May
25
Las fuerzas fundamentales
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (3)
No es el poder de recordar, sino todo lo contrario,
el poder de olvidar, la condición necesaria para nuestra existencia.
SHOLEM ASH
En realidad debe ser así, ya que, en caso contrario…¿Quién podría soportar el dolor de los recuerdos?.
Durante mucho tiempo se creyó que los protones y neutrones que conforman el núcleo de los átomos eran partículas “elementales”, pero experimentos en los aceleradores de partículas en los que colisionaban protones con otros protones o con electrones a velocidades cercanas a la de la luz indicaron que, en realidad, estaban formados por partículas aun más pequeñas. Estas partículas fueron llamadas quarks por el físico de Caltech, el norteamericano, Murray Gell–Mann, que ganó el Nobel en 1.969 por su trabajo sobre dichas partículas y el modelo del óctuple camino.
La palabra quark se supone que debe pronunciarse como quart (“cuarto”), pero con una k al final en vez de una t, pero normalmente se pronuncia de manera que rima con lark (“juerga”).
May
24
Los secretos del Universo
por Emilio Silvera ~
Clasificado en El Universo y los pensamientos ~
Comments (2)
La cantidad total de Materia del Universo se da generalmente en términos de una cantidad llamada Densidad Crítica, denotada por el signo Ω. Esta es la densidad de la materia que se necesita para producir un universo plano. La Densidad efectivamente observada ¿es menor o mayor que ese número?. En el primer caso el Universo es abierto, en el segundo es cerrado. La Densidad Crítica no es muy grande; corresponde aproximadamente a un protón por metro cúbico de espacio. Puede que no parezca mucho, dado el número inmenso de átomos en un metro cúbido de lado, pero no debemos olvidar que existe una gran cantidad de espacio “vacío” entre las galaxias.
Algunos números que definen nuestro Universo:
- El número de fotones por protón
- La razón entre densidades de Materia Oscura y Luminosa.
- La Anisotropía de la Expansión.
- La falta de homogeneidad del Universo.
- La Constante Cosmológica.
- La desviación de la expansión respecto al valor crítico.
- Fluctuaciones de vacío y sus consecuencias.
- ¿Otras Dimensiones?
Estimar la cantidad de materia luminosa del universo es una cosa muy fácil de hacer. Sabemos el brillo que tiene una estrella media, así que podemos hacer una estimación del número de estrellas de una galaxia distante. Podemos contar entonces el número de galaxias en un volumen dado de espacio y sumar las masas que encontramos. Dividiendo la masa por el volumen del espacio obtenemos la densidad media de materia en ese volumen. Cuando llevamos a cabo esta operación, obtenemos que la densidad de la materia luminosa es aproximadamente entre el 1 o 2% de la densidad crítica; mucho menos de lo que se necesita para cerrar el universo.
Por otro lado, está lo bastante cerca del valor crítico para hacer una pausa. Después de todo, esta fracción podría haber sido en principio de una billonésima o trillonésima, y también podría haber sucedido que fuese un millón de veces la materia necesaria para el cierre. ¿Por qué, entre todas las masas que podría tener el universo, la masa de materia luminosa medida está cerca del valor crítico que nos dice que estamos en un Universo abierto?
No toda la materia del Universo son estrellas, Nebulosas, galaxias o, agujeros negros. También existe otra clase de materia que conforman las cosas que vemos a nuestro alrededor (ríos y océanos, bosques y montañas…, ¡infinidad de mundos!) y, en ocasiones, incluso podemos relacionarla con esa clase de materia evolucionado que alcanzó la consciencia. ¿Cómo fue posible tal maravilla? Y todo, sin excepción -al menos hasta donde podemos saber-, está hecho de Quarks y Leptones.
Claro que el hecho de que la materia luminosa medida esté tan cercana al valor crítico, puede simplemente deberse a un accidente cósmico; las cosas simplemente “resultan” de ese modo. Me costaría mucho aceptar una explicación y supongo que a otros también. Es tentador decir que el Universo tiene en realidad la masa crítica, pero que de algún modo no conseguimos verla toda.
