Desde que la Ciencia moderna puede recordar, la conjetura de un universo continuo ha sido una verdad más que evidente e irrefutable. La materia, la energía y también el espacio-tiempo han sido así considerados y, sin embargo, llegaron nuevos descubrimientos que nos llevaron a saber, que todo, en el universo está cuantizado y, andamos a la búsqueda de saber, si también lo está el espacio-tiempo.
Si nos trasladamos al ámbito de la mecánica cuántica, todo allí parece diferente y resulta estar cuantizado, la energía se emite en pequeños paquetes que se llaman cuantos y de ahí, el nombre de ésta teoría tan extraña que nos habla de lo que pasa en los pequeños ámbitos del universo.
Hay una combianción de c, G y h (las constantes universales que además dan los regímenes relativistas, gravitatorios y cuánticos) que tiene dimensiones de longitud. A esta longitud se la denomina longitud de Planck. Sin embargo, no es cierto que eso implique que el espacio-tiempo sea discreto en esencia, lo que implica es que no podemos medir distancias por debajo de esta longitud. Por lo tanto, no es que el espacio-tiempo sea discreto por la existencia de esta longitud de Planck.
Todos hemos repasado algunas veces, más o menos a fondo, la Teoría de la Relatividad General que nos dice que, las propiedades geométricas del espacio no son, ni están conformadas de una manera aleatoria, sino que, por el contrario, están sujetas y están condicionadas por la materia. Así, hablar de la estructura del Universo sin tener en cuenta esta premisa que nos lleva a considerar que, la geometría del universo viene dada por la materia que contiene, sería infundado y no ajustado a los conocimientos que actualmente tenemos. Hay que conocer el estado de la materia y las conformaciones -grandes y pequeñas estructuras que conforman en nuestro universo-, para saber de la geometría espacial.
Si la Gravedad es muy débil en una situación dada, las curvas del espacio-tiempo serán, también pequeñas en consonancia con dicha debilidad de la fuerza y, entonces, la RG deberá incluir a la RE como una aproximación de primer orden, como un caso especial en el cual la RG debe reducirse a la formulación matemática de un espacio-tiempo plano, es decir, deben reducirse a las trasformaciones de Lorentz.
Cualquier sistema de geometría que no está basado en el postulado paralelo de Euclides, que dice que una línea y sólo una línea se puede trazar a través de un punto fuera de una línea dada, paralela a esa línea. La geometría Euclidiana trata de la geometría de nuestro mundo diario. El postulado paralelo de Euclídes parece intuitivamente claro, pero nadie ha sido capaz de demostrarlo. Si sustituimos el postulado paralelo de Euclides con el supuesto que existe más de una línea paralela a una línea dada a través de un punto dado, tenemos una geometría no Euclidiana llamada geometría hiperbólica. Si asumimos que no existen líneas paralelas, tenemos una geometría no Euclidiana llamada geometría elíptica.
Queremos saber como el Universo es, y, para ello, aunque tenemos la Relatividad General que nos dice que en presencia de grandes masas el Universo se curva y su geometría se ve sometida a dicha presencia, a pesar de ello, no dejamos de buscar y queremos saber si, eso que los cosmólogos llaman Omega Negro -la cantidad de materia que existe en el Universo- nos dice, de una vez por todas si estamos en un universo plano, abierto o cerrado.
Cabría imaginar que nuestro mundo se comporta en el espacio geométrico como una superficie que está irregularmente curvada pero que en ningún punto se aparta significativamente de un plano, lo mismo que ocurre, por ejemplo, con la superficie de un lago rizado por las débiles ondas que crean el suave viento. A un mundo de esta especie podríamos llamarlo con toda propiedad cuasi-euclidiano, y sería espacialmente infinito. Los cálculos indican, sin embargo que, la densidad media de materia tendría que ser nula y, no es ese, precisamente el caso de nuestro mundo en el que la materia, está por todas partes y, lo queramos o no, genera gravedad y genera curvatura que se dejan sentir, en nosotros mismos, en la Luna y en todos los cuerpos que nos circundan.
Deformación de la malla espacio-tiempo
De la misma manera que en presencia de grandes masas y debido a la fuerza de Gravedad que generan, es afectada la malla espacio-temporal, de la misma manera digo, también se ha podido comprobar que, la luz, aparentemente sin masa, también es curvada cuando pasa cerca de un estrella.
Ya Hawking había hablado de la la incidencia que la gravedad podría tener en la propagación de la luz, Su primera explicación ni a él mismo dejo satisfecho y, finalmente, tuvo que admitir que los rayos de luz que pasaban cerca de un cuerpo masivo, como una estrella, serían desviados por el campo gravitatoria que esta genera. Es decir, lo mismo que decía Einstein en su RG.
Como se está a la búsqueda de la Teoría Cuántica de la Gravedad, una de las preguntas más comunes es: ¿Desempeñan los campos gravitatorios un papel esencial en la estructura de las partículas elementales de la materia?
Realmente, consideradas de manera individuales, las partículas más o menos elementales e incluso los átomos, tienen una incidencia ínfima de la gravedad, ya que, las pequeñas masas que las conforman -infinitesimales- son tan insignificantes a a nivel individual que la Gravedad casi podría ser despreciada. De hecho, cuando llegamos a los ámbitos cuánticos, la Gravedad, hace mutis por el foro y, sólo se consideran parámetros electromagnéticos y de fuerzas nucleares fuerte y débil que sí, inciden, de lleno y con mucha potencia en esos pequeños objetos.
Está claro que ni la teoría Newtoniana ni tampoco la Relativista de la gravitación han llevado hasta ahora a ningún avance en la teoría de la constitución de la materia y, sin embargo, se piensa que, las formaciones elementales que van a constituir los átomos se mantienen unidas por fuerzas gravitatorias que, aún no hemos podido medir por no tener la tecnología necesaria para ello.
