Jun
12
La vida en el Universo… ¡Esta por todas partes!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Si en Marte hay vida, será en el subsuelo, ahí no llega la radiación, la temperatura es más alta, el agua líquida discurrirá por los regajos que existen en los “tubos” formados en las rocas por la actividad de su pasado volcánico, y, si es así (que lo será), allí habrán surgido líquenes, hongos, bacterias…
Jun
12
La masa del universo, la inflación, el tamaño…
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
La Dra. Jasmina Lazendic-Galloway, Amelia Fraser-McKelvie y el Dr. Kevin Pimbblet. En mayo de 2.011, pudimos ller la noticia:
“Un estudiante de la Universidad Monash de Melbourne ha resuelto un problema que ha desconcertado a los astrofísicos durante décadas, el descubrimiento de parte de la llamada «masa perdida» del Universo.
El descubrimiento, publicado en la revista Monthly Notices de la Royal Astronomical Society, ha sido liderado por Amelia Fraser-McKelvie, de 22 años y becaria en la Escuela de Física de la facultad, que en una investigación con rayos X ha conseguido identificar en tres meses la conocida como «missing mass»”.
Particularmente no creo que estemos preparados para encontrar -si es que existe- esa “masa perdida”
La idea de la masa perdida se introdujo porque la densidad observada de la materia en el universo está cerca del valor crítico. Sin embargo, hasta comienzos de los ochenta, no hubo razón teórica firme para suponer que el universo tenía efectivamente la masa perdida. En 1981, Alan Guth -del que ya hablamos aquí-, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. Desde entonces, la teoría ha sufrido cierto número de modificaciones técnicas, pero los puntos centrales no han cambiado.
Para lo que aquí tratamos, el aspecto principal del universo inflacionista es que estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente su valor crítico. Esta predicción viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang.
Aquí se pretende representar el pasado y el futuro del universo que, se expandió primero de manera muy rápida, después más lenta, y de nuevo la velocidad aumentó, de manera tal que el recorrido represrenta una especie de S que nos habla del pasado y del futuro.
Entre los otros muchos procesos en marcha en aquellos primeros momentos del nacimiento del universo, en aquel tiempo, uno de los principales parámetros a tener en cuenta es el de la rápida expansión, ese proceso que ha venido a ser conocido como inflación. Es la presencia de la inflación la que nos conduce a la predicción de que el universo tiene que ser plano.
El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; todos hemos podido ver una botella de líquido explotar si alcanzada la congelación, el contenido se expande y el recipiente no puede contenerlo. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.
Claro que no es fácil explicar cómo a medida que el espacio crece debido a esa expansión, se hace más y más voluminoso cada vez y también, cada vez menos denso y más frío. Lo que realmente sorprende es la inmensa magnitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1060 longitudes de Planck. Acordaos de aquellos números que en aquel trabajo que titulé, ¿Es viejo el Universo?, os dejaba aquí expuestos unos datos interesantes sobre nuestro universo. Volvamos a verlos:
Unidades de Planck
La edad actual del universo visible ≈ 1060 tiempos de Planck
Tamaño actual del Universo visible ≈ 1060 longitudes de Planck
La masa actual del Universo visible ≈ 1060 masas de Planck
Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:
Densidad actual del universo visible ≈10-120 de la densidad de Planck
Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto
Temperatura actual del Universo visible ≈ 10-30 de la Planck
Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción. Lo cierto es que, son tan grandes y tan pequeñas esos números y fracciones que, para nosotros, no tienen significación consciente, no las podemos asimilar al tratarse, como se dice más arriba, de medidas sobrehumanas. Si un átomo aumentara en esa proporción de 1060 no tendría cabida en el Universo, el átomo sería mayor.
Decíamos que en 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo con el tamaño de una naranja. No debe sorprendernos pues, que el nombre inflación esté ligado a este proceso. Es cierto que cuando oímos por primera vez este proceso inflacionista, podamos tener alguna dificultad con el índice de inflación que se expone sucedió en el pasado. Nos puede llevar, en un primer momento, a la idea equivocada de que se han violado, con un crecimiento tan rápido, las reglas de Einstein que impiden viajar más veloz que la luz, y, si un cuerpo material viajó desde la línea de partida que señalan los 10-35 segundos hasta aquella otra que marca la dimensión de una naranja…¡su velocidad excedió a la de la luz!
