Sep
26
¡La Naturaleza! ¿Será igual en todas partes?
por Emilio Silvera ~
Clasificado en La Naturaleza...El Universo ~
Comments (0)

¿Estamos ahora en condiciones de comprender por qué, si existieran animales en otros planetas capaces de moverse a través de sus mares, de su atmósfera o de sus tierras, sería muy probable que, también ellos, tengan simetría bilateral? En otro planeta, igual que en la Tierra, actuarían los mismos factores que darían lugar a la mencionada simetría. La Gravedad produciría diferencias esenciales entre arriba y abajo, y la locomoción originaría marcadas diferencias entre frente y dorso. La ausencia de asimetrías fundamentales en el entorno permitiría que la simetría izquierda derecha de los cuerpos permaneciera inalterada.

La bailarina se desplaza con gracia y agilidad gracias a la asimetría izquierda derecha que posee

En planetas con las condiciones de la Tierra la vida sería similar a la que aquí existe

La Tierra dividida en dos grandes sistemas
Algunos científicos organizados de las partes de la Tierra pueden dividirse en dos sistemas principales. Estos dos sistemas incluyen toda la materia orgánica e inorgánica del mundo.
Cada cosa viviente y no viviente en la Tierra cae bajo una de estas dos esferas principales que son la geosfera y la biosfera de la Tierra.
Al igual que en la organización de los cuatro sistemas, la biosfera representa a todos los organismos vivos de la Tierra.
La geosfera es el nombre colectivo de la atmósfera terrestre, litosfera, hidrosfera y criosfera. La atmósfera es el espacio sobre la superficie de la Tierra. Esto incluye el aire que todos respiramos. La litosfera es la parte sólida de la Tierra, como las rocas y las montañas. La hidrosfera es el agua líquida como los ríos, lagos y océanos. La criosfera es el agua congelada de la Tierra y se divide además en cuatro tipos: glaciares, cubierta de nieve, hielo flotante y permafrost.


De acuerdo con estudios científicos, el tamaño gigantesco que los insectos alcanzaron hace unos 300 millones de años durante el final del Carbonífero y principios del Pérmico se debió al mayor contenido de oxígeno y no a la gravedad de la Tierra que no ha variado.
En cuanto a la posible influencia de la gravedad, parece que hay una relación pero no se ha podido comprobar en la práctica la correlación dimensión / gravedad o sea, la dimensión que podrían alcanzar creciendo y reproduciéndose bajo una gravedad diferente a la de la Tierra. Sí se ha comprobado que bajo “cero gravedad” se mueven más rápido.
¿Podemos ir más allá? ¿Podemos esperar semejanzas más concretas entre la vida extraterrestre y la vida tal como la conocemos? Creo que sí, que de la misma manera que existen planetas como la Tierra que tendrán paisajes parecidos a los que podemos contemplar en nuestro mundo, de igual forma, dichos planetas podrán albergar formas de vida que, habiendo surgido en condiciones similares a las nuestras de Gravedad, Magnetismo, Radiación… Habrán seguido el mismo camino que tomamos nosotros y los otros seres que en la fauna terrestre nos acompañan.

También las extrañas criaturas abisales pueden disfrutar de simetrías izquierda derecha para poder desenvolverse en su medio
En los extraños mares de otros planetas, sin tener en cuenta la composición química, es difícil imaginar que la evolución de lugar a una forma más sencilla de locomoción que la que se produce ondulando colas y aletas. Que la propia evolución encontraría este tipo de propulsión viene avalado por el hecho de que, incluso en la Tierra, esta evolución se ha produción de manera totalmente espontánea e independiente. Los peces desarrollaron la propulsión cola-aleta; después, ellos mismos evolucionaron hasta convertirse en tipos anfibios que se arrastraban por tierra firme hasta llegar a ser reptiles.
Ornitorrinco: ¿Mamífero, Ave o Reptil? Lo cierto es que, sin movernos de aquí, podemos ver los mismos extraños animales que nos podríamos encontrar en cualquier lugar situado en lejanos sistemas planetarios alumbrados por otras estrellas distintas a nuestro Sol. Allí como aquí en la Tierra, las mismas leyes, las mismas fuerzas, los mismos principios y los mismos ritmos que el Universo impone por el inmenso Cosmos, estarían presentes.
Algunos reptiles fueron evolucionando y dieron lugar a a los mamíferos. Pero cuando algunos de estos últimos regresaron al mar (los que luego han sido ballenas y focas, por ejemplo), sus piernas volvieron a evolucionar hacia las formas de las aletas destinadas a la propulsión por el medio acuático y a la navegación.


