jueves, 09 de mayo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Año INternacional de la Astronomía 2009. En España (AIA-IYA2009)

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Año Internacional de la Astronomía, se ha impuesto, entre sus muchos objetivos, el de llevar el Universo a todos. Explicar lo que es y lo que en él ocurre. Generalmente, la gente sencilla no sabe, en realidad, como se forman y nacen las estrellas, como viven y al final de sus “vidas” que es lo que ocurre, en que se transforman y que ocurre con su material, igualmente ocurre con el origen de las Nebulosas, y como son los mecanismos que rigen en las galaxias y las fuerzas que están presentes a lo largo y a lo ancho de todo el Cosmos.

Si preguntamos por el significado del Big Bang, la expansión del universo, cómo nacen y mueren las estrellas, qué es una singularidad, a qué se refiere la libertad asintótica de los quarks, qué son los nucleones, qué significan las constantes universales, qué es la mecánica quántica, el modelo estándar, la relatividad general, el significado de E = mc2, el principio de incertidumbre, la función de onda de Schrödinger, la exclusión de Pauli, el cuanto de acción, h, o el límite, la energía o tiempo de Planck…, cualquiera de estas cuestiones, todas tan importantes, serán desconocidas para el 99’99% de los encuestados. ¡Una auténtica calamidad!

Esa es la penosa realidad en la que estamos inmersos. Esas personas desconocedoras de las preguntas que antes enumeramos, sí podrían contestar, en cambio, cualquier tema que se les plantee sobre cuestiones mundanas e intrascendentes. Ninguna pregunta contestarán sobre, por ejemplo, una estrella supermasiva.

Leer más

Año Internacional de la Astronomía 2009. En España (AIA-IYA2009)

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La colaboración con el Año Internacional de la Astronomía 2009 (AIA-IYA2009) para España, está teniendo muy buena acogida, muchas personas (más de las que en un principio pudiéramos pensar), están interesadas en saber, así que, el objetivo se va cumpliendo y poco a poco, acercaremos a todos el conocimiento del Universo. Ahora sigamos donde ayer lo dejamos.

GALILEO, EL PALADÍN DE LA REVOLUCIÓN

 

 

Copérnico, Brahe, Kepler y sus revolucionarias innovaciones no consiguieron acabar con la tradición tolemaica popular, ya fuera porque escribían en latín y su saber llegaba sólo a otros especialistas, ya porque se limitaban a exponer sus hipótesis sin pretender imponerlas a sus contemporáneos.

 

Las dudas abundaban: aunque el nuevo modelo se apoyara en datos concretos, si la Tierra se moviera, todo lo que se hallara sobre su superficie tendría que salir disparado. Una cosa era crear modelos y otra explicar algo tan extraño como eso. Pero llegó Galileo Galilei (1564-1642), con su talante agudo y anticonformista. Este italiano orgulloso, irónico, polémico, literato y físico, amante de la discusión, gran trabajador y excelente artesano, creador de nuevos instrumentos y experimentos, iba a sentar los fundamentos de la física moderna e idear el método científico que abriría las puertas a la era moderna.

 

Al principio trabajaba con imanes, termómetros, con el movimiento y la mecánica, deducía leyes y afirmaba que los cuerpos tienden a caer por el efecto de la gravedad.- Creía que los movimientos planetarios eran naturales, uniformes y circulares, en contraposición a la teoría de Kepler, quien le había mandado su Misterio cósmico, y criticaba su confianza ciega en los datos de Brahe: Galilei argumentaba que alguien capaz de realizar instrumentos y experimentos debía conocer lo inexactas que podían ser las mediciones. Estaba convencido de que la realidad sólo podía conocerse a través de experimentos ideales, extrapolados a partir de lo obtenido mejorando al máximo los instrumentos.

