jueves, 09 de mayo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Año Internacional de la Astronomía 2009. En España (AIA-IYA2009)

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡El Universo! Ese gran desconocido para el gran público. Por eso, el Nodo Español, a cuyo frente está la Doctora en Astrofísica, Doña Motserrat Villar, tiene la misión de mostrar nuestro Universo a todos, y, para ello, con un equipo de cientos de personas especializadas y miles de volunhtarios colaboradores enamorados del cielo y de los objetos que lo pueblan, están aquí luchando, día a día, para que ese desconocimiento sea invertido. Todos deben conocer las maravillas que en el Cosmos están presentes y, conocer las fuerzas que lo rigen y como funciona.

Hemos estado exponiendo aquí, desde hace ya tres meses, cada día, lo que es el Universo, lo que en él ocurre, los objetos que lo pueblan y las maravillas que pueden surgir de las estrellas. De hecho, nosotros mismos podemos estar aquí gracias a que, los materiales de los que estamos hecho, se fabricaron en las estrellas.

Para comprender todo esto, hemos elaborado un Glosario que explica el significado de palabras y conceptos que, para el no versado, puede ser incomprensible, así procuramos que entiendan y sepan lo que se les explica.

Hoy continuamos con las letras Q y R.

Quark

Partícula elemental que se constituyen en tripletes para formar hadrones, tales como los bariones llamados protones y neutrones, mientras que los hadrones llamados mesones, están formados por un quark y un antiquark.

En la teoría quark, por tanto, las únicas partículas elementales son los leptones y los quarks. Al contrario que los protones y electrones que poseen cargas exactamente iguales en valor absoluto pero de signos opuestos, los quarks tienen cargas que son fracciones de la carga electrónica (+2/3 ó -1/3).

Los quarks aparecen en seis sabores (sin conexión con el gusto):

  • up (u; +2/3 de carga).
  • down (d; -1/3).
  • charmed (c, +2/3).
  • strange (s; -1/3).
  • top (t; +2/3), y,
  • botton (b; -1/3).

El protón, siendo un barión, está constituido por tres quarks, uud (2/3+2/3-1/3=1) y el neutrón por udd (2/3-1/3-1/3=0).

Dejo aquí la explicación de los quarks para no complicar en demasía la cuestión, ya que ahora tendríamos que entrar a explicar los sabores y los colores, lo cual, para un no versado en estas cuestiones no resultaría fácil de entender, y este glosario no es para expertos.

De todas las maneras no quiero dejar pasar la oportunidad de dejar aquí mi idea, muy particular, de que más allá de los quarks, existen partículas cien mil veces más pequeñas que, como filamentos dorados y vibrantes, se mueven a la velocidad de la luz y, para mí, serán las auténticas partículas elementales de la materia, claro que, de momento, no existen medios ni energías capaces de comprobar este hecho. Pero ahí queda la idea.

Leer más

¡La Física! ¡Las Matemáticas! El Avance de la Humanidad

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Humanidad, aún en proceso de humanización, para su evolución necesita otro salto cuantitativo y cualitativo del conocimiento que les permita avanzar notablemente hacia el futuro. Ese avance está supeditado a que la teoría M, la versión más avanzada de supercuerdas, se haga realidad.

Todos los avances de la Humanidad han estado siempre cogidos de la mano de las matemáticas y de la física. Gracias a estas dos disciplinas del saber podemos vivir cómodamente en ciudades iluminadas en confortables viviendas. Sin Einstein, pongamos por ejemplo, no tendríamos láseres o máseres, pantallas de ordenadores y de TV, y estaríamos en la ignorancia sobre la curvatura del espaciotiempo o sobre la posibilidad de ralentizar el tiempo si viajamos a gran velocidad; también estaríamos en la más completa ignorancia sobre el hecho cierto y demostrado de que masa y energía (E = mc2), son la misma cosa.

