corría por inmensas zonas del planeta, entre otras cosas, debieron oradar el terreno abriendo enormes galerias subterráneas que, en la actualidad, al estar situadas en las profundidades del planeta, deben tener una temperatura mayor que en la superficie, están resguardadas de la radiación, y, si el agua corre por allí, no sería nada extraña que, colonias de bacterias, hongos y líquenes estuvieran bien asentadas a ese nivel interior.

15nkbaw Las imágenes más espectaculares de Marte

Tenemos que convenir que Marte, sigue siendo uno de los planetas más misteriosos del Sistema Solar, y, desde luego, es un buen aspirante para encontrar signos de vida presente, o, en último caso, del pasado. Nada puede negar la posibilidad de la existencia de agua líquida que pueda subsistir de forma permanente bajo la protección del suelo marciano, y si existen oasis en el subsuelo no puede descartarse en absoluto que Marte albergue sus propios  ecosistemas  subterráneos, lejos de la mortífera radiación ultravioleta que lelgan desde el Sol y de la que los seres vivos no pueden protegerse en la superficie al no haber una atmósfera lo suficientemente densa.

Cualquiera, hasta un profano, que observe algunas de las fotografías obtenidas en la sima Candor o de Ophir Chasma, ambas en Valles Marineris, tendrá ante sus ojos la prueba de que la historia de Marte no nos habla de un planeta estéril. Valles Marineris es, de hecho, el más completo entramado de cañones fluviales de todo el Sistema Solar, ya que tiene una longitud de 4.100 Km, una anchura aproximada a los 500 y puntos en los que la profundidad, alcanzan los 4 km. Aunque en sus agrestes formas parecen haber intervenido los movimientos internos de la corteza marciana, se da por hecho que fue el agua el principal agente que modeló lo que podríamos considerar como uno de los más bellos y extensos “parques naturales” de todo el  Sistema Solar.

                          A mí, todos estos escenarios me hacen imaginar…¡tantas cosas!

Está claro que, hoy en día sabemos de los océanos y mares que, hace millones de años adornaban el planeta Marte, y, sus Imágenes de hoy, claramente nos hablan de las correntías de cantarinos torrentes fluviales que, corriente abajo, oradaban las superficie del planeta dejando la huella de su presencia allí.

Valles Marineris y otros lugares del planeta tienen las pruebas de lo que Marte, en epasado fue. Puede ser que Lowell se equivocara sobre la existencia de unos canales construídos por la mano de seres inteligentes en aquel planeta. Él concibió “los canales” como obras de ingenieria de una civilización inteligente para transportar el agua, pero quizá no lo estuviera en lo más importante, es decir, en su convicción sobre la existencia de vida en Marte. Es algo que no sabemos aún pero que, probablemente, no tardaremos mucho en saber.

Una fotografía de la sonda Explorer Spirit, misión de la Nasa que está en Marte, reveló una extraña figura humanoide en medio del terreno rojizo del planeta, que los científicos intentan explicar. Una foto sorprendente de la Nasa, perteneciente a su misión de la Mars Explorer Spirit, causó conmoción al revelar una figura inequívocamente humanoide caminando cerca de una formación rocosa del planeta. Según los escépticos, se trata de una caprichosa formación de las rocas, pero de todos modos la fotografía no deja de asustar y, de camino, despierta la imaginación de lo que podría ser.

De Marte, el planeta misterioso que tantos sueños y pensamientos pudo en nuestras jóvenes mentes, es el enigma que todos queremos desvelar. Si cerramos los ojos y nos imaginamos aquel planeta con océanos, mares, ríos y lagos que, con sus altos volcanes (uno de ellos tiene la friolera de más de 20 Km de altura) y sus bellos paisajes, con una atmósfera como la de la Tierra, en verdad, sería un planeta digno de ser visitado, o, ¿por qué no? para asentar allí la residencia.

Si repasamos la lista de ingenios enviados a Marte para una u otra misión… ¡La lista es larga! Y, no descansaremos hasta poner los pies en su superficie.

¿Qué,  el viaje a Marte os haya gustado?

emilio silvera