Revolucionó el modo de estudiar la física. Introdujo los conceptos de velocidad, velocidad media y aceleración, y analizó las leyes del movimiento sustituyendo la antigua filosofía aristotélica, puramente especulativa, por una nueva racionalidad. Se basó en la observación de fenómenos y en datos obtenidos con experimentos y razonamientos matemáticos y geométricos que permitían extrapolar las experiencias ideales a partir de experimentos reales.

 

Observaba el cielo con su telescopio y había descubierto un universo desconocido: la Luna no era lisa como se pensaba desde hacía dos mil años, sino que se parecía a la Tierra, con llanuras, montañas y mares; las estrellas visibles eran sólo una pequeñísima parte de la que forman la Vía Láctea, que de hecho no era una nube, sino una agrupación de multitud de estrellas. Además descubrió cuatro pequeños planetas alrededor de Júpiter y se los dedicó a Cosme II, gran duque de Toscaza. Por primera vez en la historia se anunció un descubrimiento exterior a la Tierra realizado con un instrumento y no con la imaginación.

 

Galileo observó las fases de Venus, un fenómeno que no hallaba explicación en el sistema tolemaico y que confirmaba las teorías de Copérnico y Kepler. Observó durante dos años la migración de las manchas solares, sus cambios y variaciones numéricas, y concluyó que formaban parte del Sol y que el Sol rotaba alrededor de su eje. Era inadmisible: si el Sol era un cuerpo perfecto, ¿cómo iba a tener manchas o a moverse? Muchos protestaron. ¿Cómo iba a haber más de siete planetas si siete son los días de la Creación, los pecados capitales o las virtudes teológicas…? Hasta Kepler dudaba de lo que Galileo declaraba haber visto; al igual que otros, se preguntó por qué Dios habría creado un mundo de objetos que nadie podía ver. La Academia negó la autenticidad del instrumento porque, aunque las lentes existían desde hacía siglos, se sabía que distorsionaban lo observado con reflexiones, luces inexistentes, efectos extraños e ilusiones ópticas.

 

Pero Galileo sabía que tenía razón y construyó decenas de telescopios para regalárselos a sus amigos, expertos y príncipes de toda Europa. Kepler pudo observar lo mismo que Galileo y se entusiasmó tanto que unos meses después publicó Dióptrica, un tratado sobre la teoría geométrica de las lentes que explica el funcionamiento del telescopio y el principio del teleobjetivo. Era la primavera de 1611 cuando, tras un milenio de oscuridad, dos genios iluminaron el espacio. El telescopio refractor se convirtió a todos los efectos en una prolongación de los ojos.

 

Pero la actitud de Galileo era errónea. Con la seguridad que le otorgaban sus observaciones y conclusiones pretendía saber más que Aristóteles y que cualquier otro, y afirmaba que su método científico era la única forma de investigación válida. Su presuntuosidad no tenía límites cuando sentenciaba que las diferencias con las Escrituras se debían a errores de interpretación, porque lo que los descubrimientos científicos mostraban era obra de Dios y Dios no podía contradecirse así mismo. Fue un desafío a los tradicionalistas y a la Iglesia.

 

El mundo académico y el poder eclesiástico entendieron el poder demoledor de semejante afirmaciones e intentaron silenciarlo prohibiéndole dar clases y apoyar la teoría copernicana.

 

Y Galileo calló… por poco tiempo. En 1623 dedicó a su amigo Maffeo Barberini –el Papa Urbano VIII-, Il Saggiatore, la primera obra en lengua romance, que se convirtió en piedra angular de la ciencia moderna. En ella invitaba a estudiar la naturaleza con humildad, cordura e imaginación, observando y preguntándose, distinguiendo entre realidad y apariencia, objetividad, y subjetividad; añadía que las matemáticas, la geometría y el razonamiento racional eran los únicos medios de extrapolar de la realidad imperfecta las leyes ideales que regulaban la creación. Era la nueva filosofía del conocimiento.