Como resultado de esta suposición, los astrónomos comenzaron a hablar de la “masa perdida” con lo que aludían a la materia que habría llenado la diferencia entre densidades observadas y crítica. Tales teorías de “masa perdida”, “invisible” o, finalmente “oscura”, nunca me ha gustado, toda vez que, hablamos y hablamos de ella, damos por supuesta su existencia sin haberla visto ni saber, exactamente qué es, y, en ese plano, parece como si la Ciencia se pasara al ámbito Religioso de la Fé, de creer en lo que no podemos ver ni tocar, y, la Ciencia, amigos míos, es otra cosa.
Tendremos que imaginar satélites y sondas que, de alguna manera, puedan detectar grandes halos galácticos que encierren la tan buscada materia oscura y que, al parecer, hace que nuestro Universo sea como lo conocemos y, es la responsable del ritmo al que se alejan las galaxias, es decir, la expansión del Universo.
Esos halos, tendrían muchas veces la masa que podemos ver en la Materia luminosa, la Bariónica formada por Quarks y Leptones que conforman las estrellas, planetas, galaxias y nosotros mismos. La teoría de la materia oscura y su presencia en cúmulos y supercúmulos ha sido “descubierta” (o inventada para tapar nuestra ignorancia) en época relativamente cercana para que prevalezca entre los astrónomos la uninimidad respecto a su contribución a la masa total del universo. El debate continúa, está muy vivo y, es el tema tan candente e importante que, durará bastante tiempo mientras algún equipo de observadores no pueda, de una vez por todas, demostrar que, la “materia oscura” existe, que nos digan donde está, y, de qué está conformada y como actúa. Claro que, cuando se haga la suma de materia luminosa y oscura, la densidad de la masa total del universo no será todavía mayor del 30% del valor crítico. A todo esto, ocurren sucesos que no podemos explicar y, nos preguntamos si en ellos, está implicada la Materia oscura.
La más abarrotada colisión de cúmulos galácticos ha sido identificada al combinar información de tres diferentes telescopios. El resultado brinda a los científicos una posibilidad de aprender lo que ocurre cuando algunos de los más grandes objetos en el universo chocan en una batalla campal cósmica.
Usando datos del Observatorio de rayos-X Chandra, el Telescopio Espacial Hubble y el Observatorio Keck de Hawai, los astrónomos fueron capaces de determinar la geometría tridimensional y el movimiento en el sistema MACSJ0717.5+3745 localizado a 5.4 mil millones de años luz de la Tierra. Los investigadores encontraron que cuatro distintos cúmulos de galaxias están envueltos en una triple fusión, la primera vez que un fenómeno así es documentado.
La composición de imagen (arriba de todo) muestra el cúmulo de galaxias masivo MACSJ0717.5+3745. El color del gas caliente está codificado con colores para mostrar su temperatura. El gas más frío es mostrado como un púrpura rojizo, el gas más caliente en azul y las temperaturas intermedias en púrpura. Las repetidas colisiones en el cúmulo son causadas por una corriente de galaxias, polvo y “materia oscura” -conocida como filamento- de 13 millones de años luz.
La versión etiquetada muestra las galaxias en los cuatro diferentes cúmulos, identificados por las letras A, B, C y D, envueltas en la colisión, además de la dirección del movimiento de los tres cúmulos de movimiento más rápido. La región más fría (más rojiza) de gas hacia la parte inferior izquierda del cúmulo identificado como D, ha sobrevivido probablemente de antes de la colisión. El cúmulo A parece estar cayendo hacia el cúmulo principal luego de haber pasado a través en la dirección opuesta. El cúmulo B tiene una velocidad mucho mayor que los otros a lo largo de la línea de visión.
MACSJ0717 muestra cómo cúmulos galácticos gigantes interactúan con su entorno en escalas de millones de años luz. Es un sistema hermoso para estudiar cómo los cúmulos crecen mientras el material cae en ellos a lo largo de filamentos. Simulaciones por ordenador muestran que los cúmulos de galaxias más masivos deben crecer en regiones donde filamentos de gran escala de gas intergaláctico, galaxias, y materia oscura intersectan.
