martes, 21 de septiembre del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El “universo” cuántico y…, sus alrededores

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comentarios desactivados

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Se cuenta que una vez Albert Einstein alagó al actor Charles Chaplin diciéndole: “Lo que siempre he admirado de Usted es que su arte es universal, todo el mundo le comprende a admira”. A esto Chaplin respondió a Einstein: “Lo suyo es mucho más digno de respeto, todo el mundo le admira y prácticamente nadie le comprende”.

Es cierto lo que Chaplin decía, todos admiraban a Einstein y pocos comprendían sus postulados. De hecho, cuando estaba buscando la teoría de Todo, la gente se amontonaban, literalmente, ante los escaparates de la Quinta Avenida para ver las Ecuaciones que pocos entendían…¡Así somos los Humanos! Lo que no comprendemos nos produce temor o admiración, o, las dos cosas a la vez.

                                        Gerad ´t Hooft

Hace ya algún tiempo que me desplace a Madrid, invitado  para asistir a una Conferencia que sobre el LHC y el Bosón de Higgs, la impartía el físico y premio Nobel de Física Gerad ´t Hooft.

La energía nuclear después de Chernóbil | Investigación y Ciencia |  Investigación y CienciaCómo coloco la TV? | Doctor Tecno | La Revista | EL UNIVERSO

Los ordenadores de la Unión SoviéticaNASA: Las misiones espaciales más locas de las próximas décadas

La charla de ‘t Hooft se inscribía en el ciclo La ciencia y el cosmos, y, entre otras cosas nos decía a los presentes que, la física, en concreto la física de partículas, ha sido siempre su gran pasión. “cuando era joven, la física estaba cambiando el mundo radicalmente: la energía nuclear, la televisión, los ordenadores, las primeras misiones espaciales….yo quería formar parte de todo eso”.

Qué es el genoma?Científicos de todo el mundo redefinen el genoma humano | Biociencia |  elmundo.es

Partículas elementales |Programa espacial de la Unión Soviética - Wikipedia, la enciclopedia libre

Y las partículas elementales “eran el mayor misterio de todos”, añade. “En cierto modo aún lo son, aunque ahora sabemos de ellas muchísimo más que entonces. Hoy los ordenadores siguen siendo emocionantes, la biología y el código del ADN, la astronomía y los vuelos espaciales… Sigue habiendo muchas cosas capaces de estimular la imaginación de jóvenes deseosos de aprender cosas nuevas impulsados por el deseo de estar ahí, en el momento en que se están haciendo los descubrimientos que cambian el mundo”.

Gerard ‘t Hooft explicó lo que significa, en los modelos teóricos, el famoso bosón: “El campo de la partícula de Higgs actúa como una especie de árbitro; proyectado contra otras partículas, este campo determina su comportamiento, si tienen carga o masa y hasta qué punto se diferencian de otras partículas. Si no encontramos el Higgs, si realmente no está, necesitaremos algo más que haga ese papel de árbitro”. Eso significaría, continuaba el Nobel, que “nuestras teorías ya no funcionan, y han funcionado tan bien hasta ahora que eso es difícil de imaginar”.

El bosón de Higgs tras cinco años de su anuncio - La Ciencia de la Mula  FrancisNuevo hito en la exploración del bosón de Higgs - INVDES

El lado oscuro del bosón de Higgs — Cuaderno de Cultura CientíficaPor qué el bosón de Higgs es una pieza fundamental en el modelo estándar -  La Ciencia de la Mula Francis

La espera fue enorme y todos esperaban las noticias sobre el dichoso Bosón

            Cuando comenzó la búsqueda se decía:

Sí al LHC se le resiste el Bosón de Higgs…, bueno, si es que anda por ahí.

Charla del premio Nobel Gerard `t Hooft en la Universidad de Córdoba -  YouTubeAnexo:Premios Nobel de Física - EcuRed

Fue en 1999 cuando ‘t Hooft recibió el premio Nobel de Física (junto con su colega y director de tesis Martinus Veltman),  por “dilucidar la estructura cuántica de las interacciones electro-débiles” -según palabras de la Academia sueca- de la física de las partículas elementales.