 

Poco después, publicó diálogos sobre los sistemas máximos del mundo (tolemaico y copernicano), donde el temerario Galileo cometió dos errores gravísimos. Primero, afirmó que las mareas se debían a la rotación de la Tierra: Un tema prohibido. Pero el más grave fue mofarse del Papa, quien había sido muy claro: Dios omnipotente puede hacer que ocurra cuanto desea y los fenómenos pueden ocurrir de mil formas; por ello, la observación de los hechos naturales no pueden llevar al conocimiento de la verdad.

 

Simplicio, encarnación de la obtusa mentalidad aristotélica y observadora, digna de todo desprecio, declaró, que si bien la hipótesis de la rotación de la Tierra para explicar las mareas parecía la mejor, había que rechazarla a favor de una “consolidadísima doctrina, enseñada por personas doctísimas y eminentísimas, que es de obligación acatar”. Contemporáneamente, Salviati, portavoz de las convicciones galileanas, respaldaba que el hombre pudiera alcanzar un conocimiento sobre la creación igual al de Dios: “De los escasos ente4ndimientos que el intelecto humano, creo que el de la cognición iguala al divino en certeza objetiva, puesto que llega a comprender la necesidad, sobre la que no aparece que haya seguridad mayor”.

 

Justo lo contrario de lo que afirmaba el Papa. Todas las victimas de insultos y burlas de Galileo comprendieron que había llegado la hora de la venganza. El libro era un ataque a la Iglesia, a su autoridad sobre la ciencia, a su infalibilidad, y además, por estar escrito en italiano, cualquiera que supiera leer podía acceder a estas ideas subversivas y diabólicas. La condena sólo podía ser ejemplar. Galileo estuvo a punto de ser condenado a la hoguera, donde recientemente había acabado Giordano Bruno. Pero, por suerte, sintió miedo, o quizá comprendiera que la razón no vale con los locos o entendiera que no podía seguir contando con sus grandes protectores, o quizás se convenciera de que, si quería avanzar con otras ideas, valía la pena inclinar la cabeza.

 

Se sometió a la Iglesia y se mostró humilde y arrepentido. Pidió comprensión por su decadente vejez, pero a pesar de ello fue juzgado con vehemencia, acusado de sospecha de herejía, y fue obligado a confesar públicamente: “Maldigo y detesto los antedichos errores y herejías”. En la actualidad, diríamos que fue condenado a arresto domiciliario; su obra fue prohibida e incluida en el índice, junto a la de Copérnico y Kepler. En 1.637 perdió la vista por completo, aunque no por ello dejó de trabajar. Halló elementos de apoyo para su nuevo método y negó la física aristotélica basada en la imaginación. A pesar de su escasa salud, el trabajo que desempeñó en los últimos años de vida fue su máxima contribución a la física. Consideraciones y demostraciones matemáticas sobre dos nuevas ciencias, referidas a la mecánica y a los movimientos locales, fue su penúltima obra, donde definiciones, conceptos, teoremas, demostraciones y corolarios forman el cuerpo coherente de la nueva física, donde plantea todos los problemas que deberían afrontarse y resolverse en los decenios siguientes por sus discípulos y expertos hasta llegar a Newton.

 

El 8 de enero de 1642 murió. La curia romana paralizó el proyecto de construir una sepultura solemne en la capilla de la Santa Cruz de Florencia para “no escandalizar a los buenos” y “no ofender la reputación” de la Santa Inquisición. Sus obras estuvieron prohibidas hasta 1.757. Por fortuna, esta prohibición fue repetidamente trasgredida y el trabajo de Galileo devino rápidamente en fermento de nuevas y fecundas ideas.

 

NEWTON Y LA GRAVITACIÓN UNIVERSAL. 