Como ese ejemplo podríamos aportar miles y miles. Es necesario continuar avanzando en el conocimiento de las cosas para hacer posible que, algún día, dominemos las energías de las estrellas, de los agujeros negros y de las galaxias. Ese dominio será el único camino para que la Humanidad que habita el planeta Tierra, pueda algún día, lejano en el futuro, escapar hacia las estrellas para instalarse en otros mundos lejanos. Ese es nuestro inevitable destino. Llegará ese irremediable suceso que convertirá nuestro Sol en una gigante roja, cuya órbita sobrepasará Mercurio, Venus y posiblemente el planeta Tierra. Pero antes, en el proceso, las temperaturas se incrementarán y los mares y océanos del planeta se reconvertirán en vapor. Toda la vida sobre el planeta será eliminada y para entonces, si queremos sobrevivir y preservar la especie, estaremos ya muy lejos, buscando nuevos mundos habitables en algunos casos, o instalados como colonizadores de otros planetas. Mientras tanto, el Sol habrá explotado en nova y se convertirá en una estrella enana blanca. Sus capas exteriores serán lanzadas al espacio estelar y el resto de la masa del Sol se contraerá sobre sí misma. La fuerza de gravedad reducirá más y más su diámetro, hasta dejarlo en unos pocos kilómetros, como una gran pelota de enorme densidad que poco a poco se enfriará.  Un cadáver estelar.

Ese es el destino del Sol que ahora hace posible la vida en nuestro planeta, enviándonos su luz y su calor, sin los cuales, no podríamos sobrevivir.

Para cuando eso llegue (faltan 4.000 millones de años), la Humanidad tendrá que contar con medios tan avanzados que ahora sólo podríamos imaginar. Las dificultades que habrá que vencer son muchas y, sobre todo, increíblemente difíciles de superar.

¿Cómo podremos evitar las radiaciones gamma y ultravioletas?

¿En qué clase de naves podremos escapar a esos mundos lejanos?

¿Seremos capaces de vencer la barrera de la velocidad de la luz?

Nuestros ingenios espaciales, nuestra naves hoy (estamos en la edad primitiva de los viajes espaciales), pueden alcanzar una velocidad máxima de 40 ó 50 mil kilómetros por hora y, además, la mayor parte de su carga es el combustible necesario para moverla.

La estrella más cercana al Sol es Alfa Centauro; un sistema triple, consistente en una binaria brillante y una enana roja débil a 2º, llamada Próxima Centauro. La binaria consiste en una enana G2 de amplitud -0’01 y una enana K1 de magnitud 1’3. Vistas a simple vista, aparecen como una única estrella y se encuentran a 4’3 años luz del Sol.

Sabemos que 1 año luz es la distancia recorrida por la luz en un año trópico a través del espacio vacio, y equivale a 9’4607×1012 km, ó 63.240 Unidades Astronómicas, ó 0’3066 parsecs.

La  Unidad Astronómica es la distancia que separa al planeta Tierra del Sol, y equivale a 150 millones de kilómetros; poco más de 8 minutos luz.

Ahora pensemos en la enormidad de la distancia que debemos recorrer para llegar a Alfa Centauro, nuestra estrella vecina más cercana.

63.240 Unidades Astronómicas a razón de 150 millones de km. Cada una nos dará 9.486.000.000.000 de kilómetros recorridos en un año y, hasta llegar a Alfa Centauro, lo multiplicamos por 4’3 y nos resultarían 40.789.800.000.000 de kilómetros hasta Alfa. La cantidad resultante son millones de kilómetros.

Ahora pensemos que con nuestras actuales naves que alcanzan velocidades de 50.000 km/h, tratáramos de llegar a Alfa Centauro. ¿Cuándo llegaríamos, en el supuesto caso de que no surgieran problemas durante el viaje?

Bueno, en estas condiciones, los viajeros que salieran de la Tierra junto con sus familias, tendrían que pasar el testigo a las siguientes generaciones que, con el paso del tiempo (muchos, muchos siglos), olvidarían su origen y, posiblemente, las condiciones de ingravidez del espacio mutarían el físico de estos seres en forma tal que, al llegar a su destino podrían ser cualquier cosa menos humanos. Precisamente para evitar este triste final, estamos investigando, haciendo pruebas en viajes espaciales, trabajando en nuevas tecnologías y probando con nuevos materiales, y buscando en nuevas teorías avanzadas, como la teoría M, las respuesta a preguntas que hacemos y de las que hoy no tenemos respuesta, y sin estas respuestas, no podemos continuar avanzando para que, cuando llegue ese lejano día, podamos con garantía salir hacia las estrellas, hacia esos otros mundos que acogerá a la Humanidad, cuyo destino, irremediablemente, está en las estrellas. De material de estrellas estamos hechos y en las estrellas está nuestro destino.