El avance proporciona evidencia para apoyar una idea polémica, llamada la generación de múltiples excitón (MEG), que es la teoría de que es posible que un electrón que ha absorbido la energía de la luz, llamado un excitón, puede transferir esa energía a más de un electrón, consiguiendo más electricidad con la misma cantidad de luz absorbida.
Los puntos cuánticos son átomos artificiales que los electrones se limitan a un espacio pequeño. Ellos tienen un comportamiento atómico como que da lugar a inusuales propiedades electrónicas a nano-escala. Estas propiedades únicas pueden ser particularmente valiosos en la adaptación de la forma en la luz interactúa con la materia.
Gustav Mie
Ese ha sido uno de las grandes esfuerzos realizados por desarrollar una teoría que diera cuenta del equilibrio de la electricidad que constituye el electrón y, los trabajos de Mie, han sido apoyados por toda la comunidad de los físicos teóricos, él se basa principalmente en la introducción de un tensor- energía de términos suplementarios que dependen de las componentes del potencial electromagnético, además de los términos de energía de la teoría de Maxwell-Lorentz. Estos nuevos términos que en el espacio exterior no son importantes, son sin embargo efectivos en el interior de los electrones al mantener el equilibrio frente a la repulsión eléctrica.
A pesar de la belleza de la estructura formal de esta teoría, erigida por Mie, Hilbelt y Weyl, sus resultados físicos hasta ahora han sido insatisfactorios. Por una parte, la multiplicidad de posibilidades es desalentadora, y por otra parte dichos términos adicionales no han podido ser formulados de una manera tan simple que la solución pudiera ser satisfactoria,
Hasta ahora la Teoría de la Relatividad General no ha realizado ningún cambio en este estado de la cuestión. Si por el momento no consideramos el término cosmológic0.
Donde G denota el Tensor de curvatura de Riemann contraído, G es el escalar de curvatura formado por contracción repetida, y Tμν el Tensor de energía de “materia”. En fin, explicar toda la ecuación puede llegar a ser engorroso y es toda una larga historia que no siempre entretiene al personal. Así que, lo dejamos.
Muchos son los conceptos que tendríamos que explicar aquí para dilucidar todas estas cuestiones que, implicadas en estas teorías, nos llevan a la cinemática, la simultaneidad, transformaciones de coordenadas, relatividad de longitudes y tiempos, adición de velocidades, lo que nos dijo Maxwell y Lorentz. transformación de energía en rayos luminosos, la gravedad y la propagación de la luz, la naturaleza física de los campos gravitatorios… y un sin fin de cuestiones que, hacen necesario un gran volumen y, también, un amplio dominio de conocimientos de los que carezco.
Lo cierto es que, la Teoría de la Gravedad, nos lleva a imaginar situaciones que podrían ser y, en alguna ocasión, se nos puede presentar como posibles caminos para solucionar cuestiones que, en el mundo físico que conocemos, nos parecen irresolubles pero… En física, amigos míos, lo imposible parece posible.
¡Encontrar la solución para burlar la velocidad de la luz, y, atravesando portales mágicos, ir a otras galaxias! Es cierto que la mente está muy delante de los hechos pero… Cuando se piensa en algo, ahí queda la posibilidad de plasmarlo en una realidad.
Al menos por el momento, no podemos saber si nuestro Universo es único. Sin embargo, hemos pensado en la posibilidad de que pudiera ser uno de tantos. Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, realizamos conjeturas y comparaciones con otros que podrían ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimensiones espacio-temporales, no contamos con las condiciones físicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado en ese “vacío” que no hemos llegado a comprender. Sin embargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para ello.
Bueno, perdonad, no sigue igual sino que sigue… ¡Muchísimo peor! ¿Qué C… le pasa a la gente?
Vayamos con el trabajo.
Es cierto que cuando vemos las cosas con cierta asiduidad y de forma permanente, esa cotidianidad nos hace perder la perspectiva y no pensamos en lo que realmente esas cosas pueden ser y, con las estrellas nos ocurre algo similar, ya que son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.
Muchos son los ejemplos de estrellas masivas (más de 100 masas solares) que, para no morir, eyectan material al espacio interestelar y siguen viviendo.
Estrellas masivas que expulsan gases, ya que, cuando la masa es muy grande, su propia radiación las puede destruir y, de esta manera, descongestionan la tensión y evitan un final anticipado. Arriba tenéis una estrella super-masiva que ha expulsado gases formando una nebulosa para evitar su muerte, Eta Carinae ha hecho lo mismo. Estas son estrellas que están congestionadas y, sólo la expulsión de material la puede aliviar y conseguir que siga brillando como estrella evitando explotar como supernova.
Se calcula que la masa máxima de una estrella es de unas 120 masas solares, por encima de la cual sería destruida por su propia radiación. La masa mínima es de 0,08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno, y se convertirían en enanas marrones.
De la misma forma que al calentar una pieza de metal cambia de color, al principio rojo, luego amarillo hasta llegar al blanco, el color de una estrella varia según su temperatura superficial. Las estrellas más frías son las rojas, y las mas calientes las azules. Estos colores suelen percibirse a simple vista, como por ejemplo Antares (la estrella principal de Scorpius) que es de color rojo, o Rigel (en Orión) de color azul. En astronomía se utiliza la escala Kelvin para indicar temperaturas, donde el cero absoluto es -273 grados Celsius.
El diagrama de Hertzsprung-Russell proporcionó a los astrónomos un registro congelado de la evolución de las estrellas, el equivalente astrofísico del registro fósil que los geólogos estudian en los estratos rocosos. Presumiblemente, las estrellas evolucionan de algún modo, pasan la mayor parte de su tiempo en la serie principal (la mayoría de las estrellas en la actualidad, en el brevísimo tiempo que tenemos para observar, se encuentran allí), pero empiezan y terminan su vida en alguna otra parte, entre las ramas o en el mantillo. Por supuesto, no podemos esperar para ver que esto sucede, pues el tiempo de vida, aún de estrellas de vida corta, se mide en millones de años. Hallar la respuesta exigirá conocer la física del funcionamiento estelar.