¿Cuál debe ser la Masa del Universo?
Alan Guth
Esta claro que la idea de masa perdida se introdujo porque la densidad observada de la materia del universo está cerca del valor crítico. Sin embargo, hasta comienzos de los ochenta, no se tuvo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. Desde entonces, la teoría ha sufrido numerosas modificaciones técnicas, pero los puntos centrales no han cambiado.
Para nuestra conversación de hoy, diremos que el aspecto principal del universo inflacionista es que estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico. Esta predicción viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. Entre los otros muchos procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.
Abell 370 La lente gravitacional distorsiona la Imagen y nos enseña, a la derecha, algo que nos parece una inmensa cuerda cósmica pero, ¿que podrá ser en realidad? la materia a lo largo y ancho del universo se reparte de manera que, se ve concentrada en cúmulos de galaxias y supercúmulos que son las estructuras más grandes conocidas y, dentro de ellas, están todos los demás objetos que existen. Claro que, deajndo a un lado esas fluctuaciones de vacío y, la posible materia desconocida.
El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; una botella de leche explotará si la dejamos en el exterior en una noche de invierno de gélido frío. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.
La distancia a una galaxia lejana se determina estudiando la luz proveniente de estrellas de tipo Cefeidas Variables. El expectro de la luz estelar revela la velocidad a la que se mueve la galaxia (Efecto Doppler) y la cantidad de expansión que ha sufrido el universo desde que la luz salió de su fuente.
Lo que es sorprendente es la enorme amplitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1050. Este número es tan inmenso que virtualmente no tiene significado para la mayoría de la gente, incluido yo mismo que, no pocas veces me cuesta asimilar esas distancias inconmensurables del Cosmos. Dicho de otra manera, pongamos, por ejmplo, que la altura de los lectores aumentara en un factor tan grande como ese, se extenderían de un extremo al otro del Universo y, seguramente, faltaría sitio. Incluso un sólo protón de un sólo átomo de su cuerpo, si sus dimensiones aumentaran en 1050, sería mayor que el mismo universo. En 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo como el tamaño de una naranja grande. No es extraño que el nombre inflación esté ligado a este proceso.
Comparación entre un modelo de expansión desacelerada (arriba) y uno en expansión acelerada (abajo). La esfera de referencia es proporcional al factor de escala. El universo observable aumenta proporcionalmente al tiempo. En un universo acelerado el universo observable aumenta más rápidamente que el factor de escala con lo que cada vez podemos ver mayor parte del universo. En cambio, en un universo en expansión acelerada (abajo), la escala aumenta de manera exponencial mientras el universo observable aumenta de la misma manera que en el caso anterior. La cantidad de objetos que podemos ver disminuye con el tiempo y el observador termina por quedar aislado del resto del universo.
Cuando (hace mucho tiempo ya) leí por primera vez acerca del universo inflacionario, experimenté dificultades para poder asimilar el índice de inflación. ¿No violaría un crecimineto tan rápido las reglas impuestas por la relatividad de Eintien que marcaban el límite de la velocidad en el de la luz en el vacío? Si un cuerpo material viajó de un extremo de una naranja a otro en 10-35 segundos, su velocidad excedió a la de la luz en una fracci´çon considerable.
Claro que, con esto puede pasar como ha pasado hace unos días con los neutrinos que, algunos decían haber comprobado que corrían más rápidos que la luz, y, sin embargo, todo fue un error de cálculo en el que no se tuvieron en cuenta algunos parámetros presentes en las mediciones y los aparatos que hacían las mismas. Aquí, podría pasar algo parecido y, la respuesta la podemos encontrar en aquella analogía con la masa de pan. Durante el período de inflación es el espacio mismo -la masa de pan- lo que está expandiéndose. Ningún cuerpo material (acordaos que en aquella masa estaban incrustadas las uvas que hacían de galaxias y, a medida que la masa se inflaba, las uvas -galaxias- se alejaban las unas de las otras pero, en realidad, ninguna de estas uvas se mueven, es la masa lo que lo hace.