De la misma manera, cuesta imaginarse una manera más sencilla de volar por el aire que no sea utilizando las alas. De nuevo, también en la Tierra ha habido una evolución independiente y paralela de las alas. Los reptiles las desarrollaron a causa de la evolución, y llegaron a volar.

Los Pterodáctilos desaparecieron hace unos 100 millones de años pero eran simétricos
Lo mismo hicieron los insectos. Algunos mamíferos, como la ardilla voladora, desarrollaron alas para planear. El murciélago, otro mamífero, desarrolló unas alas excelentes. Algunas especies de peces, que saltan por encima del agua para evitar ser capturadas, se han provisto de alas de planeo.

¡La Naturaleza! ¿Qué no será posible para ella?
En tierra firme, ¿existe algún modelo más sencillo por el cual un animal puede desplazarse que no sea mediante apéndices articulados? Las patas de un perro, desde el punto de vista mecánico, no se diferencian demasiado de las de una mosca, pese a haber sufrido evoluciones completamente independientes una de otra. Evidentemente, la rueda es también, una máquina muy sencilla, útil para desplazarse por tierra, pero hay buenas razones técnicas que dificultan su evolución.

Recuerdo haber visto con los chicos cuando eran pequeños, aquella película en la que L. Frank Baum, en Ozma de Oz, inventó una raza de hombres, llamada “los rodadores” , con cuatro piernas como un perro pero que, cada una de ellas terminaba con una ruedecilla que les hacía correr velozmente para causar el pánico en la pequeña protagonista de la fantástica historia. Y, de la misma manera, si nos paramos a observar la Naturaleza y las criaturas que en ella han llegado a surgir, el asombro de tan fantástico logro, nos llega a dejar sin habla.
Pese a que ningún animal utiliza ruedas para auto-propulsarse a través del suelo o del aire, sí existen bacterias que se mueven por los líquidos haciendo rodar sus flagelos a modo de propulsores.

Existen mecanismos de rotación en el interior de las células para esparcir filamentos retorcidos de ADN. Algunos animales unicelulares se desplazan a través del agua haciendo que ruede todo su cuerpo. Si estudiamos el mundo microscópico de esos infinitesimales seres, nos quedaríamos maravillados de la inmensa diversidad de mecanismos que utilizan para poder realizar sus actividades cotidianas.
Órganos sensoriales como los ojos y nariz también deben ser como son si la vida evoluciona hacia algún tipo de actividad inteligente avanzada. Las ondas electromagnéticas son ideales para dar al cerebro un cuidadoso “mapa” del mundo exterior. Las ondas de presión, transmitidas por moléculas, proporcionan pistas adicionales de gran valor sobre el entorno, y son captadas por los oídos. Las moléculas emanadas por una sustancia se detectan por la nariz.
Por ahí fuera, cualquier cosa que podamos imaginar… ¡Podría ser posible!
No es imposible que puedan existan culturas avanzadas extraterrestres inteligentes en las que el olfato y el gusto no sean solamente los sentidos dominantes, sino que también sean los que proporcionan los principales medios de comunicación entre individuos. Hasta hace muy pocos años, los biólogos no han descubierto que, en especies animales terrestres, se transmite una gran cantidad de información mediante una transferencia directa de sustancias que ahora se denominan feromonas.