El progreso en física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como la Barrera de Coulomb, y por un tiempo frustró los esfuerzos de los físicos teóricos para comprender cómo la fusión nuclear podía producir energía en las estrellas.
“La barrera de Coulomb, denominado a partir de la ley de Coulomb, nombrada así del físico Charles-Augustin de Coulomb (1736–1806), es la barrera de energía debida a la interacción electrostática que el núcleo atómico debe superar para experimentar una reacción nuclear. Esta barrera de energía es proporcionada por la energía potencial electrostática:
q1, q2 son las cargas de las partículas que interactúan;
r es el radio de interacción.”
Un valor positivo de U es debido a una fuerza de repulsión, así que las partículas que interactúan están a mayores niveles de energía cuando se acercan. Un valor negativo de la energía potencial U indica un estado de ligadura, debido a una fuerza atractiva. La línea de razonamiento que conducía a esta barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de hidrógeno consiste en un sólo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford explicados aquí en otra ocasión). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno.
(Recordemos que la masa es igual a la Energía: E = mc2. (En el calor de una estrella los protones son esparcidos a altas velocidades -el calor significa que las partículas involucradas se mueven rápidamente- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben de tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. esta era la base de conjetura de Eddingtonde que la fuente de la energía estelar “difícilmente puede ser otra cosa que energía subatómica, la cual, como se sabe, existe en abundancia en toda la materia”.
Fusión de deuterio con tritio, por la cual se producen helio 4, se liberan un neutrón y se generan 17,59 MeV de energía, como cantidad de masa apropiada convertida de la energía cinética de los productos, según la fórmula E = Δm c2.
Hasta ese punto, todo iba bien, la ciencia estaba cerca de identificar la fusión termonuclear como el secreto de la energía solar. Pero aquí era donde intervenía la Barrera de Coulomb. Los protones están cargados positivamente; las partículas de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del centro de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromágnéticos y fundirse en un sólo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con su rostro radiante y sonriente al ver el esfuerzo y las ecuaciones que decían que no podía brillar.
Dejemos aquí este proceso y digamos que, realmente, la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando la atravesará. Este es el “Efecto Túnel Cuántico”; que permite brillar a las estrellas. George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb, o casi. El efecto túnel cuántico se hizo cargo de los cálculos de la desalentadora predicción clásica, que establecía la fusión de los protones a sólo una milésima de la tasa necesaria para explicar la energía liberada por el Sol, y la elevó a una décima de la tasa necesaria. Luego se tardó menos de un año para dar cuenta del deficít restante: la solución fue completada en 1929, cuando Robert Atkinson y Fritz Houterman combinaron los hallazgos de Gamow con lo que se ha llamado teoría maxwelliana de la distribución de velocidades. En la distribución maxwelliana hay siempre unas pocas partículas que se mueven mucho más rápidamente que la media y, Robert Atkinson y Fritz Houterman hallaron que estas pocas partículas veloces bastqaban para compensar la diferencia. Finalmente se hizo claro como podía romperse la Barrera de Coulomb suficientemente a menudo para que la fusión nuclear se produjese en las estrellas.
Pero la figura clave en todos estos desarrollos fue Hans Bhete, un refugiado de la Alemania nazi que había estudiado con Fermi en Roma y fue a enseñar en Cornell en EE. UU. Como su amigo Gamow, el joven Bhete era un pensador efervescente y vivaz, con tanto talento que parecía hacer su trabajo como si de un juego se tratara. Aunque no preparado en Astronomía, Bhete era un estudioso de legendaria rapidez. En 1938 ayudó al discípulo de Gamow y Edward Teller, C.L. Critchfield, a calcular una reacción que empezase con la colisión de dos protones podía generar aproximadamente la energía irradiada por el Sol, 3,86 x 1033 ergios por segundo. Así, en un lapso de menos de cuarenta años, la humanidad había progresado de la ignorancia de la existencia misma de los átomos a la comprensión del proceso de fusión termonuclear primaria que suministra energía al Sol.
Pero la reacción protón. protón no era bastante energética para explicar la luminosidad muy superior de estrellas mucho más grandes que el Sol, estrellas como las supergigantes azules de las Pléyades, que ocupan las regiones más altas del diagrama de Herptzsprung-Russell. Bhete puso remedio a esto antes de que terminase aquel el año 1938.
GeorgeGamow Edward Reller
En abril de 1938, Bhete asistió a una conferencia organizada por Gamow y Teller que tenía el objeto de que físicos y astrónomos trabajaran juntos en la cuestión de la generación de energía en las estrellas. “Allí, los astrofísicos nos dijeron a los físicos todo que sabían sobre la constitución interna de las estrellas -recordoba Bhete-. esto era mucho (aunque) habían obtenido todos los resultados sin conocimiento de la fuente específica de energía.” De vuelta a Cornell, Bhete abordó el problema con celeridad y, en cuestión de semanas logró identificar el ciclo del Carbono, la reacción de fusión crítica que da energía a las estrellas que tiene más de una vez y media la masa del Sol.
Bhete que estaba falto de dinero, retiró el artículo que escribió sobre sus hallazgos y que ya tenía entregado en la Revista Physical Review, para entregarlo en un Concurso postulado por la Academia de Ciencias de Nueva York sobre la producción de energía en las estrellas. Por supuesto, Bhete ganó el primer Premio uy se llevó los 500 dólares que le sirvieron para que su madre pudiera emigrar a EE UU. Después lo volvió a llevar a la Revista que lo publicó y, finalmente, se lo publicaron y tal publicación le hizo ganar el Nobel. Por un tiempo, Bhete había sido el único humano que sabía por qué brillan las estrellas.