Si finalmente el destino del universo (supeditado a su densidad crítica), es el Big Crunch, entonces la Humanidad tendrá otro problema, este aún más gordo que el anterior, para resolver.

El primero será buscar soluciones para escapar de nuestro sistema solar, lo que en un futuro lejano, y teniendo encuentra que el avance tecnológico, es exponencial, parece que dicho problema puede tener una solución dentro de los límites que la lógica nos puede imponer. El segundo parece más serio, ¡escapar de nuestro universo! Pero… ¿a dónde podríamos escapar? Stephen Hawking y otros científicos nos hablan de la posibilidad de universos paralelos o múltiples; en unos puede haber condiciones para albergar la vida y en otros no. ¿Pero cómo sabremos que esos universos existen y cuál es el adecuado para nosotros? ¿Cómo podremos escapar de este universo para ir a ese otro?

Son preguntas que nadie puede contestar hoy. La Humanidad, para saber con certeza su futuro, tendrá que seguir trabajando y buscando nuevos conocimientos y, para dentro de unos milenios (si antes no se destruye a sí misma), seguramente, habrá obtenido algunas respuestas que contestarán esta difícil pregunta que, a comienzos del siglo XXI, nadie está capacitado para contestar.

Se puede sentir la fascinación causada por la observación de la belleza que encierra el universo, la simple observación de lo que encierra nos causará asombro, aunque no se tenga preparación científica, pero el nivel de apreciación de la naturaleza, la verdadera maravilla, vendrá de comprender mejor lo que estamos viendo, que es mucho más que grandes figuras luminosas y múltiples objetos brillantes, es… la evolución… la vida.

Ensimismado en mis pensamientos me asombro del enorme talento que tenía Einstein. Su gravedad es una predicción de las supercuerdas; sus ecuaciones surgen de esta nueva teoría como por arte de magia, nadie las ha llamado, pero aparecen. Dicha aparición espontánea es una pista importante a favor de esta nueva teoría que aspira a contestar alguna de las preguntas pendientes. Por otra parte, las supercuerdas originan la idea de la supersimetría, considerada uno de los grandes descubrimientos en física.

En el CERN (Laboratorio Europeo de Física de Partículas), situado cerca de Ginebra, los países europeos han construído un nuevo acelerador de partículas, el LHC, y en él se buscará esta supersimetría, la partícula de Higgs que proporciona la masa a todas las partículas, y tratará de despejar interrogantes que en los aceleradores actuales no pueden ser contestados. El día 10 de éste mes de Septiembre tendrá lugar la puesta en marcha con la primera prueba. Veremos que nos puede traer, las esperanzas son grandes.

Pero volviendo al tema principal, tendremos que convenir todos en el hecho innegable de que, en realidad, estas nuevas teorías que pretenden explicarlo todo, en realidad, como digo, están todas basadas en la teoría de la relatividad general de Einstein.

La han ampliado elevándola a más dimensiones que les permite añadir más factores, pero las ecuaciones de campo de Einstein subyacen en la base de todas estas teorías, desde la que expusieron Kaluza-Klein en la 5ª dimensión, hasta estas otras más recientes de 10, 11 y 26 dimensiones.

Lo que realmente podemos constatar en nuestra experiencia cotidiana es que las dimensiones espaciotemporales del mundo en que vivimos son tres de espacio y una de tiempo. Sin embargo, muchos propugnan otro esquema en el que el universo tiene más dimensiones que, en el primer segundo del comienzo del tiempo, cuando se produjo el Big Bang, quedaron compactificadas y no pudieron expandirse como las otras tres (longitud, anchura y altura), sino que se quedaron en la longitud de Planck, inmóviles, mientras que sus compañeras se expandían y se hacían más y más grandes. Estas estructuras conceptuales, la más famosa (por ser la primera), la teoría de Kaluza que más tarde perfeccionó Klein y pasó a llamarse de Kaluza-Klein, más tarde inspiró otras teorías hasta llegar a las supercuerdas y a la teoría M, la más avanzada y completa. Sin embargo, es importante recordar que Kaluza se inspiró en la teoría de Einstein para formular su teoría, a la que añadió otra dimensión de espacio que le permitió incluir dentro de la nueva teoría, además de las ecuaciones de Einstein, las de Maxwell; uniendo así la gravedad con el electromagnetismo.