Puesto que tanto la luz como el sonido y las moléculas existen efectivamente en otros planetas, parece que la evolución debería crear también sentidos que explotaran éstos fenómenos como excelente medio de control de las circunstancias de la vida. Aquí en la Tierra, por ejemplo, el ojo no ha tenido menos de tres desarrollos independientes entre sí: Los ojos de los vertebrados, los ojos de los Insectos y los de las diversas clases de moluscos.
![]()

¡La Naturaleza! Esa maravilla
El pulpo, por ejemplo, tiene un ojo particularmente bueno (de hecho, en algunos aspectos es mejor que el nuestro); posse párpados, córnea, iris, pupíla, retina igual que el ojo humano, ¡aunque ha evolucionado de forma completamente independiente del ojo de los vertebrados! Es difícil encontrar un ejemplo más sorprendente de cómo la evolución, actuándo según dos líneas de desarrollo desconectadas, puede llegar a crear dos instrumentos nada sencillos que, en esencia, poseen la misma función e idéntica estructura.

Aunque nos parezcan muy diferentes (que lo son), lo cierto que es que ambos estarían hechos de los mismos materiales. ¡Qué extraño resulta asimilar eso! Cuando tan diferentes son los dos seres que arriba podemos contemplar. Sin embargo, en el universo que nos acoge, todos los objetos inanimados o vivientes, todos sin excepción, están hechos de Quarks y Leptones, es decir, de materia bariónica, la que emite luz y radiación, la que podemos ver. Las estrellas y los mundos también están configurados de esas dos minúsculas partículas que forman los átomos de lo que todo esté hecho. ¡Ah! Nosotros, los seres vivos de la Tierra, estamos basados en el Carbono y, estoy casi seguro de que otros seres, situados en mundos lejanos… También.
Los ojos, igual que otros órganos sensoriales, tienen buenas razones para constituir un tipo de cara habitual. En primer lugar, constituye una gran ventaja que ojos, nariz y oídos estén situados cerca de la boca, pués así son de utilidad para buscar alimentos. Asimismo, resulta ventajoso que estén colocados en las proximidades del cerebro: la sensibilidad está allí, y debe reaccionar para conseguir alimentos, eludir peligros y atisbar el mundo que nos rodea transmitiendo, por medio de los sentidos al cerebro, lo que pasa a nuestro alrededor.
El propio cerebro, al evaluar e interpretar los impulsos sensoriales, lo hace mediante redes eléctricas: una especie de microcomputador de inmensa complejidad. Los filamentos nerviosos que conducen los impulsos eléctricos pueden ser esenciales para el cerebro de los seres vivos avanzados (de ello hemos hablado aquí con frecuencia).
Si la vida en otros planetas llega a alcanzar el nivel de inteligencia de nuestra especie en la Tierra, parece probable que tendría al menos, algunos rasgos humanoides. La ubicación de los dedos en los extremos de los brazos reporta, evidentemente, indudables ventajas. De la misma manera y para su seguridad, el valioso cerebro debe estar fuertemente encastado y, además, tan alejado del suelo como sea posible, su seguridad es esencial.

Sí, siempre hemos tratado de comunicarnos con seres de otros mundos
Imaginar podemos todo lo que a nuestras mentes pueda acudir, incluso seres con ojos en las puntas de los dedor pero, la Naturaleza es racional, no pocas veces decimos que es sabia y, si pensamos en todo lo que antes hemos heído y visto, no tenemos más remedio que aceptarlo:


,type=downsize)
Criaturas raras también las tenemos por aquí
¡La Naturaleza es realmente Sabia! y, lo mismo que aquí en la Tierra, habrá sabido conformar criaturas en esos mundos lejanos en los que, la diversidad, será tan abundante como lo es en nuestro propio planeta y, lo mismo que en él, en esos otros mundos estará presente la evolución y la adaptación medio que, en definitiva, son las reglas que rigen cuando la vida está presente.
Emilio silvera V.
Jul
5
Nuestro Planeta es una maravilla
por Emilio Silvera ~
Clasificado en La Naturaleza...El Universo ~
Comments (0)






























¿Qué duda nos puede caber? Estos paisajes que hemos podido contemplar son sólo una ínfima parte de las bellezas que en las distintas regiones de la Tierra podemos contemplar y, ante ellos, nos podemos sentir pequeños. Sin embargo, al final del camino, la mejor obra, somos los seres vivos que pueblan todos estos hermosos paisajes, aunque no siempre, hayamos sabido administrarlos adecudamente.
Tendríamos que ser conscientes de la suerte que tenemos al poder disfrutar del planeta Tierra y tratar de administrar mucho mejor, todos los recursos que nos ofrece.
Emilio Silvera V.
Abr
13
Maravillas de la Naturaleza
por Emilio Silvera ~
Clasificado en La Naturaleza...El Universo ~
Comments (2)

Supernova que calcina a un planeta cercano. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es:
H, He, (Li, Be, B) C, N, O… Fe
¿Apreciáis la maravilla? Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus hornos nucleares y en las explosiones supernovas al final de sus vidas.