 

En el mismo año en que Galileo murió, nació en Inglaterra Isaac Newton (1642-1727). El recopiló todos los conocimientos de sus predecesores y contemporáneos para diseñar el universo que conocemos. En una Inglaterra desangrada por la guerra, Newton estudió en el Colegio de la Santa Trinidad de Cambridge, donde tenía a disposición una surtida biblioteca que le permitió elaborar el método de las series infinitas que sería el primer paso hacia el cálculo infinitesimal. Pero la peste bubónica obligó a cerrar la Universidad y Newton tuvo que regresar a su pueblo, donde, en dos años, inventó el cálculo de las fluxiones (derivadas e integrales), experimento sobre los colores de la luz y desarrolló una teoría corpuscular opuesta a la ondulatoria de Huygens y Hooke e inventó el telescopio reflector.

 

Estaba convencido de que todos los movimientos tenían algo en común, y que si la naturaleza de los cuerpos celestes es análoga a la de la Tierra, como afirmaba Galileo, todos los cuerpos celestes debían tener una “gravedad” como la Tierra. Kepler había pensado que una fuerza magnética mantenía unidos los planetas al Sol, pero quizá fuera la Gravedad. Newton no fue el único que barajaba esta idea: Boulliau  sugería que la gravedad es proporcional a la masa e inversamente proporcional al cuadrado de su distancia (1645); Hooke avanzó la hipótesis de que los planetas están sometidos a una atracción recíproca que origina su movimiento (1674) y que la atracción entre el Sol y los planetas es inversamente proporcional a la distancia que los separa (1679) pero nadie tenía las ideas tan claras y tan matemáticamente delineadas como Newton.

 

Así, en 1687 publicó Philosophiae Naturales Principia Mathemática (“Principios Matemáticos de la Filosofía Natural”), que introdujo la Física teórica a la ciencia, organizó de forma definitiva la Mecánica y definió la Ley de Gravitación. Este se convirtió en uno de los libros fundamentales de la historia de la humanidad. Newton constató la inevitable existencia de esta misteriosa “acción a distancia”, inaceptable desde el punto de vista filosófico. Estableció una Ley universal: Dos cuerpos se atraen con una fuerza proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que las separa. Las leyes empíricas de Kepler son consecuencia lógica de esta ley o, incluso, podíamos decir que esta ley perfecciona la tercera ley de Kepler, porque permite evaluar la influencia de la masa en cada planeta, una precisión que Kepler olvidó a favor de la del Sol.

 

Negar la idea copernicana se había convertido en una tarea realmente difícil. Esta sencilla ley resolvía muchos problemas astronómicos: la forma y la velocidad de la órbita de los planetas y cometas alrededor del Sol y de los satélites alrededor de los planetas, la sucesión de equinoccios, la forma de la Tierra, los movimientos de los objetos en esta, las mareas…

 

Se consolidó la percepción de que todo fenómeno estaba regulado por unas pocas leyes naturales fundamentales que pueden determinarse con la observación y la experimentación, y que se traducen en sencillas fórmulas matemáticas, como avanzó Galileo. En el prefacio del tercer libro de los Principia, Newton expuso las cuatro reglas que describían esta nueva actitud:

 

  1. “De las cosas naturales no deben admitirse causas más numerosas que las que son reales y suficientes para explicar los fenómenos”.
  2. “Por ello, y mientras pueda hacerse, las mismas causas deberán atribuirse a efectos naturales del mismo fenómeno”.
  3. “Las cualidades de los cuerpos que no pueden ser aumentadas ni disminuidas, y las que pertenecen a todos los cuerpos con los que se pueden realizar  experimentos, deberán ser consideradas cualidades de todos los cuerpos.”
  4. “En la filosofía experimental, los supuestos obtenidos por inducción de los fenómenos, a pesar de las hipótesis contrarias, deben considerarse ciertos o tenerse en cuenta al menos hasta que aparezcan nuevos fenómenos con los que estos puedan hacerse más exactos o verse sujetos a excepciones.”

 

La teoría newtoniana serviría de base para el desarrollo de toda la mecánica. Ni siquiera la teoría de la relatividad conseguiría desbaratarla. Todo nuestro mundo, el Sistema solar, la Física de la Galaxia, sigue siendo  -a pequeña escala- newtoniano.