Esa sensación de que las estrellas nos “guiñan” viene de la atmósfera terrestre, que distorsiona la luz estelar, creando un efecto parpadeante llamado centelleo, mientras que la inmensidad, misterio y belleza del espacio interestelar nos conmueve y nos conecta con preguntas existenciales sobre nuestro lugar en el cosmos, un sentimiento que el cine, como la película Interstellar, ha fabulado, recordándonos la maravilla de mirar hacia arriba.
Así cuando miramos al cielo y podemos contemplar extasiados esas maravillas que ahí arriba, en el espacio interestelar están brillando, y, nos da la sensación de que están haciéndonos guiños, como si quisieran mandarnos un mensaje, decirnos algo y nosotros, no pensamos en todo lo que ahí, en esos “puntitos brillantes” se está fraguando. De lo que allí ocurre, depende que los mundos tengan los materiales que en ellos están presentes y, de entre esos materiales, se destacan aquellos que por su química biológica, permiten que se pueda formar la vida a partir de unos elementos que se hicieron en los hornos nucleares de las estrellas.
El Proceso Triple Alfa
El cinturón de Orión, también llamado en algunos países hispanos “los tres reyes magos” o “las tres Marías”, es un conjunto estacionario de estrellas (asterismo) que forma parte de la constelación de Orión, y que está formado por tres estrellas específicas: Alnitak, Alnilam y Mintaka.
Y sí, es curioso que mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.
Es un gran triunfo del ingenio humano el saber de qué, están estructuradas las estrellas y qué materiales se están forjando allí, al inmenso calor de sus núcleos. Recuerdo aquí a aquel Presidente de La Real Society de Londres que, en una reunión multitudinaria, llegó a decir:
“Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”.
El hombre se vistió de gloria con la (desde entonces) famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.
Poco tiempo después de tal afirmaci´çon del Sr. Presidente de la Real Society de Londres:
El avión de los hermanos Wright levantó el vuelo el 17 de diciembre de 1903 en Kitty Hawk, Carolina del Norte. Era una estructura de madera y tela con alas biplanas y un motor de combustión interna diseñado por ellos mismos, y su diseño incorporaba un sistema de control de tres ejes que fue crucial para la estabilidad y maniobrabilidad, marcando el inicio de la era de la aviación.
Aquel suceso me enseñó a no negar lo que podría ser dentro de decenas de años, aunque nos pueda parecer imposible… ¡Podrá suceder!
También decían que nunca podríamos saber de qué estában hechas las estrellas.
Poco tiempo después, llegó Johan Franhufer con sus líneas espectrales y echó al traste aquellas palabras
A nuestro planeta sólo llega una ínfima fracción del calor que se genera en el Sol y, sin embargo, es más que suficiente para mantener aquí la vida. El Sol tiene materia que supone la misma que tendrían 300.000 Tierras. Nuestra estrella madre está situada a una UA (150 millones de kilómetros de nosotros) y, todas esas circunstancias y otras muchas, hacen que todo sea tal como lo vemos a nuestro alrededor. Si cualquiera de esos parámetros fuera diferente o variara tan sólo unas fracciones, seguramente la Tierra sería un planeta muerto y, nosotros, no estaríamos aquí. Sin embargo… ¡Estamos! y, gracias a ello, se pueden producir descubrimientos como los que más arriba hemos relatado y han podido y pueden existir personajes de cuyas mentes surgen ideas creadoras que nos llevan a saber cómo son las cosas.
Lo cierto es que, cada día sabemos mejor como funciona la Naturaleza que, al fin y al cabo, es la que tiene todas las respuestas que necesitamos conocer.
La visión de este trabajo está destinada a curiosos entusiastas de la Física
Muchos han sido los trabajos aquí presentados en los que hemos hablado de la Teoría de Einstein que llegó a la Física como Elefante en cacharrería, lo puso todo partas arriba, la “legalidad” reconocida se vio zarandeada en sus cimientos.
Que la energía y la masa eran dos aspectos de la misma cosa.
Que si un objeto viaja a velocidades cercanas a la de la luz… ¡Su masa aumenta!
Que para los viajeros de una nave que marcha a la velocidad de c, el Tiempo se ralentiza.
Primeros principios de ideas salidas de otros cerebros privilegiados como Lorentz y Maxwell (también otros).
Finalmente, y, ante la incredulidad de los físicos de primer nivel, tuvo que llegar Planck, que habiendo leído detenidamente los trabajos del joven Einstein, comprendió la importancia de los mismos y los publicó en una revista de la que era director y, desde ese momento, el joven empleado de la Oficina de Patentes de Berna (Suiza), fue una celebridad que, requerido por todos, se vio asediado a dar conferencias y rechazar mil puestos de trabajo de gran importancia.
Pero bueno, esto es una sencilla reseña, lo importante es oír al narrador.
Sí, el camino andado ha sido largo y muy penoso. Lo que no sabemos es, si finalmente habrá sido provechoso. ¿Nos dirigimos hacia una meta positiva con las decisiones adoptadas?
La Ciencia está convencida (según los fósiles y pruebas encontradas por los antropólogos), de que el Chimpancé y el Humano, tuvieron un ancestro común. Lo que no se ha podido saber, es el por qué, ese ancestro que no era ni Homo ni Pan, es el antecesor de las dos especies que, mientras la una sigue en la copa de los árboles, la otra trata de llegar a las estrellas.
Sahelanthropus Tchadensis
Siete millones años. Simios antropoides.
Unas dos docenas de especies diferentes.
no existe acuerdo sobre la cifra exacta.
marcan la evolución del humano, desde la postura bípeda hasta la era del Presente.
Nos dice Frank Ochmann.
No todos los miembros de esta pintoresca parentela son antepasados nuestros. Algunos de ellos siguieron vías evolutivas paralelas. Al final, sólo hemos quedado nosotros, aunque muchas de sus características siguen vivas en nuestros genes.