La explosión de una estrella gigante y supermasiva hace que esta brille más que la propia galaxia que la acoge.
Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.
Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico.

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.
Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas.

Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en cada momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de SER.
¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.


,
Sí, hay que comprender que todo tiene su razón de ser, no importa que sea inerte o animado
Según decía expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones.
La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).


¡Maravillas de la materia! Que no solo son los átomos y las simples moléculas que nos constituyen, sino en la forma en que éstas se combinan, en la construcción de la estructura celular. La vida sólo aparece cuando surge una célula.
El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.
Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.
Hablemos un poco de moléculas.


El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.
Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.
Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.
Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones. Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.
La molécula de agua es polar en virtud principalmente de su geometría angular
Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.
Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.
Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales s, p, d, f, g, h. Este pequeño número nos proporciona una gran diversidad.

La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negantropía.
En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas iso-electrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

La Naturaleza ha creado un sin fin de obras de artes vivientes que, como nosotros mismos, son maravillas en sí mismas, y, dentro de lo que podamos, nosotros, animales “racionales”, debemos hacer todo lo posible por preservar esos tesoros que, no siempre están a salvo con nuestro instinto depredador.
La belleza está con nosotros
La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetra-valencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.
El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor.
Emilio Silvera Vázquez
Mar
27
Hemos hecho un largo viaje: ¡Desde los átomos a las estrellas!
por Emilio Silvera ~
Clasificado en La Naturaleza...El Universo ~
Comments (8)
“Pues yo he sido a veces un muchacho y una chica,
Un matorral y un pájaro y un pez en las olas saladas.”





Todo está hecho de la misma cosa (Quarks y Leptones). Empédocles lo intuyó
Se refería con una visión futurista e intuyendo cosas que en aquellos tiempos eran desconocidas, que todo lo material está hecho de la misma cosa, los componentes de la materia que lo conforma todo si están dispuestos en la debida proporción.
Esto nos decía Empédocles, el padre de aquellos primitivos elementos formados por Agua, tierra, aire y fuego que, mezclados en la debida proporción, formaban todas las cosas que podemos ver a nuestro alrededor. Claro que, él no podía llegar a imaginar hasta donde pudimos llegar después en la comprensión de la materia a partir del descubrimiento de las partículas “elementales” que formaban el átomo. Pero sí, con sus palabras, nos quería decir que, la materia, una veces está conformando mundos y, en otras, estrellas y galaxias.

Sí, hay cosas malas y buenas pero todas deben ser conocidas para poder, en el primer caso aprovecharlas, y en el segundo, prevenirlas.
Pero demos un salto en el tiempo y viajemos hasta los albores del siglo XX cuando se hacía cada vez más evidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años después del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de eneromes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más sobre los átomos y las estrellas.
![]()
Conseguimos tener los átomos en nuestras manos
El intento de lograr tal comprensión exigió una colaboración cada vez mayor entre los astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelaza en la historia atómica y la estelar.