 

A pesar de ello, muchos rechazaron las ideas de Newton, y no solo por rivalidad personal:  Leibniz, Kant, y, Goethe fueron detractores implacables. Hegel llegó a afirmar: “Las impropiedades y las incorrecciones de las observaciones y de los experimentos […] así como la falta de solidez de éstos y, aún más, tal como Goethe ha demostrado, su mala fe […]. También cabe citar la mala calidad de los razonamientos, ilaciones y demostraciones realizadas mediante datos empíricos impuros”.

 

Newton, cansado de controversias, mezquindades y polémicas suscitadas tras la publicación de su teoría sobre la composición de los colores, renunció a publicar las Lecciones de óptica y se dedicó básicamente a estudios teológicos y alquímicos hasta 1684. A pesar de ello, a su muerte se le tributaron honores fastuosos.

 

Mañana, amigos seguiremos con:

 

KIRCHHOFF Y LA QUÍMICA  DE LAS ESTRELLAS.

 

emilio silvera

 

 

 

 

Año Internacional de la Astronomía 2009. En España (AIA-IYA2009)

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Si la teoría del Bing Bang es correcta, como parece que lo es, debe de existir una gran proporción de materia oscura en forma no bariónica (que no podemos ver), quizás axiones, fotinos o neutrinos masivos, supervivientes de las etapas tempranas del Big Bang y, ¿por qué no?, también podríamos suponer que la materia oscura que tanto nos preocupa pudiera estar encerrada dentro de las singularidades de tantos y tantos agujeros negros que se han debido formar a lo largo de los 13.500 millones de años que es la edad del universo.

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Pues bien, si en el universo existen innumerables agujeros negros, por qué no creer que sean uno de los candidatos más firmes para que sea la buscada “materia oscura”.

Leer más

Año Internacional de la Astronomía 2009. En España (AIA-IYA2009)

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como cada día, trataremos hoy de cometar aquí alguna cuestión que, relacionada con el Universo, nos deje su huella y aumente nuestros conocimientos sobre la Astronomía y el Cosmos.

¡TIEMPO!

Sí, es el tiempo el factor que juega a nuestro favor para conseguir nuestros logros más difíciles, para poder responder preguntas de las que hoy no tenemos respuesta, y es precisamente la sabiduría que adquirimos con el paso del tiempo la que nos posibilita para hacer nuevas preguntas, más profundas que las anteriores y que antes, por ignorancia, no podíamos formular.  Cada nuevo conocimiento nos abre una puerta que nos invita a entrar en una nueva región donde encontramos otras puertas cerradas que tendremos que abrir para continuar nuestro camino. Sin embargo, hasta ahora, con el “tiempo” suficiente para ello, hemos podido franquearlas hasta llegar al momento presente en el que estamos ante puertas cerradas con letreros en los que se puede leer: Materia Oscura, Densidad crítica, fusión, teoría M, viajes espaciales tripulados, nuevas formas de materia, el gravitón, la partícula de Higgs, las ondas de energía de los agujeros negros, hiperespacio, otros universos.

Todas esas puertas y muchas más nos quedan por abrir. Además, tenemos ante nuestras narices puertas cerradas que llevan puesto el nombre de: genética, nanotecnología, nuevos fármacos, alargamiento de la vida media, y  muchas más en otras ramas de la ciencia y del saber humano.

Leer más

Año Internacional de la Astronomía. En España AIA-IYA2009

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En estas colaboracionbes para el Año Internacional de la Astronomía 2009, que en España se denomina AIA-IYA2009, tenemos que hablar del Universo, de la Astronomía, la Astrofísica y la Cosmología, y, claro, es difícil hablar de dichas cuestiones si no hablamos de la vida.

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto.

El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales; el t(bio) – tiempo biológico para la aparición de la vida – algo más extenso.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del universo, hay también una aparente coincidencia entre la edad del universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo Sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el universo, se hablará de miles de millones de años.