DESVELANDO EL PUZLE ANCESTRAL
En el mundo se han hallado miles de restos prehistóricos humanos. Con las nuevas técnicas de análisis de ADN, muchos de ellos han vuelto al laboratorio deparando nuevas sorpresas gracias a potentes programas informáticos que recomponen este puzle de tiempos remotos.
Los paleoantropólogos, sin embargo, pocas veces trabajan con esqueletos completos. Muchas veces, unas huellas, un hueso, un cráneo, una mandíbula o, incluso, un único diente son el único material disponible. Con suerte, como en el caso del Australopithecus afarensis llamado Lucy, se ha conservado un esqueleto bastante completo.
Su ejemplo nos permite explicar cómo se denomina a las distintas especies humanas: Australopithecus significa ‘mono del sur’, y su abreviatura es Au. A continuación sigue la descripción del lugar donde se encontró: en el caso de Lucy y su parentela afarensis se refiere a la depresión de Afar, en el este de África. Todas las especies humanas llevan el calificativo Homo, normalmente acompañado por una breve descripción derivada del yacimiento del que procede. Nuestra especie corona su nombre con esa sabiduría de la que se siente tan orgullosa: sapiens.
Durante mucho tiempo, nuestros ancestros se refugiaban en grandes grutas para preservarse de las inclemencias del tiempo, sobre todo del frío y de la lluvia con las temibles tormentas, de los peligros de felinos salvajes, y, allí encontraban un lugar que les daba algo de seguridad frente a la frágil naturaleza humana.
En el entonces precario nivel intelectual, no podían asombrarse ante tales escenarios, eran simples barreras que vencer
La dieta de los primeros seres humanos anatómicamente modernos se basaba en mamuts y verduras crudas, con lo que los Homo sapiens más antiguos se alimentaban de lo mismo que los neandertales y la competencia directa por los alimentos causó la extinción de estos últimos.
Y otro resultado de los estudios realizados fue una sorpresa para los científicos: la proporción de plantas en la dieta de los Homo sapiens fue significativamente mayor que en hallazgos de neandertales comparables. Por otra parte, los mamuts parecen haber sido una de las fuentes primarias de carne en ambas especies.
Y, el Ser Humano, comenzó a pensar, muchas son las pruebas que tenemos de pensadores. elegiré a este.
“Al igual que se tiene un concepto de las carnes y pescados y comestibles semejantes, sabiendo que esto es un cadáver de pez, aquello cadáver de un pájaro o de un cerdo; y también que el Falerno es zumo de uva, y la toga pretexta lana de oveja teñida con sangre de marisco; y respecto a la relación sexual, que es una fricción del intestino y eyaculación de un moquillo acompañada de cierta convulsión. ¡Cómo, en efecto, estos conceptos alcanzan sus objetos y penetran en su interior, de modo que se puede ver lo que son! De igual modo es preciso actuar a lo largo de la vida entera, y cuando las cosas te dan la impresión de ser dignas de crédito en exceso, desnúdalas y observa su nulo valor, y despójalas de la ficción , por la cual se vanaglorian. Pues el orgullo es un terrible embaucador de la razón, y cuando piensas ocuparte mayormente de las cosas serias, entonces, sobre todo, te embauca. Mira, por ejemplo, qué dice Crates acerca del mismo Jenócrates .
La mayor parte de las cosas que el vulgo admira se refieren a las más generales, a las constituidas por una especie de ser o naturaleza: piedras, madera, higueras, vides, olivos. Las personas un poco más comedidas tienden a admirar los seres animados, como los rebaños de vacas, ovejas o, sencillamente, la propiedad de esclavos. Y las personas todavía más agraciadas, las cosas realizadas por el espíritu racional, mas no el universal, sino aquél en tanto que es hábil en las artes o ingenioso de otra manera [o simplemente capaz de adquirir multitud de esclavos]. Pero el que honra el alma racional universal y social no vuelve su mirada a ninguna de las restantes cosas y, ante todo, procura conservar su alma en disposición y movimiento acorde con la razón y el bien común, y colabora con su semejante para alcanzar ese objetivo.”
Más tarde llegarían otros con pensamientos a mayor nivel, querían desvelar los secretos de la Naturaleza
Galileo Galilei: Precursor de Newton, “padre de la ciencia moderna” (aunque anterior, su trabajo fue la base).
Margarita Salas: Bioquímica española, pionera en biología molecular.
Estos científicos, junto a muchos otros, expandieron radicalmente el conocimiento del universo, desde las partículas subatómicas hasta la vastedad del cosmos y los secretos de la vida, basándose en los cimientos establecidos por Newton y sus contemporáneos.
Si seguimos relacionando los avances en otras disciplinas científicas, la Química, la Biología, las Matemáticas… ¡Nos faltaría espacio!
Sí, amigos míos, el camino ha sido muy largo y muy doloroso. ¿Lo sabremos valorar adecuadamente? ¿No meteremos finalmente la “patita” y mandaremos al traste todo lo conseguido?
Bueno, me gustaría contestar a esas preguntas pero… ¡El Futuro es Incierto!
La gran pregunta de por qué hay más materia que antimateria (la asimetría bariónica) se explica, según la física actual, por una violación de la simetría CPT durante los primeros instantes del universo, donde procesos raros permitieron que por cada mil millones de pares materia-antimateria que se aniquilaban, sobrara una partícula de materia, algo que se relaciona con la violación de la simetría CPT observada en partículas como los bariones y que todavía no se comprende del todo, y que se busca entender con experimentos en el Gran Colisionador de Hadrones (LHC).