En 1902, miembros de la Academia de Ciencias de Francia escribieron una carta a la Academia Sueca para presentar los descubrimientos en el campo de la radiactividad realizados por Marie y Pierre Curie, así como por Henri Becquerel, para el Premio Nobel de Física. Sin embargo, debido a las actitudes sexistas que prevalecían en la época, no se ofreció ningún tipo de reconocimiento a las contribuciones de Marie.
La Clave: Fue comprender la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radiactividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”).
El átomo de Demócrito era mucho más de lo que él, en un principio intuyó que sería. Hoy sabemos que está conformado por diversaspartículas de familias diferentes: unas son bariones que en el seno del átomo llamamos necleones, otras son leptones que gitan alrededor del núcleo para darle estabilidad de cargas, y, otras, de la familia de los Quarks, construyen los bariones del núcleo y, todo ello, está, además, vigilado por otras partículas llamadas bosones intermedios de la fuerza nuclear fuerte, los Gluones que, procuran mantener confinados a los Quarks.
Pero no corramos tanto, la física atómica aún debería recorrer un largo camino para llegar a comprender la estructura que acabamos de reseñar. De los trs principales componentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear” pues ni siquiera se había demostrado la existencia de un núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados, respectivamente, por Thomson en 1913 y James Chawick en 1932.
De importancia capital resultó conocer la existencia del núcleo y que éste, era 1/100.000 del total del átomo, es decir, casi todo el átomo estaba compuesto de espacios “vacíos” y, la materia así considerada, era una fracción infinitesimal del total atómico.
![]()
Rutherford, Hans Geiger y Ernest Marsden se encontraban entre los Estrabones y Tolomeos de la cartografía atómica, en Manchester , de 1909 a 1911, sondearon el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de partículas Alfa se escapaban a través de las laminillas, pero, para sombro de los experimentadores, algunas rebotaban hacia atrás. Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase sobre un pañuelo de papel. Finalmente, en una cena en su casa en 1911, anunció a unos pocos amigos que había dado con una explicación: que la mayoría de la masa de un átomo reside en un diminuto núcleo masivo. Ruthertford pudo calcular la carga y el diámetro máximo del núcleo atómico. Así se supo que los elementos pesados eran más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.

Todos sabemos ahora, la función que desarrollan los electrones en el átomo. Pero el ámbito de los electrones para poder llegar a la comprensión completa, tuvo que ser explorado, entre otros, por el físico danés Niels Bohr, quien demostró que ocupaban órbitas, o capas, discretas que rodean al núcleo. (Durante un tiempo Bohr consideró el átomo como un diminuto sistema solar, pero ese análisis, pronto demostró ser inadecuado; el átomo no está rígido por la mecánica newtoniana sino por la mecánica cuántica.)

Entre sus muchos otros éxitos, el modelo de Bohr revelaba la base física de la espectroscopia. El número de electrones de un átomo está determinado por la carga eléctrica del núcleo, la que a su vez se debe al número de protones del núcleo, que es la clave de la identidad química del átomo. Cuando un electrón cae de una órbita externa a una órbita interior emite un fotón. La longitud de onda de este fotón está determinada por las órbitas particulares entre las que el electrón efectúa la transición. E esta es la razón de que un espectro que registra las longitudes de onda de los fotones, revele los elementos químicos que forman las estrellas u otros objetos que sean estudiados por el espectroscopista. En palabras de Max Planck, el fundador de la física cuántica, el modelo de Bohr del átomo nos proporciona “la llave largamente buscada de la puerta de entrada al maravilloso mundo de la espectroscopia, que desde el descubrimiento del análisis espectral (por Fraunhoufer) había desafiado obstinadamente todos los intentos de conocerlo”.

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

Es un gran triunfo del ingenio humano el saber de qué, están conformadas las estrellas, de qué materiales están hechas. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la, desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.

Pero, por maravilloso que nos pueda parecer el haber llegado a la comprensión de que los espectros revelan saltos y tumbos de los electrones en sus órbitas de Bohr, aún nadie podía hallar en los espectros de las estrellas las claves significativas sobre lo que las hace brillar. En ausencia de una teoría convincente, se abandonó este campo a los taxonomistas, a los que seguían obstinadamente registrando y catalogando espectros de estrellas, aunque no sabían hacia donde los conduciría esto.

Henrietta Leavitt
En el Laboratorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban delante de “calculadoras”, mujeres solteras en su mayoría y, de entre ellas, Henrietta Leavitt, la investigadora pionera de las estrellas variables Cefeidas que tan útiles serían a Shapley y Hubble.