El Universo se expande
Las reglas contra los viajes a mayor velocidad que la de la luz sólo se aplican al movimiento del espacio. Así no hay contradicción, aunque a primera vista pueda parecer que sí. Las consecuencias del período de rápida expansión se pueden describir mejor con referencia a la visión einsteniana de la gravitación. Antes de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribucón de la materia. A cauda de esa materia, el espacio-tiempo tendrá alguna forma característica. Supongamos que la superficie estaba arrugada antes de que se produjera la inflación. Y, de esa manera, cuando comenzó a estirarse, poco a poco, tomó la forma que ahora podemos detectar de “casi” plana conforme a la materia que contiene.
En todo esto, hay un enigma que persiste, nadie sabe contestar cómo, a pesar de la expansión de Hubble, se pudieron formar las galaxias. La pregunta sería: ¿Qué clase de materia estaba allí presente, para que, la materia bariónica no se expandiera sin rumbo fijo por todo el universo y, se quedara el tiempo suficiente para formar las galaxias? Todo ello, a pesar de la inflación de la que hablamos y que habrái impedido su formación. Así que, algo tenía que existir allí que generaba la gravedad necesaria para retener la materia bariónica hasta que esta, pudo formar estrellas y galaxias.
No me extrañaria que, eso que llaman materia oscura, pudiera ser como la primera fase de la materia “normal” que, estándo en una primera fase, no emite radiaciones ni se deja ver y, sin embargo, sí que genera la fuerza de Gravedad para hacer que nuestro Universo, sea tal como lo podemos observar.
Una hipótesis más arriesgada sostiene que la materia oscura está chocándo consigo misma de alguna forma no gravitacional que nunca se había visto antes..? (esto está sacado de Observatorio y, en el texto que se ha podido traducir podemos ver que, los astrónomos autores de dichas observaciones, tienen, al menos, unas grandes lagunas y, tratándo de taparlas hacen aseveraciones que nada tienen que ver con la realidad).
Lo cierto es que, en el Universo, son muchas las cosas que se expanden y, pienso yo…¿Por qué no tratamos todos de expandir nuestras mentes? De esa manera, posiblemente podríamos comprender éstas y otras muchas cuestiones que nos atormentan al no poder llegar a saber qué son y cuáles son sus significados y mensajes.
emilio silvera
May
23
¡Qué historias! ¡Qué personajes!
por Emilio Silvera ~
Clasificado en ¡Imaginación! ~
Comments (1)
Los navegantes, tal como narraba Shakespeare, gustaban de exagerar sus experiencias y hablaban de hombres cuyas cabezas nacían abajo de los hombros, o que no tenían cabeza, o de aquellos que, como los patagones, sólo tenían un pie muy grande, o los de Labrador, que tenían cola. Todo esto originó un “renacimiento de la superstición”. Aquellos viajeros crearon en sus mentes, que los situaban en las Américas, nuevos órdenes de razas monstruosas de animales fantásticos. Dado que es casi tan difícil inventarse un animal nuevo como descubrirlo, a las criaturas míticas y folkloricas conocidas se les añadieron otros rasgos imaginarios.
Así, la era del descubrimiento trajo consigo un renacimiento de la fábula. Las serpientes marinas de ciento cincuenta metros de largo se multiplicaron como nunca, y, era raro el marinero que habiendo viajado a lejanos horizontes de nuevas tierras, no contaba, al regreso, fantásticas historias de animales que sobrepasaban la fantasía de la imaginación más creadora: Sirenas y Tritones, Unicornios y hasta bellas mujeres de larga cabellera que andaban suavemente por encima del agua de maravillosos lagos de cascadas de increíble belleza.
Las leyendas dudosas eran ahora confirmadas por jesuítas misioneros, por adinerados plantadores de azúcar y por sobrios capitanes de barcos. A las quimeras de la fantasía medieval se añadían ahora criaturas reales cuyas noticias llegaban con cada viaje procedente de las Américas. Los que no leían latín podían disfrutar de las numerosas ilustraciones que acompañaban a los textos.