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y la vida no sería posible en ellos. Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina. Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes. Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades. Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, no se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables!

Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y la gravitación nos dice que la edad del universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del universo es hoy de poco más que 1 átomo por m3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existen en el universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo.

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad, ni en ellas está el poder de ahondar en el porqué de las cosas. Nosotros sí podemos hacer todo eso y más.

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, b, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, a, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos b demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de beta el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Si en lugar de a versión b, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de a, entonces, a menos que  aF > 0,3 a½, los elementos como el carbono no existirían.

No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón  helio-2.

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar

                           
ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida.

Gráfico: Zona habitable donde la complejidad que sustenta la vida puede existir si se permite que los valores que sustentan b y a varíen independientemente. En la zona inferior derecha no puede haber estrellas. En la superior derecha están ausentes los átomos no relativistas. En la superior izquierda los electrones están insuficientemente localizados para que existan moléculas auto reproductoras altamente ordenadas. Las estrechas “vías de tranvías” distingue la región necesaria para que la materia sea estable para evolucionar.

“Yo no quiero alcanzar la inmortalidad a través de mi obra.  Quiero alcanzar la inmortalidad por no morir. No quiero vivir eternamente en los corazones de mis paisanos. Preferiría vivir eternamente en mi apartamento.”

                                       Woody Allen

Muchos han especulado con sugerencias diversas del principio antrópico.  John Wheeler, el científico de Princeton que acuñó el término “agujero negro” y desempeñó un papel principal en su investigación, propuso lo que él denominó el principio antrópico participatorio. Este no tiene que ver especialmente con las constantes de la naturaleza sino que está motivado por la precisión de las coincidencias que permiten que exista vida en el cosmos.  ¿Es posible, pregunta Wheeler, que la vida sea en algún sentido esencial para la coherencia del universo?

Pero por supuesto nosotros no somos de interés para las galaxias lejanas ni para la existencia del universo en el pasado lejano antes de que pudiera existir la vida. Wheeler se sentía tentado a preguntar si la importancia de los observadores al traer a la plena existencia la realidad cuántica podía estar tratando de decirnos que los “observadores”, definidos de forma adecuada, pueden ser en cierto sentido necesarios para hacer nacer al universo. Es muy difícil darle a esto un sentido correcto porque en la teoría cuántica, con su principio de incertidumbre, la noción del observador carece de una definición nítida. Es algo que registra información. Una placa fotográfica valdría tanto como un vigilante nocturno.

Otro modelo de principio antrópico, introducido por Frank Tipler y John D. Barrow, es algo diferente. Es sólo una hipótesis que debería poderse demostrar verdadera o falsa utilizando las leyes de la física y el estado observado del universo. Se denomina como Principio antrópico final y propone que una vez que la vida emerge en el universo, no desaparecerá. Una vez que hemos dado con una definición de vida adecuadamente amplia, digamos como procesamiento de información (“pensamiento”) con la capacidad de almacenar esa información (“memoria”), podemos investigar si esto podría ser cierto.

Nótese que no se afirma que la vida tenga que aparecer o que deba persistir. Evidentemente, si la vida va a durar para siempre deberá tener una base distinta de la vida que conocemos. Nuestro conocimiento de la astrofísica nos dice que el Sol sufrirá con el tiempo una crisis de energía irreversible, se quedará sin el material necesario para la fusión nuclear, se expandirá en gigante roja y se tragará los planetas cercanos, incluida la Tierra y posiblemente Marte. Para cuando eso tenga que llegar tendremos que habernos ido de la Tierra, o haber transmitido la información necesaria para recrear miembros de nuestra especie (si aún pueden ser llamados así) para que colonicen otros lugares. Pensando en millones de años en el futuro también podríamos imaginar que la vida podría existir en otras formas que hoy llamaríamos “artificiales”, como máquinas muy avanzadas de vasta información que procesan a velocidad de vértigo.

Hasta mañana amigos de la Astronomía y amantes del Universo.

emilio silvera