Imagen de Sirio A, la estrella más brillante del cielo tomada por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.
Fue Cannon quien, en 1915, empezó a discernir la forma en una totalidad de estrellas en las que estaba presente la diversidad, cuando descubrió que en una mayoría, las estrellas, pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación, ahora generalizado en la astronomía estelar, ordena los espectros por el color, desde las estrellas O blanco-azuladas, pasando por las estrellas G amarillas como el Sol, hasta estrellas rojas M. Era un rasgo de simplicidad denotado en la asombrosa variedad de las estrellas.

![]()
Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacta danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiasmado cuando recorre con el telescopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta un amarillo apagado.


Hertzsprung utilizó los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell.
El progreso en física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como barrera de Coulomb, y por un tiempo frustró los esfuerzos de las físicos teóricos para comprender como la fusión nuclear podía producir energía en las estrellas.
La línea de razonamiento que conducía a esa barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. (Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de Hidrógeno consiste en un solo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno. (Recordemos que la masa es igual a la energía: E = mc2.) En el calor de una estrella, los protones son esparcidos a altas velocidades -el calor intenso significa que las partículas involucradas se mueven a enormes velocidades- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. Esta era la base de la conjetura de Eddingtong de que la fuente de la energía estelar “difícilmente puede ser otra que la energía subatómica, la cual, como se sabe, existe en abundancia en toda materia”.

Plasma en ebullición en la superficie del Sol
Hasta el momento todo lo que hemos repasado está bien pero, ¿que pasa con la Barrera de Coulomb? Los protones están cargados positivamente; las partículasd de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del interior de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromagnéticos y fundirse en un solo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con el rostro radiante, riéndose de las ecuaciones que afirmaban que no podía brillar.

Afortunadamente, en el ámbito nuclear, las reglas de la Naturaleza no se rigen por las de la mecánica de la física clásica, que tienen validez para grandes objetos, como guijarros y planetas, pero pierden esa validez en el reino de lo muy pequeño. En la escala nuclear, rigen las reglas de la indeterminación cuántica. La mecánica cuántica demuestra que el futuro del protón sólo puede predecirse en términos de probabilidades: la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando, la atravesará. Este es el “efecto túnel cuántico”; que permite brillar a las estrellas.

George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb. Esta historia es mucho más extensa y nos llevaría hasta los trabajos de Hans Bethe, Edward Teller y otros, así como, al famoso Fred Hoyle y su efecto Triple Alfa y otras maravillas que, nos cuentan la historia que existe desde los átomos a las estrellas del cielo.
Emilio Silvera Vázquez
Mar
25
Bosques y Praderas
por Emilio Silvera ~
Clasificado en La Naturaleza...El Universo ~
Comments (4)

Bosque esquilmado



Desde tiempo inmemoriales, la Humanidad ha venido esquilmando, sin saber administrarla, la materia prima que la Naturaleza le ofrecía para su sustento y, han sido devastadas cientos de miles de hectáreas de bosque persiguiendo objetivos diversos pero, sin pensar en el futuro.












Los bosques almacenan la mayor parte de la fitomasa terrestre, entre tres cuartos y nueve décimos del total. La razón de tanta incertidumbre en esta estimación se debe a la rápida deforestación tropical, la falta de una clasificación uniforme de los bosques y a su alta variabilidad.
Los bosques cerrados (en contraste con los bosques abiertos) se pueden definir como ecosistemas cuya cubierta ocupa entre el 20 y el 40 por ciento del suelo. Nuestro escaso conocimiento de los bosques tropicales implica que tengamos que extrapolar almacenamientos típicos de un número inadecuado de terrenos bien estudiados. El mejor inventario disponible establece que, a principios de los noventa, el área total de bosques cerrados era de aproximadamente 25 millones de Km2, dos quintas partes de los cuales estaban situados en los trópicos. La superficie total de todos los bosques es aproximadamente el doble; almacenan cerca de nueve décimas partes de la fitomasa del planeta y están casi equitativamente repartidos entre los biomas tropicales, templaros y boreales.