Hallazgo en la asimetría del universo
En nuestro Universo existen cosas extrañas que, seguramente, cuando sepamos más, sabremos su explicación: ¿Por qué no existen anti-bariones primordiales en el Universo mientras que hay un barión por cada mil millones de fotones?, dicho de otra manera, el origen de la materia. Claro que, para explicar este hecho necesitamos comprender como se comportaba nuestro Universo a temperaturas tan altas como un billón de grados.
No existen anti-bariones primordiales significativos porque, aunque el Big Bang creó materia y anti-materia en cantidades casi iguales, una minúscula asimetría (aproximadamente una partículas de materia por cada mil millones de pares materia-antimateria) permitió que la materia sobreviviera después de la aniquilación mutua, resultando un universo dominado por la materia que observamos, es decir, la bariónica que emite radiación. El misterio ha sido explicado por una violación de la simetría CPT, según experimentos realizados en el LHC.
Las interacciones entre partículas elementales (interacciones electromagnéticas, débiles y fuertes) están clasificadas por su entidad (constantes de acoplamiento) y por las partículas “transportadoras” de las mismas (partículas de spin=1 0 bosones de gauge) . Todas ellas están bellamente descritas por lo que se conoce habitualmente como Modelo Estándar de las interacciones electrodébiles y fuerte. Estamos deliberadamente dejando al margen las interacciones gravitatorias que, al menos a nivel clásico, están perfectamente descritas por la Teoría de la Gravitación o Relatividad General formulada por A. Einstein en 1915 y 1916.
El Modelo Estándar nos dice que las partículas elementales, cuya interacción se detecta en particular en los grandes aceleradores como el Large Hadrón Collider (LHC) que está funcionando el el CERN (Ginebra-Suiza), no son los átomos, ni los núcleos atómicos, ni siquiera los protones y neutrones de los que están constituidos, sino los Quarks, de los que están compuestos neutrones y protones, los leptones cargados eléctricamente (partículas ligeras como los electrones que están en la corteza de los átomos o muones que aparecen en ciertas desintegraciones), los leptones neutros o neutrinos (partículas enigmáticas con una masa pequeñísima comparada con el resto del espectro) y partículas transportadoras de las interacciones como fotones (cuanto de luz) transportadores de las interacciones electromagnéticas, los bosones W+, W- y Z0 que transportan las interacciones electrodébiles y los Gluones que transportan la interacción fuerte.
Los Gluones mantienen a los Quarks confinados dentro de los nucleones (Protones y Neutrones)
Partiendo de los Quarks, se conforma el núcleo hecho de protones y neutrones. Los Quarks, confinados dentro de estos nucleones, quedan sujetos por la fuerza fuerte a través de las partículas mediadoras, los Gluones. Para formar el átomo, se necesitan electrones que, rodean el núcleo en número igual al de protones que contiene, y, como el protón está cargado eléctricamente con fuerza positiva, ésta se equilibra mediante la negativa de la misma potencia que aportan los electrones. De esta manera, el átomo queda debidamente estabilizado para poder unirse a otros para formar células que, a su vez se unen para formar moléculas que, a su vez, se juntan para formar materia.
Y pensar que todo lo que ahí podemos ver, está formado por esas partículas
Todas estas partículas de las que podemos hablar ya han sido descubiertas, mientras que la única incógnita del Modelo Estándar reside en el mecanismo por el que los fermiones elementales y ciertas partículas transportadoras de las interacciones como la W y Z adquieren masa. La Teoría de la “ruptura espontanea de simetría electrodébil” implica que tiene que existir una partícula aún no descubierta, el Bosón de Higgs, que es responsable de que las anteriores partículas, incluida ella misma, sean masivas.
¿Cómo será ese Bosón de Higgs y, de qué mecanismo se vale para dar masa a las demás partículas?
Todos hemos oido hablar hasta la saciedad de que el Bosón de Higgs debe ser descubierto por el Colisionador LHC y tal descubrimiento añadiría una buena ráfaga de luz sobre algunos enigmas, propiedades no bien conocidas de las interacciones débiles. Ahora que dicen haberlo encontrado, al menos de momento, no parece que se tengan noticias de ninguna nueva revolusión de la física. ¡Habrá que esperar!
El Modelo Estándar es pues la estructura matemática que describe las interacciones entre las partículas elementales conocidas. El Modelo Estándar, como cualquier otra teoría física, tiene que ser capaz de describir de froma correcta los datos experimentales que son los que realmente establece el veredicto último de una teoría.
En particular el Modelo Estándar ya ha sido (y está siendo) ampliamente contrastado con los datos experimentales de las colisiones de altas energías, como el Large Electrón Positrón (LEP) que estuvo funcionando en el CERN hasta el año 2000 y el Tevatrón que está en funcionamiento en el Laboratorio Fermilab (En Chicago, Illinois, USA), así como en aceleradores de baja energía.
El Tevatron, que ha sido el acelerador de partículas más potente del mundo hasta que entró en funcionamiento el LHCeuropeo, cerró el pasado 30 de de septiembre de 2011, de forma definitiva, tras 26 años de operación.
El resultado obtenido es que el acuerdo entre la teoría y los resultados experimentales es concluyente, llevándose el acuerdo hasta niveles de 0,1%. Sin embargo, a pesar de que los resultados experimentales no indiquen apenas fisuras en el Modelo Estándar existen motivaciones acuciantes para ir más allá de éste. Está claro que, el principal objetivo del Modelo está en descubrir los orígenes de la Materia, entendiendo por tal los protones y neutrones de los que estamos hechos nosotros mismos, es decir, la materia bariónica.
En este lugar, el Fermilab, se llevan a cabo proyectos de enorme importancia para conocer lo que la materia es. Y, de la misma manera que en el CERN, se realizan colisiones de haces de partículas que reproducen aquellos momentos de la creación, el big bang en miniatura para, a partir del estudio de lo que ahí pasa, poder llegar a comprender aquellos primeros momentos que aún, mantiene, algunas regiones oscuras que no dejan ver lo que allí pasó.