Imágenes como estas eran las que adornaban aquellas pioneras publicaciones en las que, se contaban las historias de marineros-aventureros que, viniendo de lugares lejanos, siempre traían consigo narrativas de leyendas que dejaban boquiabiertos a los lectores u oyentes de las mismas.
Todo aquello inspiró el surgir de una nueva generación de enciclopedistas de la Naturaleza. El más destacado de todos ellos, Konrad Gesner (1516-1565), tenía habilidad para combinar lo nuevo con lo antiguo. Gesner, que conocía extraordinariamente bien varias lenguas, se debatía entre lo que había leído y lo que veía.
A los 20 años escribió un diccionario Griego-Latin. Durante los treinta años que siguieron produjo treinta violúmes sobre todos los temas imaginables. Su monumental Biblioteca Universal en cuatro volúmes (1545-1555) pretendía ser un catálogo de todos los escritos producidos en griego, latin y hebreo a lo largo de la historia.
Gesner clasificó mil ochocientos autores y los tiítulos de us obras manuscritas e impresas, acompañadas de un resumen de su contenido. De este modo ganó el título de “padre de la bibliografía”. La bibliografía sería para las Bibliotecas lo que la cartografía para los exploradores de la tierra y de los mares.
En la Biblioteca de los Fugger, Gesner encontró un manuscrito griego enciclopédico del siglo II que le inspiró para convertirse en un Plinio moderno. Por fin, su Historia Animalium, que seguía la disposición de Aristóteles, recogíam todo lo que se conocía, especulaba, imaginaba o contaba de cada uno de los animales conocidos. Como Plinio, Gesner produjo una miscelánea, pero añadió los datos que se habían acumulado en el milenio y medio transcurrido desde entonces. Sin bien era algo más crítico que Plinio, él tampoco desmintió las leyendas increíbles, y mostró una serpiente marina de noventa metros de largo. Pero describió la caza de ballenas e incorporó la primera ilustración de una ballena que estaba siendo despellejada para obtener la grasa.
Unicornios y otras fantásticas criaturas que llenaban las mentes
La duradera influencia de la obra de Gesner emanaba de su sentido del folklore y de su capacidad para presentar la fantasía y la realidad con la misma convincente veracidad. Cuando alguien escribe con pasión y plasma en el papel lo que siente, de alguna manera, es más fácil que pueda llegar al lector que, presiente, el mensaje que el autor le quiere hacer llegar.
Al cabo de un siglo, el lector inglés ya tenía acceso a la popular enciclopedia de Gesner gracias a la traducción de Edward Topsell, que éste tituló Historias de las bestias de cuatro patas, de las serpientes y de los insectos, 1658. Allí podemos saber con respecto a la gorgona que
…se planteó la cuestión de si el veneno que había emitido procedía de su aliento o de los ojos. Es más probable que, como el basilisco, matara con la mirada y también lo hiciera con el aliento de su boca, lo cual no es comparable con ninguna otra bestia del mundo… Al considerar esa bestia, se demostró de modo evidente la divina sabiduria y providencia del Creador, que había vuelto los ojos de esta criatura hacia la tierra, como si así enterrara su veneno y evitara que dañara al hombre, y los había ensombrecido con un cabello fuerte, largo y áspero, para que los rayos envenenados no pudieran dirigirse hacia arriba, hasta que la bestia se viera azuzada por el miedo o la ira…
Tras recurrir al indiscutible testimonio del salmo nonagésimo segundo, Gesner declara que los Unicornios son sagrados porque “reverencian a las vírgenes y a las jóvenes doncellas” y muchas veces al verlas se vuelven mansos y se acercan a dormir a su lado… ocasión que los cazadores indios y etíopes aprovechan para apoderarse de la bestia. Toman a un hombre joven, fuerte y hermoso, lo visten de mujer y lo adornan con diversas flores y especias olorosas”.
de la obra de Gesner
Pese a la fantasía de su texto, el millar de grabados de Gesner contribuyó a que la biología tomara un rumbo distinto. Al igual que los padres alemanes de la botánica, Gesner colaboró con los artistas y presentó los dibujos más realistas hechos hasta el momento de todos los tipos de criaturas, desde el “vulgar ratoncillo” al sátiro, la esfinge, el gato, el topo y el elefante. Durero fue el autor de su ilustración del rinoceronte, “la segunda maravilla de la naturaleza…como el elefante era la primera”. Estos incunables de la ilustración biológica empezaron a liberar a los lectores de los herbarios y los bestiarios.