El Gran Colisionador de Hadrones: qué es y para qué sirve – Un poco de  ciencia, por favorEl CERN anuncia que el LHC funcionará en 2012El LHC descubre el pentaquark | Ciencia | EL PAÍSUna anomalía en el LHC podría sugerir la existencia de una nueva partícula  - Universitat Autònoma de Barcelona - UAB Barcelona

Acerca del Gran Colisionador de Hadrones (el acelerador LHC situado en el Laboratorio Europeo de Física de partículas, CERN, junto a Ginebra), el científico holandés explica que se trata “de una máquina única en el mundo” y continúa: “Esperamos descubrir nuevas cosas con él y poner a prueba teorías que, hasta donde hemos podido comprobar hasta ahora, funcionan muy bien, pero necesitamos ir más allá”.

El descubrimiento de la partícula de Higgs, o bosón de Higgs, fue el objetivo número uno del LHC, y tras un largo período de funcionamiento del acelerador, los miles de físicos que trabajan en los detectores, han logrado acotar el terreno de búsqueda, aunque, insisten, seguramente necesitarán tomar muchos más datos para descubrirlo. O tal vez descubrir que no existe, lo que supondría una revolución en la física de partículas, al obligar a replantear el llamado Modelo Estándar, que describe todas las partículas elementales y sus interacciones, y que hasta ahora funciona con altísima precisión aunque, dicen los expertos, está incompleto.

La teoría del todo (Stephen Hawking)

Gerard ‘t Hooft, uno de los grandes físicos teóricos de partículas elementales, considera que será muy difícil desarrollar una teoría del todo, un cuerpo teórico capaz de explicar todas las fuerzas que actúan en la naturaleza aunando la Relatividad General de Einstein y la Mecánica Cuántica, tan eficaces por separado en la descripción del macrocosmos y el microcosmos, respectivamente. “Mi impresión es que esta teoría unificadora, una teoría del todo, aún requerirá el trabajo de muchas nuevas generaciones de investigadores jóvenes y listos”, afirma. “No llegaremos a ella de un momento a otro por la simple razón de que el universo es demasiado complejo para que una única teoría lo abarque todo. Vale, no digo que sea imposible, pero me parece muy improbable. Y mientras llega, queda mucho por descubrir, incluso hallazgos espectaculares”.

El LHC alcanza la luminosidad fijada para 2010El CERN, el lugar en el que se guardan los secretos del universo | CulturaY el mundo no se acabó - QuoLinac 4 se ha convertido en el primer acelerador en la cadena de inyección del  LHC

      Muchas son las actividades desconocidas para el público que se desarrollan en el LHC

Por otra parte, el científico holandés ha señalado que el LHC realiza más actividades que intentar encontrar el bosón de Higgs. En este sentido, ha destacado que se buscan también partículas que podrían construir la materia oscura, un tipo de materia de la que los físicos tienen la certeza de que es cinco veces más abundante que el universo que la materia ‘normal’, pero que no absorbe, refleja ni emite luz, lo que hace muy difícil su detección y, por tanto, estudiar su naturaleza. Del mismo modo, también se está desarrollando una teoría capaz de unificar la teoría de la relatividad general de Einstein y la mecánica cuántica que, según ha explicado Hooft, “permitiría descubrir lo que ocurre dentro de los átomos”.

Partículas elementales: En busca de las estructuras más pequeñas del  universo eBook: Hooft, Gerard't, Zúñiga López, Ignacio: Amazon.es: Tienda  Kindle

De vez en cuando lo consulto

Recuerdo un pasaje escrito por él al principio de su interesante e instructivo libro “Partículas Elemetales”, que decía:

“Mi intención es narrar los últimos 25 años de investigación sobre las partículas más pequeñas que constituyen la materia. Durante esos 25 años, yo empecé a ver la Naturaleza como un test de inteligencia para toda la Humanidad en su conjunto, como un gigantesco puzzle con el que podemos jugar. Una y otra vez, nos tropezamos con nuevas piezas, grandes y pequeñas, que encajan maravillosamente con las que ya tenemos. Yo quiero compartir con ustedes la sensación de triunfo que sentimos en esos momentos.”