La Amazonía es fundamental para el mantenimiento del equilibrio climático mundial tiene una gran influencia en el transporte de calor y vapor de agua para las regiones localizadas en latitudes más elevadas. Además tiene un papel muy importante en el secuestro de carbono atmosférico, y con ello contribuye a la reducción del calentamiento global.
Todo lo que se dice respecto a la Amazonía es inmenso, grande, desafiante y muchas veces inmensurable. Los retos del pasado y del futuro se nos imponen en el presente. Para actuar en beneficio de la región es imprescindible conocer sus peculiaridades y características.
Representa más de la mitad del bosque húmedo tropical del planeta y es la mayor floresta tropical del mundo. La región representa entre 4 y 6% de la superficie total de la Tierra y entre 25 y 40% de la superficie de América.
La Amazonía es también sinónimo de diversidad cultural, la cual es resultado de un proceso histórico de ocupación del territorio e interacción entre grupos humanos de distinta procedencia étnica y geográfica.
El Ciclo Hidrológico Amazónico alimenta un complejo Sistema de acuíferos y aguas subterráneas, que puede abarcar un área de casi 4 millones de km2 entre Brasil, Bolivia, Colombia, Ecuador, Perú y Venezuela.
La Amazonía alberga una gran variedad de especies de flora y fauna, que ha permitido establecer marcas mundiales de diversidad biológica. También es un área importante de endemismos, lo que hace de ella una reserva genética de importancia mundial para el desarrollo de la humanidad.

En el bosque tropical se encuentra el máximo almacenamiento medio de fitomasa. Desde el aire, las copas de los árboles muestran una decepcionante uniformidad, vistas desde aviones a reacción y de un rojo intenso en las imágenes con falso color de los satélites. Desde el suelo umbrío, frecuentemente con escasa maleza, se elevan los troncos de los árboles, unos rectos, otros delgados, algunos enormes y también apuntalados; luego un revoltijo de ramas superpuestas, lianas y epifitos. Un claro del bosque o la orilla de una corriente muestran la estructura en capas de esta selva.

De Groenlandia a la Amazonía: la cadena de interacciones de la que puede depender el futuro del planeta
Los bosques tropicales más espesos de la Amazonia albergan en cada hectárea casi 100.000 plantas de más de seiscientas especies vegetales diferentes. Pero al menos tres cuartas partes de la fitomasa almacenada (unas 600 toneladas por hectárea) se encuentran en las copas de unos pocos cientos de árboles que sobresalen.
Debido a la alta biodiversidad de la selva, ningún árbol almacena más de un pequeño porcentaje de toda la fitomasa. Ésta es una estrategia evasiva que ha incrementado las posibilidades de supervivencia en un ambiente rebosante de predadores de semillas y agentes patógenos. Otras defensas activas son sus finas cortezas o la simbiosis con hormigas guardianas.

Por el contrario, en los bosques templados y en los boreales domina una sola especie de árbol, y sin embargo, su almacenamiento de fitomasa supera a los bosques tropicales más espesos. Los máximos del planeta se dan en las costas del noroeste del océano Pacífico, donde los bosques de secuoyas pueden llegar a almacenar, por encima del suelo, hasta 3.500 toneladas de fitomasa por hectárea, lo que representa una cantidad cinco veces mayor que en la Amazonia central. Estos árboles son los seres vivos más altos (más de 100 metros) y más pesados (más de 300 toneladas) del planeta (las ballenas azules adultas pesan alrededor de las 100 toneladas).


En todos los bosques, los tejidos leñosos por encima del nivel del suelo (tronco, corteza, ramas) contienen la mayor parte de la fitomasa (70 – 80 por ciento) del árbol; las raíces almacenan entre el 10 y el 35 por ciento, las acículas un 1’5 – 8 por ciento y las hojas sólo el 1 – 2 por ciento.
El tronco cortado en la forma tradicional para su comercialización contiene solamente la mitad de toda la fitomasa, mientras que los troncos demasiados delgados, el tocón, ramas, corteza, artículos y hojas suman la otra mitad.
En un buen bosque en crecimiento, templado o boreal, se obtienen entre 85 y 100 m3/ha (35 – 50 t/ha en seco, dependiendo de la clase de árbol); en los bosques tropicales pueden llegar hasta 180 m3/ha. Con los nuevos métodos de corta, para obtener pulpa se utiliza todo el árbol (a menudo hasta el tocón), recuperándose prácticamente toda la fitomasa.