La obra de Gesner, reimpresa, traducida y resumida, dominó la zoología postaristotélica hasta los innovadores estudios modernos de Ray y Linneo, que no estaban ilustrados. Sus notas inéditas fueron la base, el el siglo siguiente, del primer tratado completo que se escribió sobre los insectos. Para su Opera Botánica recogió cerca de un millar de dibujos, algunos realizados por él mismo, pero no llegó a terminar su gran trabajo sobre las plantas, que habían sido su primer amor.
Gesner nunca se liberó completamente de su obsesión filológica. En su libro de 158 páginas Mitrídates, u observaciones sobre las diferencias existentes entre las lenguas que han estado o están en uso en las diversas naciones del mundo entero (1555), intentó hacer con las lenguas lo que ya estaba haciendo con los animales y las plantas. Tomando como base su traducción del padrenuestro, Gesner describió y comparó “la totalidad” de las ciento treinta lenguas del mundo. Por vez primera, incluyó un vocabulario del lenguaje de los gitanos.
Nadie nunca se hubiera atrevido a querer visitar las misteriosas cumbres de las montañas
Al revelar públicamente su intención de explorar las altas montañas, que hasta entonces habían inspirado pasmo y terror, Gesner halló un modo típicamente suizo de descubrir la naturaleza. La Europa renacentista había presenciado un breve y prematuro surgir de la fascinación por la aventuira de las montañas. Petrarca (1304-1374) había sido el precursor, con su ascensión al monte Ventoux, cerca de Avignon, en 1336. En la cumbre leyó en un ejemplar de las confesiones de san Agustín que se sacó del bolsillo una advertencia dirigida a los hombres que “van a admirar las altas mopntañas y la inmensidad del océano y el curso de los astros… y se olvidan de sí mismos”. Leonardo da Vinci exploró el monte Bo en 1511 con ojos de artista y naturalista. El reformista y humanista suizo Joachim Vadian (1484-1551), amigo de Lutero y defensor de Zwinglio, llegó a la cumbre de Gnepfstein, cerca de Lucerna, en 1555, escribió su pequeña obra clásica.
“Si deseais ampliar vuestro campo de visión, dirigid la mirada a vuestro alrededor y contemplad todas las cosas que hay a lo largo y a llo ancho. No faltan atalayas y riscos, desde donde os parecerá que teneis la cabeza en la nubes. Si, por otra parte, preferís reducir la visión, podeis mirar los prados y los verdes bosques, o adentraros en ellos; y si la quereis reducir todavía más, podeis observar los oscuros valles, las sombrías rocas y las oscuras cavernas… En verdad, en ningún otro lugar se encuentran tal variedad en tan reducido espacio con en las montañas, en las cuales… en un solo día se puede contemplar y sentir las cuatro estaciones del año, verano, otoño, primavera e invierno. Además, desde los picos más altos de las montañas, la cúpula entera de nuestro cielo se tenderá audazmente abierta ante nuestra mirada, y podreis presenciar la salida y la puesta de las constelaciones sin ningún estorbo, y comprobareis que el Sol se pone mucho después y sale mucho antes.”
Pero resultaba tan difícil vencer los temores primitivos que tendrían que transcurrir dos siglos entre las excursiones de Gesner y los verdaderos comienzos del montañismo moderno. El Mont Blanc (4.810 m), el pico más alto de Europa aparte del Cáucaso, no fue escalado hasta 1786 por un montañero que se proponía cobrar la recompensa que había ofrecido un geólogo suizo, Horace-Bénedict de Saussure (1740-1779), veinticinco años antes.