 

 

Tenía la intención (si se presentaba la oportunidad),  de preguntarle sobre “su Principio Holográfico” pero, no pudo ser. Sólo pude saludarlo e intercambiar unas breves palabras junto con Ignacio Cirac presente también en el evento.

El Principio Holográfico que compara el universo con un holograma,  explicado de manera sencilla

“En la década de los 90, los físicos Gerard ‘t Hooft, y Leonard Susskind postularon una hipótesis que sacudió por igual a la ciencia y a la opinión pública. Se la conoce como Principio Holográfico, y defiende la idea de que el universo puede ser interpretado como un holograma.”

Publicó el principio holográfico, el cual explica que la información de una dimensión extra es visible como una curvatura del espacio tiempo con una menos dimensiones. Por ejemplo, los hologramas son imágenes de 3 dimensiones colocadas en una superficie de 2 dimensiones, el cual da a la imagen una curvatura cuando el observador se mueve. Similarmente, en relatividad general, la cuarta dimensión esta manifestada en 3 dimensiones observables como la curvatura de un sendero de un movimiento de partícula (criterio) infinitesimal. Hooft ha especulado que la quinta dimensión es realmente la fábrica del espacio-tiempo.

Acordaos de que, a mediados del año 2,003 apareció la noticia de que la “información sería el componente fundamental de la naturaleza” postulada por un grupo de físicos entre los que se incluyen el Premio Nóbel danés Gerard t´Hooft y el físico de la Universidad de California Raphael Bousso, basadas en el “Principio Holográfico”. Esta teoría, por singular y chocante que pareciese en su momento ha tenido a lo largo de estos siete años una influencia notable tanto en la sociedad científica como en los círculos alternativos.

el principio holográfico | Fumigadora Continente

Personajes tan influyentes como Deepak Chopra sin ir más lejos habla del ámbito cuántico como el campo de información de donde parte todo lo conocido, materia, emociones, pensamientos. El controvertido joven físico Nassam Haramein defiende un universo basado en el holograma. Científicos japoneses -al igual que del resto del mundo- investigan con hologramas creando imágenes 3D o explican el funcionamiento del mundo físico basado en los campos de energía e información. Hay hasta “farmacología holográfica” a cargo de empresas farmacéuticas. El año pasado el físico Craig Hogan tras la detección de un extraño ruido en el detector de ondas gravitacionales el GEO 600, afirma que podría probar que, efectivamente, vivimos en un holograma.

La Influencia de la Teoría del Principio Holográfico en la Sociedad

La información sería el componente fundamental de la naturaleza. Es la que especifica el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia. El Big Bang que dio lugar al nacimiento del Universo tendría más que ver con una gigantesca “bajada” de bytes de información por parte de un superordenador, que con una explosión masiva de materia, según una nueva teoría que establece que en su origen la naturaleza está formada únicamente por pequeños paquetes de información pura que son los que especifican el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia.

-->

Energías de nuestro propio planeta

Autor por Emilio Silvera    ~    Archivo Clasificado en Ciencia futura    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Estamos en una época en la que existe la convicción de que buena parte del desarrollo tecnológico del futuro dependerá de la capacidad que tengamos para fabricar dispositivos con un tamaño comprendido entre el de los átomos (< 1 mm) y el de los dispositivos actuales (≈ 100 nm). Con estas dimensiones, la materia presenta comportamientos peculiares, en muchos casos de origen cuántico, que no resultan de una simple extrapolación de sus propiedades macroscópicas (mecánicas, electrónicas, magnéticas, químicas u ópticas), y que por ello son, a menudo, sorprendentes. Estas dimensiones corresponden al territorio límite entre la química molecular y supramolecular, y la física del estado sólido. El estudio de la materia a escala nanométrica y su utilización para la fabricación de compuestos (componentes) y dispositivos con prestaciones avanzadas y novedosas reciben el nombre de, respectivamente, nanociencia y nanotecnología.