Claro que la respuesta a que algo sobrepasara la velocidad de la luz, c, es sencilla: NO, nada ha sido en nuestro universo más rápido que la luz viajando, y la explicación está en el hecho cierto de que no se trata de algo pudiera ir tan rápido, sino que, por el contrario, en lugar de que un objeto material viajara por el espacio, lo que ocurrió es que fue el espacio mismo el que se infló -acordaos de la masa de pan que crece llevando las pasas como adorno-, y, ahora, esa expansión hace que las galaxias -las pasas de la masa-, se alejen cada vez más las unas de las otras, haciendo el universo más grande y frío cada vez.
Así que, con la expansión o inflación, ningún cuerpo material se movió a grandes velocidades en el espacio, ya que, fue el espacio mismo el que creció y, de alguna manera, su tremenda expansión, incidió sobre los objetos que contenía que, de esa manera, pasaron de estar muy juntos a estar muy separados. Las reglas contra el viaje a velocidades superiores a la de la luz sólo se aplican al movimiento al movimiento dentro del espacio, no al movimiento del espacio. Así no hay contradicción, aunque a primera vista pudiera parecerlo.
Las consecuencias del período de rápida expansión se puede describir mejor con referencia a la visión einsteniana de la gravitación. Antes de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribución de materia. A causa de esa materia, el espacio-tiempo tendrá alguna forma característica.
Se dice que el espacio está arrugado y, conforme a la expansión, el universo será plano independientemente de la forma en que pudiera empezar encogido y arrugado para después expandirse y hacerse cada vez más plano, grande, de menor densidad y frío. La lisura no es ningún accidente, es la consecuencia necesaria de la física de la congelación que tuvo lugar en el segundo 10-35.
Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo. El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo. El nuevo LHC proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.
Esa es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada. A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes, durante la primera ínfima fracción de un segundo.
Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica. Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más aclaradora del Universo primitivo que la que teníamos antes.
Empleamos todos los medios a nuestro alcance e ideamos nuevos ingenios para poder asomarnos a las escalas más extremas del universo, con los telescopios queremos llegar hasta las primeras gaalxias y, con los aceleradores de partículas nos queremos asomar a ese momento primero en el que se formó la materia.
A los cien millones de años desde el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces. Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar proto-galaxias.
A la edad de mil millones de años, el Universo tiene un aspecto muy diferente. El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro billa un quásar blanco-azulado. El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.
Nuestras galaxias vecinas del supercúmulo de Virgo están relativamente cerca; la expansión del Universo aún no ha tenido tiempo de alejarlas a las distancias-unas decenas de millones de años-luz a las que las encontraremos ahora. El Universo es aún altamente radiactivo. Torrentes de rayos cósmicos llueven a través de nosotros en cada milisegundo, y si hay vida en ese tiempo, probablemente está en rápida mutación.
El Supercúmulo de Virgo, o Supercúmulo Local, es el supercúmulo de galaxias que contiene al Grupo Local y con él, a nuestra galaxia, la Vía Láctea. Tiene la forma de un disco plano, con un diámetro de 200 millones de años luz. El supercúmulo contiene alrededor de 100 grupos y cúmulos de galaxias, y está dominado por el cúmulo de Virgo, localizado cerca de su centro. El Grupo Local está localizado cerca del borde del cúmulo de Virgo, al cual es atraído.
Hay algo que es conocido por el término técnico de desacoplamiento de fotones, en ese momento, la oscuridad es reemplazada por una deslumbrante luz blanca, se cree que ocurrió cuando el Universo tenía un millón de años. El ubicuo gas cósmico en aquel momento se había enrarecido los suficientes como para permitir que partículas ligeras –los fotones– atraviesen distancias grandes sin chocar con partículas de materia y ser reabsorbidas.
(Hay gran cantidad de fotones en reserva, porque el Universo es rico en partículas cargadas eléctricamente, que generan energía electromagnética, cuyo cuanto es el fotón.) Es esa gran efusión de luz, muy corrida al rojo y enrarecida por la expansión del Universo, la que los seres humanos, miles de millones de años después, detectaran con radiotelescopios y la llamaran la radiación cósmica de fondo de microondas. Esta época de “sea la luz” tiene un importante efecto sobre la estructura de la materia. Los electrones, aliviados del constante acoso de los fotones, son ahora libres de establecerse en órbita alrededor de los núcleos, formando átomos de hidrógeno y de helio.