Los dos problemas “experimentales” más acuciantes que presenta en estos momentos el Modelo Estándar está relacionado con los dos tipos de Materia que constituyen el Universo observable. El 17% de la Materia de nuestro Universo es materia “luminosa”, es decir, materia constituida, como nosotros mismos por protones y neutrones. Por otro lado, el 83% de nuestro universo Universo está constituido por Materia Oscura (yo prefiero decir: parece que está constituido por materia invisible que llamamos oscura), es decir, materia que ha sido detectada por el momento sólo indirectamente a través de sus interacciones gravitacionales.
Debajo de la siguiente imagen nos dicen:
“De nuevo el Modelo Estándar requiere de una extensión para poder incluir candidatos a Materia Oscura.”
Esto lo dicen sin saber, a ciencia cierta, si la tal “materia oscura” existe, ya que nos dicen que es transparente, que no genera radiación, que sí genera Gravedad, que no se saber que qué partículas estaría conformada… ¡Qué no tienen ni idea! Sin embargo, no dejan de darnos la matraca con la dichosa materia.
Debajo de imágenes como esta, nos han dicho: “Las galaxias están sumergidas en un océano de materia oscura.”
Muchas son las noticias que saltan a los medios y que son emitidas por equipos que quieren llevarse el galardón del hallazgo de la M. O. Veamos por ejemplo uno de ellos:
24 OCTUBRE 2010. Un teórico del Fermilab y sus colegas de la Universidad de Nueva York podrían haber encontrado pistas sobre algunos de los más jugosos secretos del universo en el centro de la Vía Láctea. La materia oscura. En su análisis de los datos públicos de los rayos gamma del Telescopio Espacial Fermi, Dan Hooper, científico del Fermilab, y Lisa Goodenough, un estudiante graduado en la Universidad de Nueva York, informan que los rayos gamma de muy alta energía procedentes del centro de la Vía Láctea vienen de las colisiones de materia oscura.
“Salimos de nuestra manera de considerar todas las causas de los fondos que imitan la señal, y no se encontraron otras fuentes plausibles en astrofísica o la mecánica que se puede producir una señal como ésta”, dijo Hooper.
No son pocos los que quieren tener su minuto de gloria y hacen declaraciones y afirmaciones que nunca se confirman
Un reciente trabajo, publicado en el servidor repositorio científico arXiv-pre, describe sus hallazgos. Los astrofísicos desde hace mucho tiempo postulan una amplia gama de partículas de materia oscura, incluyendo los axiones, las partículas súper pesadas y partículas que se encuentran entre: débilmente partículas masivas de interacción, o WIMPs.
La partícula de la que está hecha la “materia oscura” ¿Cómo será? Si es que existe de verdad
Ahora nos dicen que el LHC se prepara para poder buscar la “materia oscura” y, que yo sepa, el Bosón de Higgs (aunque digan lo contrario) no se ha encontrado. Al parecer han localizado una partícula que tiene todos los atributos para poder ser el Higgs pero… ¿Será él?
Claro que, la realidad es tozuda, y, nadie puede decirnos qué es la dichosa y teórica “materia oscura” de qué está hecha, cómo se formó, de qué mecanismos se vale para pasar inadvertida sin emitir radiaciones que podamos detectar, y, un sin fin de cuestiones que la hace extraña y muy exótica, hasta el punto de que podamos pensar que está y no está en este mundo. ¿No estará escondida en eso que llamamos vacío y, las partículas portadoras de la Fuerza Gravitatoria, el Gravitón, nos trae a nuestra parte del “mundo” la Gravedad que genera y que es, la que detectan los cosmólogos cuando ven que las galaxias se alejan las unas de las otras a más velocidad de la que tendrían que hacerlo si sólo existiera la materia bariónica que podemos observar?
Hablamos de los posibles candidatos a materia oscura, aquí la situación es incluso más complicada puesto que candidatos a materia oscura no han sido detectados por experimentos de física de partículas con lo que (como antes decía) su misma naturaleza nos es desconocida. Para completar el relato cabe decir que experimentos astrofísicos, en particular detección de supernovas, indican que el total de la materia anteriormente descrita (o sea luminosa y oscura) constituyen tan sólo el 28% de la densidad de energía del universo observable mientras que el resto es una energía no detectable mediante experimentos de Física de Partículas y que se conoce con el nombre de energía Oscura, que puede ser simplemente una Constante Cosmológica.
Einstein se burla de nosotros como si supiera (el muy ladino) que él llevaba razón, y, la Constante Cosmológica está ahí, presente en el Universo. La verdad es que, nos trae de cabeza, el no saber detectar dónde está la verdad para saber el camino a tomar en el futuro.
Así que, finalmente podemos concluir que el 4,6% es la materia bariónica (Supercúmulos de Galaxias, Nebulosas, Mundos, y demás cuerpos observables .-también nosotros-) y, el 17% de la densidad de materia del universo podría ser la llamada “materia oscura” . Aún cuando la proporción sea minoritaria para la Bariónica, para nosotros es prioritaria, de ella estamos hecho nosotros mismos y que, por supuesto, es la única materia que podemos detectar de forma directa, conocemos (las partículas que la conforman) sus secretos, sus parámetros físicos, sus masas y cargas, sus funciones dentro del contexto general y, en definitiva es la materia que está tan cerca de nosotros que, nosotros mismos somos ella.
También los pilares básicos de nuestro propio ser, son Quark y Leptones, es decir, materia bariónica. Así que, si los observadores del Universo (nosotros) somos de materia radiante y luminosa, no creo que esa “materia oscura” tenga más importancia que aquella de la que nosotros estamos formados. Más bien creo que, existe alguna fuerza (llámese constante cosmológica o de cualquier otra forma) desconocida que, se confunde con esa clase de materia. Materia, lo que se dice materia, por mí, sólo existe la que podemos ver y detectar.