 Desarrollo de dispositivos nanométricos.

El IDM está trabajando en el desarrollo de “puertas nanoscópicas moleculares” mediante el anclaje de moléculas que actúan de “puerta” en las aperturas de los poros de sistemas mesoporosos y que permiten el control del acceso o salida de sustancias del interior de los poros a la disolución o viceversa.

Curiosamente, existe una creencia bastante arraigada en amplios sectores de la comunidad científica de que la fotónica (conjunto de tecnologías relacionadas con la luz) es un campo que cae fuera del universo de la nanotecnología. La creencia se apoya en el clásico criterio de Rayleigh de que la resolución espacial de un sistema óptico está limitada por la longitud de onda de la luz (≈ 500 nm), y por ello es próxima al micrómetro, muy lejos de los requisitos de la nanotecnología. Por otra parte, cuidado con los aprovechados que tratan de utilizar estos medios en su parte pseudocientifica para captar dinero de los ignorantes.

La “Reflexología Celular por Estimulación Fotónica”, que se vende a 200€ la sesión, asegura un rápido exito en acabar con el tabaquismo, asegurando que aplica la física para conseguir desengancharse del tabaco. Sin embargo, analizando las bases de la supuesta revolución médica no encontramos más que pura charalatanería típica de cualquier remedio mágico.

Leer más

La Astrobiología: El Origen de la Vida en el contexto del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para comprender el Universo tenemos que estudiar sus componentes, tenemos que saber de qué está hecho. La componente clásica del Universo, la que corresponde a materia y energía similares a lo que vemos a nuestro alrededor en galaxias, estrellas y planetas es una parte minoritaria: menos que el 5%. El resto está constituido por componentes exóticos, llamados por nuestro desconocimiento, simplemente energía y materia oscura.

Las leyes de la Física, aplicables a toda la materia y la energía, tienen sin duda un papel fundamental en la comprensión del Universo y por ello la Astrofísica ha tenido un desarrollo espectacular en los últimos tiempos a pesar de la escasez de materia como la que conocemos.

Leer más

Buscando la Materia Oscura en los Aceleradores

Autor por Emilio Silvera    ~    Archivo Clasificado en ¿La materia Oscura!    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Las galaxias son los bloques básicos que forman el universo; son como los ladrillos que forman una casa. Y, al igual que los ladrillos están compuestos por partículas más pequeñas (granos de arena), las galaxias están formadas por estrellas. Nuestro Sol es una estrella más en nuestra galaxia, muy importante para nosotros porque está muy cerca y nos da luz y calor, pero nada más. Es una estrella como las demás de la Vía Láctea, que está formada por 200.000 millones de estrellas, el Sol entre ellas.

Las estrellas de una galaxia no están quietas; están en movimiento girando siempre alrededor del centro de la galaxia. Si estuvieran quietas, la atracción gravitatoria haría que inmediatamente cayeran hacia el centro de la galaxia: es lo mismo que les pasaría a la Tierra y a los demás planetas si dejaran de girar en torno al Sol, caerían hacia el Sol.