En tanto los naturalistas dispusieran las plantas y los animales por orden alfabético, el estudio de la naturaleza estaba condenado a seguir siendo teórico…Pero, ¡esa es otra historia que no toca hoy!
emilio silvera
Hiostorias como estas son contadas por Daniel J. Boorstin en sus libros titulados Los Descubridores…La Naturaleza. Los podeis encontrar en la Biblioteca de Divulgación Científica (1986 Editorial Crítica, S.A.) ISBN (Obra completa): 84-873-0174-5. Cuatro Caminos s/n. Sant Vicentç dels Hirts (Barcelona).
May
23
La Naturaleza está en nuestras Mentes
por Emilio Silvera ~
Clasificado en El saber: ¡Ese viaje interminable! ~
Comments (1)
“Así fue como ví el péndulo
La esfera, colgando de un largo cable fino al techo del
coro, oscilaba de un lado a otro con una majestád isócrona.
Yo sabía -pero cualquiera podía haberlo sentido en la
magia de ese sereno aliento- que el período estaba gobernado
por la raíz cuadrada de la longitud del cable y por π,
ese número que, por irracional que sea para las mentes sublunares,
liga la circunferencia y el diámetro de todos los cículos posibles a
través de una racionalidad superior. El tiempo que necesitaba la
esfera para oscilar de un extremo a otro estaba determinado por una
conspiración arcana entre la más intemporal de las medidas: la singularidad
del punto de suspensión, la dualidad de las dimensiones del plano, el
comienzo triádico de π, la secreta Naturaleza cuadrática de la raíz y la
innumerada perfección del propio círculo.”
Uberto Eco
Después de haber utilizado durante un tiempo las ecuaciones y fórmulas de la física matemática, uno se acostumbra a una peculiaridad de la Naturaleza. Es muy comprensica con nuestra ignorancia de ciertos detalles. Las leyes de la Naturaleza tienen varios ingredientes: una máquina lógica para predecir el futuro a partir del presente, constantes especiales de la Naturaleza y un conjunto de simples números. Estos simples números aparecen junto a las constantes de la Naturaleza en casi todas las fórmulas físicas.
Einstein los supo apreciar muy bien y así lo reflejaba en las cartas que le envió a su amiga Ilse Rosenthal Schneider y los lamaba “constantes básicas”. Son solamente números. Por ejemplo, el período (“tic”) de un reloj de péndulo estaba dado con gran precisión por una sencilla fórmula:
Período = 2π √(L/g)
Donde L es la longitud del péndulo y g es la aceleración de la gravedad en la superficie de la Tierra. Aquí podemos notar la aparición de la “constante básica” 2π = 6,28. En todas las fórmulas que utilizamos para describir algún aspecto del mundo físico, aparece un factor numérico de este tipo. Lo más notable es que casi siempre tienen un valor próximo a uno y pueden despreciarse, o aproximarse por 1, si sólo se está interesado en obtener una estimación razonablemente buena del resultado.
Éste es un premio importante, porque en un problema como la determinación del período de un péndulo simple nos permite obtener la forma aproximada de la respuesta.. El período, que tiene dimensiones de tiempo, sólo puede depender de una manera de la longitud L y la aceleración g si la combinación resultante ha de ser un tiempo: esa combinación es la raíz cuadrada de L/g.
Esta bonita característica del mundo físico, que parece estar bien descrito por leyes matemáticas en las que los factores puramente numéricos que aparecen no son muy diferentes de 1 en magnitud, es uno de los misterios casi desapercibidos de nuestro estudio del mundo físico. Einstein estaba muy impresionado por la ubicuidad de pequeños números adimensionales en las ecuaciones de la física y escribió sobre el misterio de que, aunque casi siempre parece ser así.
“…no podemos exigirlo rigurosamente, pues ¿por qué no debería aparecer un factor numérico como (12π)3 en una deducción fisicomatemática? Pero sin duda tales casos son rarezas.”
Es posible arrojar alguna luz sobre este problema si reconocemos que casi todos los factores numéricos por los que Einstein estaba tan impresionado tienen un origen geométrico. Por ejemplo, el volumen de un cubo de arista R es R3, pero el volumen de una esfera de radio R es 4πR3/3. Los factores numéricos dan cuenta de la forma detallada cuando las fuerzas de la Naturaleza estan actuando. Puesto que las fuerzas fundamentales de la Naturaleza son simétricas y no tienen una preferencia por direcciones diferentes, hay una tendencia a la simetría esférica.