Dos son los problemas esenciales que deben ser entendidos en relación con el número bariónico del Universo:
– El primero es que no hay prácticamente evidencia de antimateria en el Universo. De hecho no hay antimateria en nuestro Sistema solar y solamente aparecen antiprotones en los rayos cósmicos. Sin embargo, los antiprotones se pueden producir como producto secundarios en colisiones del tipo pp → 3p + p (en esta última p debería aparecer una rayita horizontal encima (antiprotón) pero, en mi cuadro de caracteres especiales no lo tengo) que proporcionan una abundancia de antiprotones semejante a la observada.
Así por ejemplo, resulta que se detecta un antiprotón aproximadamente por cada 3000 protones mientras que se encuentra un átomo de antihelio por cada 10000 átomos de Helio. Todos estos datos experimentales están de acuerdo con la existencia de antimateria primordial en el Universo. De hecho, la no existencia de antimateria resulta esencial para la estabilidad del mismo puesto que la materia y la materia se aniquilan entre sí produciendo radiación.
Satélite WMAP
– Una vez explicado el hecho de que en la practica no hay antimateria en el Universo, el segundo problema sería entender el origen de la densidad de materia luminosa. De hecho, utilizando los datos de la abundancia primordial de elementos ligeros, de acuerdo con la teoría de la nucleosíntesis, junto con los datos del Satélite WMAP, se deduce que hay en torno a 1 protón por cada mil millones de fotones en el Universo. Siendo nB y n γ las densidades de bariones y fotones respectivamente, se tiene que η=nB/nγ ≈ 0.61 x 10-9.
Para ser un poco más preciso podríamos decir que en 5 metros cúbicos hay un sólo barión y mil millones de fotones en promedio.
Para entender mejor cuál puede ser el mecanismo que explique la generación de materia en nuestro Universo, es decir, el parámetro η que acabamos de describir, debemos retrotraernos a la época en que el universo estaba muy caliente, poco después del Big Bang. Es decir, la llamada era denominada de la Radiación. Las partículas cuya masa es (muy) inferior a la temperatura del universo se aniquilan con sus antipartículas por las reacciones inversas a las anteriores. En este momento las partículas se comportan practicamente como si fueran de masa cero y se dice que la partícula en cuestión está en equilibrio térmico con la radiación. El Modelo Estándar Cosmológico predice una relación entre la edad del Universo (en segundos) y la temperatura del mismo (en K) que viene dada por:
t ≈ 1/5 (kBT/GeV)-2 10-6
en donde kB es la constante de Boltzmann. La ecuación anterior nos dice que para una temperatura próxima al GeV (equivalente a la masa del protón, que es de unos diez billones de grados, ¡el tiempo transcurrido en el universo después del Big Bang era de unas dos diez millonésimas de segundo!
Para temperaturas inferiores a la masa de la partícula, las partículas y antipartículas siguen aniquilándose en fotones, aunque el proceso inverso no puede tener ya lugar y la densidad de equilibrio térmico de partículas y antipartículas decrece exponencialmente como exp (-m/T) en donde m es la masa de la partícula en cuestión. Este proceso se termina cuando el ritmo de aniquilación de partículas y antipartículas no puede competir con el ritmo de expansión del universo (constante de Hubble H) , momento en el que las partículas y antipartículas se salen del equilibrio térmico y su densidad queda “congelada” a los valores de equilibrio correspondientes a la temperatura de “congelación. Si aplicamos este proceso a los nucleonesprotones y neutrones) y anti-nucleones de masa ~ 1 GeV se puede ver como la densidad de los mismos empieza a disminuir exponencialmente para temperaturas inferiores al GeV, mientras que se salen de equilibrio térmico para temperaturas del orden de 20 MeV, para la cual la densidad de equilibrio resulta ser: nB/nγ=nB/nγ ≈ 10-18.
Esto nos demuestra que partiendo de un Universo simétrico, como hemos supuesto hasta el momento, hoy en día el Universo seguiría siendo simétrico respecto al número bariónico y, además, ¡el número de bariones sería mil millones más bajo que el que observamos! La solución de este problema sólo puede tener una respuesta: debemos abandonar la hipótesis de que el Universo era inicialmente simétrico respecto al número bariónico. La explicación podría seguir y es larga y algo compleja pero, por mi cuenta, resumo diciendo que, esa simetría no es posible, si tenemos en cuenta que, las partículas creadas después del Big Bang, al ser diferentes, también tenían diferentes masas y, tal hecho cierto, hace imposible que la expansión del Universo fuera isotrópica, así que, al expandirse aniso-trópicamente, la asimetría queda servida.
Sí, podríamos decir que, la asimetría del Universo es la responsable de su diversidad. No todo es igual en el Universo. Lo son todos los protones y electrones que existen, y, también, todos los neutrones, es decir, son idénticos y simétricos los objetos de la misma familia a niveles microscópicos pero, cuando nos vamos al mundo macroscópico de las galaxias, las estrellas, los mundos o, nosotros mismos, no encontramos dos iguales.
El Universo, amigos, es una maravilla.
En lo que a la tozudez de los cosmólogos en seguir agarrados a la “materia oscura”, me remito a la opinión del Premio Nobel de Física …
Martinus J. G. Veltman
“La materia oscura es la alfombra bajo la cual, los cosmólogos barren su ignorancia.”
Cuando comentan y afirman sobre su existencia, deberían decir: “El movimiento anómalo de las estrellas y las galaxias, parece debido a la presencia de una clase de misteriosa materia que no podemos ver”. Nunca afirmar lo que no se sabe.
Agradeceré aquí la mayor aportación de D. Mariano Quirós de cuyo artículo en el Volumen 25, número 4 de la Revista de Física, encontré el Origen de la materia: bario-génesis, del que pude obtener la mayor parte del texto que aquí han podido leer.
Este trabajo fue publicado en este lugar el pasado 24 de marzo