http://imgsrc.hubblesite.org/hu/db/2005/26/images/c/formats/full_jpg.jpg

Lo que nos preguntamos en concreto es ¿cómo giran las estrellas de una galaxia? La respuesta es muy fácil: usando las leyes de Newton, exactamente igual que las usamos para estudiar el movimiento de los planetas alrededor del Sol, deducimos que deben girar en órbitas circulares o elípticas alrededor del centro de masas (el centro galáctico). Las estrellas más lejanas irán más despacio (tardarán mucho tiempo en dar una vuelta completa a la galaxia); las más cercanas, más rápido. El Sol, que es una estrella ni muy cercana al centro galáctico ni muy alejada (está, aproximadamente, a 2/3 de radio galáctico, hacia afuera) emplea unos 250 millones de años en completar una vuelta. Pero estos números no son lo importante ahora. Lo importante es que podemos calcular con mucha exactitud los movimientos de las estrellas en cualquier galaxia usando las leyes de Newton (en realidad ni siquiera son necesarias las correcciones relativistas de Einstein, ya que las velocidades estelares, pocos cientos de km/s, son mucho menores que la velocidad de la luz; Newton es, a todos los efectos, exacto aquí).

La rotación de las galaxias se observó por primera vez en 1914, y desde entonces se ha medido con gran precisión en muchas galaxias, no sólo en la Vía Láctea. La gran sorpresa surgió cuando, en 1975, se pudo medir la velocidad de giro de las estrellas que ocupan posiciones muy alejadas del centro: esas estrellas van muchísimo más rápido que lo que les correspondería por las leyes de Newton (es como si los planetas más alejados, por ejemplo Neptuno y Plutón, orbitaran mucho más deprisa de lo que calculamos con las leyes de Newton). El hecho es que esto ocurre no en una, sino en muchas galaxias donde hemos podido medir su rotación: las partes externas de las galaxias giran mucho más deprisa que lo que esperamos. ¿Por qué ocurre eso? No se sabe.

      Tampoco sabemos si es la materia oscura la que nos trae hacia nosotros a nuestra vecina Andrómeda

Desde hace treinta años, los astrofísicos se enfrentan a este dilema: o bien las galaxias tienen mucha materia que no vemos, pero que causa una fuerte atracción gravitatoria sobre las estrellas externas (que por ello orbitarían tan rápido) o bien ni la ley de la gravedad de Newton ni la de Einstein serían válidas para esas regiones externas de las galaxias. Las dos opciones son revolucionarias para la física: la primera implica la existencia de materia oscura en el universo (materia que no vemos pero que sí afecta al movimiento de las estrellas y galaxias), y la segunda implica que una ley básica (la de Newton/Einstein de la gravitación) es incorrecta. En el momento actual, no sabemos cual de esas dos opciones es la buena (podrían incluso ser buenas las dos, es decir, que existiera materia oscura y además que la teoría de Newton/Einstein estuviera mal. No creom que sea ese el problema, debe haber una tercera opción desconocida que debemos encontrar). La gran mayoría de los astrofísicos prefieren explicarlo con la materia oscura (un camino cómodo y fácil) antes que dudar de las leyes de la gravitación de Newton/Einstein. Esto no es sólo cuestión de gustos, es que las leyes de la gravitación funcionan con una increíble exactitud en todos los demás casos donde las hemos puesto a prueba (en los laboratorios, en las naves espaciales y los vuelos interplanetarios, en la dinámica del Sistema Solar, etc.).

Este problema de la materia oscura (si es que realmente existe y no es que las leyes de Newton sean incompletas) es uno de los más importantes con los que se enfrenta la astrofísica hoy en día (texto de Cosmo-Educa).

Foto: M. Zemp

Últimamente están saliendo a la luz estudios diversos (algunos contradictorios) en relación a la (posible presencia) de materia oscura todeando las galaxias.

Usando una de las más poderosas supercomputadoras del mundo para simular el halo de materia oscura que envuelve a nuestra galaxia, unos investigadores han encontrado densos grumos y filamentos de la misteriosa materia oscura ocultándose en las regiones internas del halo, en el mismo vecindario que nuestro Sistema Solar.

“En simulaciones anteriores, esta región resultó lisa, pero ahora tenemos suficientes detalles para ver los grumos de materia oscura”. La permanete contradicción nos hace dudar de lo que realmente pueda haber alrededor de las galaxias y cúmulos de galaxias. Y, la materia oscura es la salida más cómoda para explicar lo que desconocemos.