Para producir un kilogramo de fitomasa nueva, los árboles tropicales requieren hasta 12 g de nitrógeno, mientras que un bosque de coníferas necesita menos de 4 g. Los bosques templados, con unas tasas relativamente altas de crecimiento y un uso económico de los nutrientes, son productores relativamente eficientes de fitomasa.
Todas la civilizaciones preindustriales cortaron madera, no sólo como material de construcción indispensable, sino también como combustible, bien quemado directamente o transformándolo previamente en carbón. La contribución de los bosques a la energía global primaria ha ido declinando según ha aumentado el consumo de combustibles fósiles, pero su presencia ha seguido creciendo, tanto como suministradores de madera y pulpa como por su función de albergues de alta biodiversidad y por sus servicios como ecosistemas insustituibles.
El ámbito de las praderas


La extensión global de las praderas ha cambiado profundamente desde la mitad del siglo XIX. El principal motivo de este cambio es el de transformar las praderas en tierras de cultivo, lo que ha provocado la disminución, en superficie, de este bioma, pero por otra parte, según avanza la deforestación han surgido praderas secundarias.
Aunque la extensión de las praderas es casi igual a la de los bosques cerrados, la diferencia entre sus respectivos promedios de fitomasa almacenada sobre el nivel del suelo por unidad de superficie (20 t/ha en hierba, 250 t/ha en fitomasa leñosa) es de un orden de magnitud. Hay, sin embargo, más fitomasa en las praderas de lo que parece a simple vista, porque salvo en las hierbas altas tropicales, la fitomasa subterránea es varias veces mayor que en los árboles en lo que se refiere a los brotes en su cubierta.

![]()
Curvas de liberación de humedad del suelo: qué
La cantidad de fitomasa contenida en los renuevos está comprendida entre menos de 1 t/ha, en regiones semidesérticas, hasta más de 20 t/ha en algunas praderas tropicales. Si se incluyen los tallos secos, la fitomasa aérea llega a alcanzar las 35 t/ha. En regiones con clima semihúmedo tropical, y en climas templados con irrigación natural, las mayores acumulaciones de fitomasa se encuentran en los renuevos. En general, es indiscutible la correlación entre la cantidad de fitomasa y la de lluvia, aunque esta relación pierde importancia en condiciones de humedad elevadas.

Los valores extremos de la cantidad de fitomasa subterránea global varía entre menos de 0’5 t/ha en los trópicos, hasta casi 50 t/ha en las praderas templadas (media de 20 t/ha). Con cerca de 10 t/ha al año, la productividad media de las praderas templadas iguala la de los bosques en latitudes medias.
Una gran cantidad de herbívoros se alimentan de las praderas. Solamente las hojas tiernas tienen un alto contenido en proteínas y son relativamente digestibles. Los tallos y los troncos son peores en ambos aspectos, pero componen la mayor parte de la dieta de algunas especies que comparten las praderas con otros animales. En la estación seca del Serengueti, la dieta de los ñus se compone aproximadamente de un 20 por ciento de hojas y un 30 por ciento de tallos, mientras que para las cebras los correspondientes valores son de menos del 1 por ciento y de más del 50 por ciento respectivamente.

Una sola especie numerosa de invertebrados puede consumir una pequeña fracción de la producción anual de fitomasa, y el consumo total de todos los invertebrados está comprendido entre el 10 y el 20 por ciento. Los ungulados consumen hasta el 60 por ciento de la producción de fitomasa aérea de las fértiles praderas del este de África. Algunas hierbas se adaptan para evitar su excesivo consumo incorporando a su composición sustancias que disminuyen su digestibilidad, y compuestos tóxicos; otras reaccionan con un rápido crecimiento cuando son dañadas por los animales que pastan.
En el Serengueti, donde las praderas sirven de alimento a la mayor concentración de grandes herbívoros del mundo, así como a muchos otros animales de menos tamaño y a numerosos invertebrados, un moderado consumo de hierba aumenta la producción de la misma hasta el doble de la que se produce en terrenos donde no se pace. El césped es la prueba más asequible de la productividad, no siempre deseada, de la pradera.
Emilio Silvera Vázquez
















Totales: 81.558.064
Conectados: 64

