Nuestra Galaxia, el Sol y nuestro mundo y la Luna… ¡Todos tienden a ser esféricos!
Nos hemos podido dar cuenta de que a partir de todo lo que hemos podido aprender, hemos podido ver que las constantes de la Naturaleza tienen una influencia relativa mucho mayor cuando se trata de determinar los resultados de las leyes de la Naturaleza en tres dimensiones que la que tienen en universos con muchas más dimensiones espaciales.
Cuando consideramos mundos con dimensiones de espacio y tiempo distintas de 3 + 1 topamos con un problema sorprendente. Los mundos con más de una dimensión no permiten predecir el futuro a partir del presente. En este sentido son más bien como mundos sin dimensión temporal. Un sistema organizado complejo, como, por ejemplo, el necesario para la vida, no podría utilizar la información recogida en su entorno para conformar su comportamiento futuro. Seguiría siendo simple: demasiado simple para almacenar información y evolucionar.
Si el número de dimensiones de espacio y tiempo hubiera sido escogido aleatoriamente y todos los números fueran posibles, entonces esperaríamos que el número fuera muy grande. Es muy improbable escoger un número pequeño. Sin embargo, las ligaduras impuestas por la necesidad de tener “observadores” para hablar del problema significa que no todas las posibilidades están disponibles y que se nos impone un espacio tridimensional. Todas las alternativas estarían privadas de vida. Si científicos de otro universo conocieran nuestras leyes pero no el número de dimensiones en que vivimos, podrían deducir su número simplemente a partir del hecho de nuestra existencia.
Así que, si queremos hacer una aproximación al problema de por qué el espacio tiene tres dimensiones, nos lleva a una estimación de gran alcance de cómo y por qué son peculiares los mundos tridimensionales con una única flecha del tiempo. Las alternativas son demasiado simples, demasiado inestables o demasiado impredecibles para que observadores complejos evolucionen y perduren dentro de ellos. Como resultado, no debería sorprendernos encontrarnos viviendo en tres dimensiones espaciales sujetos a los caprichos de un único tiempo. No par4ece que existan alternativas.
Y, a todo esto, ustedes se preguntarán: ¿Qué tiene que ver todo esto con el péndulo? Bueno, ya sabéis que todo evoluciona y, a medida que se va escribiendo parece que las ideas fluyen y también evolucionan en su transcurrir de manera tal que, de una cuestión se pasa a otra sin que lo podamos evitar.
Le doy desde aquí las gracias a John D. Narrow que, con sus ideas inspiró ésta página para que todos pudiéramos disfrutar al acercarnos al conocimiento de las cosas, del mundo, del universo y de su Naturaleza que continuamente nos enseña por qué camino debemos seguir avanzando.
emilio silvera
May
23
Dejando volar la imaginación
por Emilio Silvera ~
Clasificado en Física ~
Comments (9)
¡La Física! Esa rama del saber que estudia las leyes que determinan la estructura del Universo con referencia a la materia y la energía de la que está constituido. La Física se ocupa de las fuerzas que existen entre los objetos y las interrelaciones entre la materia y la energía. Tradicionalmente, el estudio se dividía en campos separados: calor, luz, sonido, electricidad, magnetismo y mecánica. Desde el siglo pasado, sin embargo, la mecánica cuántica y la física relativista han sido cada vez más importantes: física atómica, nuclear, y, física de partículas.
- La física de los cuerpos astronómicos y sus interacciones recibe el nombre de astrofísica; la de la Tierra es conocida como geofísica, y el aspecto físico dedicado a estudiar la vida, es la biofísica.
- La física moderna está marcada por el año 1.900 con el cuanto de Planck, origen de la mecánica cuántica, y, el año 1.905, donde Einstein comenzó su ciclo de la relatividad especial que finalizó en 1.915, con la relatividad general.
Moléculas, átomos y conexiones para formar pensamientos
Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.