Parece obvio que la cuestión de la naturaleza de la materia oscura no se puede dejar reposar hasta que alguien, algún proyecto, obtenga una respuesta que, de ser posible, venga acompañada de un buen “pedazo” de esa materia que, seguramente, encontraremos finalmente en el laboratorio.

Está muy bien generar nuevas teorías y mostrar que la materia oscura se debe comportar de este modo o de aquel otro, pero hasta que podamos aislar algo de esa materia y realmente verla comportándose como se supone que debe hacerlo, muchos no estaremos satisfechos.

http://misteriosaldescubierto.files.wordpress.com/2012/07/detectan-el-primer-filamento-de-materia-oscura-entre-dos-clusteres-de-galaxias.jpg

Si estamos pendientes de las noticias especializadas, todos quieren su parte del pastel y dicen haber hallado, por fín, la dichosa materia oscura, unos en forma de filamentos y otros en un tenue material “invisible” que sólo se deja detectar por su incidencia en el movimiento de las estrellas, las galaxias y, en la expansión misma del Universo entero, ya que, estamos hablando de más del 90 por ciento (entre materia y energía oscura) de toda la materia que, supuestamente existe en nuestro universo.

No sería de extrañar que, finalmente, sean los Aceleradores de Partículas los que harán el trabajo y localizaran esas partículas componentes de la supuesta materia oscura (o lo que pueda ser) que, de existir, tendrá que estar formada por objetos pequeños al igual que la materia conocida y, aunque éstos puedan tener otras propiedades extrañas para nosotros, en procesos de grandes energías se podrá llegar hasta ellos y quedar al descubierto para que los podamos ver.

Todos sabemos como funcionan estos inmensos aparatos. Son instrumentos que produce un haz de partículas -ya sean protones, electrones o cualquier otra- que viajan a velocidades cercanas a la de la luz. Dirigidas a un objetivo en alguna de las colisionesw resultantes, parte de la energía del haz será convertida (E =mc2) en la masa de nuevas partículas. No importa lo improbable que pueda ser que una partícula se produzca en tal reacción, si tenemos suficiente energía en el haz y esperamos pacientemente, más pronto o más tarde veremos lo que estamos esperando. La esperanza de los experimentadores actuales es que esto será verdad y se produzca la aparición de las partículas que copmponen la materia oscura, como aparecieron otras en el pasado.

El descomunal conglomerado técnico del LHC, cuanta con energías hasta hace bien poco impensables, es decir, podrá llegar hasta los 14 TeV, pero, ¿será suficiente esa energía para encontrar la materia oscura? Por otra parte, no será nada fácil el hallazgo por este método ya que, los candidatos más exóticos para la materia oscura de los que hemos hablado en estos días pasados, no se pueden producir aisladamente, sino que siempre deben ser creados por pares. Las teorías nos dicen, por ejemplo, que no podemos producir un único fotino aislado en ninguna reacción iniciada por el impacto de un electrón o un fotón sobre la materia ordinaria. Igualmente, no podremos producir un único selectrón, sino que debemos producir un par; un selectrín y un antiselectrón. En efecto, esto divide por la mitad la energía disponible para la conversión en masa en cualquier acelerador, pues la energía debe ser compatible para para ambos miembros del par.

Somos capaces de bautizar “al niño” antes de su nacimiento. Así de impulsivos solemos ser y dados a poner nombre a todo aunque ese todo no sea seguro de que, en realidad, pueda existir. Así nos sucede con la materia oscura a la que le hemos adjudicado ciertas anomalías observadas en el movimiento de las galaxias y las estrellas, los cúmulos y la expansión misma. Pero, ¿será debido a la existencia de esa otra clase de materia?

¡Cuánto nos hace trabajar la ignorancia!

Busca, busca que hallarás

Si no lo que pretendías, sí alguna respuesta

que, aunque negativa, te enseñará

En qué no debes hacer la apuesta.

emilio silvera