Las supercuerdas en más dimensiones, al tener mucho más espacio disponible, puede incluir dentro de su esquema a todas las fuerzas y a todas las partículas que conforman la materia del universo, como se ve claramente en el gráfico de la página 73 que partiendo de la gravedad de Einstein pasa al electromagnetismo de Maxwell, a las fuerzas nucleares, con sus partículas transmisoras y se llega a los quarks y leptones de la materia. Es la primera teoría que ha sido capaz de unir la relatividad y la mecánica cuántica.

Hemos conseguido grandes logros y enormes conocimientos, cualquiera de ellos es suficiente para causar nuestro asombro. Por ejemplo, matemáticamente, la fuerza eléctrica fue descubierta en el año 1.785 por el ingeniero en estructuras Charles Coulomb. Ahora bien, con relación a las grandes distancias, la fuerza eléctrica y magnética actúa igual a como lo hace la gravedad: al duplicar la distancia, su magnitud disminuye a la cuarta parte. Claro que la gravedad depende de la masa y la electricidad de la carga y, mientras que la primera sólo es atractiva, la segunda puede ser atractiva cuando los objetos tienen carga diferentes (protón positiva y electrón negativa) o repulsivos cuando las cargas son iguales (protón rechaza a protón y electrón rechaza a electrón); se puede probar jugando con dos imanes que se juntarán por sus polos negativos-positivo y se rechazarán por sus polos positivo-positivo y negativo-negativo. Más tarde llegó Michael Faraday con sus experimentos eléctricos y magnéticos y, finalmente, James Clero Maxwell formuló con sus ocho ecuaciones vectoriales la teoría del electromagnetismo.

Lorentz nos descubrió que un objeto que viaje a velocidades cercanas a la de la luz, c, se achatará por la parte delantera del sentido de su marcha (contracción de Lorentz) y, mientras tanto, su masa aumentará (lo que ha sido comprobado en los aceleradores de partículas).

Max Planck nos trajo su cuanto de acción, h, que dio lugar a la mecánica cuántica al descubrir que la energía se transmite en forma discontinua mediante paquetes discretos a los que llamó cuantos. También fue obra de Planck perfeccionar las unidades de Stoney y nos dejó esas cantidades naturales de tiempo, espacio, energía y masa.

Schrödinger, con su función de onda (Y), nos dijo la manera de solucionar, en parte, el problema planteado por Heisemberg con su principio de incertidumbre, según el cual no podemos saber, al mismo tiempo, dónde está una partícula y hacia dónde se dirige; sólo estamos capacitados para saber una de las dos cosas, pero no las dos al mismo tiempo. Así que la función de onda nos dice la probabilidad que tenemos para encontrar esa partícula y en qué lugar se encuentra.

Más tarde, Stephen Hawking ha utilizado la función de onda de Schrödinger ampliándo su campo como “Función de Onda” de todo el Universo, y, él dice que, estamos inmersos en un Multiverso, es decir, una consecución de universos conectados mediante agujeros de gusano.

Estos universos no son todos iguales, en unos reinaran unas constantes y fuerzas y en otros estarán presentes otras fuerzas diferentes, habrán nacido sin vida. ¿Será así? No lo sabemos, pero lo cierto es que, no podemos negarnos a cualquier posibilidad. No sabemos tanto como para poder hacer eso.

emilio silvera

Año Internacionalo de la Astronomía 2009. En España (AIA-IYA2009)

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como en los días precedentes, hoy continúamos desgranando palabras y conceptos que nos harán comprender mucho mejor el Universo y los objetos que los pueblan, así mismo, entenderemos las fuerzas que interaccionanm con la materia y lo que son las constantes unversales, y, para ello, dejamos otras dos palabras del Glosario: O y P.

Omega

Índice de densidad de materia del universo, definido como la razón entre la actual densidad y la densidad crítica requerida para “cerrar” el universo y, con el tiempo, detener su expansión.

Para la materia oscura se dirá “omega negro”.

Si omega es mayor que 1, el universo se detendrá finalmente y las galaxias recorrerán a la inversa el camino recorrido para colapsar en una gran bola de fuego, el Big Crunch; estaríamos en un universo cerrado.

Si omega en menor que 1, el universo será abierto. Nos expandiremos para siempre y, en tal caso, el alejamiento indefinido de las galaxias producirá el enfriamiento del cosmos hasta alcanzar una temperatura del cero absoluto (-273ºC); la muerte técnica del universo.

Se dice que un universo con exactamente omega 1, la densidad crítica ideal, estará alrededor de 10-29 g/cm3 de materia, lo que está descrito por el modelo de universo de Einstein-de Sitter.

En cualquier caso, sea cual fuere omega, no parece muy atractivo el futuro de nuestro universo que, según todos los datos que tenemos, acabará en el hielo o en el fuego, y en cualquiera de estos casos… ¿dónde nos meteremos?

Leer más

Densidad crítica, composición del Universo, Multiverso…

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Si pensamos con lógica, en lugar de introducir a mano una imposibilidad física, pensaremos como nos enseño Einstein en la utilidad de un espacio y un tiempo únicos y unidos en un bloque de espacio-tiempo.

Salgamos ahora fuera del espacio-tiempo y miremos lo que sucede allí.  Las historias de los individuos son trayectorias a través del bloque. Si se curvan sobre sí mismas para formar lazos cerrados entonces juzgaríamos que se ha producido un viaje en el tiempo. Pero las trayectorias son las que son. No hay ninguna historia que “cambie” al hacerla. El viaje en el tiempo nos permite ser parte del pasado pero no cambiar el pasado. Las únicas historias de viaje en el tiempo posibles son las trayectorias autoconsistentes.  En cualquier trayectoria cerrada no hay una división bien definida entre el futuro y el pasado.

Si este tipo de viaje hacia atrás en el tiempo es una vía de escape del final termodinámico del universo, y nuestro universo parece irremediablemente abocado hacia ese final, hacia ese borrador termodinámico de todas las posibilidades de procesamiento de información, entonces quizá seres súper avanzados en nuestro futuro estén ya viajando hacia atrás, hacia el ambiente cósmico benigno que proporciona el universo de nuestro tiempo. No descarto nada. Si le dicen a mi abuelo hace más de un siglo y medio que se podría meter un documento en una maquinita llamada fax, y el documento, de manera instantánea, aparecería en otra máquina similar en Madrid, nos habría tachado de locos.

Leer más

Año Internacional de la Astronomía 2009. En España (AIA-IYA2009)

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como cada día, dejamos aquí el significado de algunas palabras para que, los aficionados a la Astronomía, comprendan más fácilmente, los arrtículos que sobre el Universo estamos dejando en esta pa´gina de colaboración con el Nodo Español del Año Internacional de la Astronomía 2009 que, en España se denomina AIA-IYA 2009.

Galosario Letra N

Neutrinos

Partículas elementales con carga 0 y masa en reposo nula o casi nula. Los neutrinos viajan a muy altas velocidades que, si la masa en reposo es cero, igualan la velocidad de la luz.

Se clasifican como leptones y al igual que el grupo de electrones (electrón, muón y tau), los neutrinos conocidos son: neutrino electrónico, neutrino muónico y el neutrino tauónico.

Los neutrinos sólo tienen una interacción débil con la materia, y consecuentemente los neutrinos producidos en las reacciones nucleares de los centros de las estrellas pueden escapar sin colisionar con el material que está en su camino.

Ernest Rutherford descubrió que casi el 100 por 100 de la masa de un átomo estaba en el núcleo; el resto, más del 90% era espacio vacío, así que, los neutrinos, sin masa, atraviesan continuamente (miles de millones de ellos) el planeta Tierra y también nuestros cuerpos, sin tocarlos.

El universo está inmerso en un mar de neutrinos que, desde las estrellas, salen despedidos por el espacio de manera isotrópica.

Leer más