Poco a poco, el Universo evolucionó y continuó expandiéndose mientras se formaban nuevas galaxias
Disponiendo de átomos, la química puede avanzar, para conducir, mucho tiempo después, a la formación de alcohol y formaldehído en las nubes interestelares y la construcción de moléculas bióticas en los océanos de la Tierra primitiva. La temperatura ambiente del Universo se eleva rápidamente cuanto más marchamos hacia atrás en el tiempo, a los cinco minutos del Big Bang es de 1.000 millones de grados kelvin.
Por elevada que se esta energía, a la edad de cinco minutos el Universo ya se ha enfriado lo suficiente para que los nucleones permanezcan unidos y formen núcleos atómicos. Podríamos haber contemplado a protones y neutrones unirse para formar núcleos de deuterio (una forma de hidrógeno), y a los núcleos de deuterio aparearse para formar núcleos de helio (dos protones y dos neutrones). De esta manera, un cuarto de toda la materia del Universo se combina en núcleos de helio, junto con rastros de deuterio, helio-3 (dos protones y un neutrón) y litio. Todo el proceso, se cree que termina en tres minutos y veinte segundos.
Imagines del Universo de hoy
Asomarse a la historia del universo puede ser un viaje alucinante que nos cuente cómo pudieron pasar las cosas para que ahora, el Universo sea tal como lo podemos contemplar y, para que eso haya sido posible, mucha imaginación hemos tenido que emplear para poder inventar artilugios y generar ideas que, inspiradas en la observación y el experimento, nos llevaron a saber…¡lo poco que sabemos!
Emilio Silvera Vázquez
Jun
12
La masa del universo, la inflación, el tamaño…II
por Emilio Silvera ~
Clasificado en General ~
Comments (0)

¡El Universo! Que trataba de explicar en la parte I de este trabajo, en el que, sin quererlo, me remonté a aquellos primeros momentos, cuando nacieron el Espacio y el Tiempo y se fraguó, la materia misma que podemos ver y de la que todo está hecho, desde el objeto más diminuto hasta la más inmensa galaxia.
Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo, se supone que no había núcleos atómicos estables. El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen de nuevo rápidamente.
Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos. Aunque en esa época el Universo es extremadamente denso (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos. Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, ahora pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.
Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la mayor parte de la materia como si no existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo de cada uno de ustedes en el tiempo que os lleve leer esta página. Y en el tiempo en que hayan leído esta frase estarán más lejos que la Luna).
En menos de un siglo, el neutrino pasó de una partícula fantasma – propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958) a explicar el balance de energía en una forma de radioactividad, el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.
De esa manera, oleadas de neutrinos liberados en un segundo después del big bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.

Si los neutrinos “cósmicos” -como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas- pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo. A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de estructura que puede existir se hace cada vez más rudimentario.
Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones. El Universo es un océano de quarks libres y otras partículas elementales.
Si nos tomamos el trabajo de contarlos, hallaremos que por cada mil millones de anti-quarks existen mil millones y un quark. Esta asimetría es importante. Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-anti-quark formaran todos los átomos de materia del Universo del último día. Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior. Nada hemos podido saber de lo que pasó antes del Tiempo de Planck.
Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo. La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil. Ahora hay bastante energía ambiente para permitir la creación y el mantenimiento de gran número de bosones w y z.
Debajo de este bonito conjunto que es el CERN, está el famoso acelerador LHC que intenta llegar a ese pasado que aquí estamos describiendo ahora. Aquellos primeros momentos, cuando el Tiempo y el espacio hicieron su aparición para dar cobijo a la materia.
Así que estas partículas, los bosones w y z –las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil– son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles. En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.
Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia. Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido. Seguramente, es posible que en el futuro, sea la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.
En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las condiciones cósmicas son aún menos conocidas. Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electrodébil y las fuertes. Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.
Aún no había Carbono que se produciría mucho más tarde, en las estrellas, mediante el efecto triple alfa. El proceso triple alfa es el proceso por el cual tres núcleos de helio (partículas alfa) se transforman en un núcleo de carbono. Esta reacción nuclear de fusión solo ocurre a velocidades apreciables a temperaturas por encima de 100 000 000 kelvin y en núcleos estelares con una gran abundancia de helio.
En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interaccionaban, producían calor y formaron las primeras estrellas.
Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 13.700 y 15.000 millones de años, cuando la perfecta simetría -que se pensaba, caracterizó el Universo-, se hizo añicos para dar lugar a las simetrías rotas que hallamos a nuestro alrededor y que nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que ahora, sea posible que, alguien como yo esté contando lo que pasó.
Realmente, carecemos de una teoría que nos explique lo que pasó en aquellos primeros momentos y, hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo niño. Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43 de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada. Del otro lado de esa puerta está la época de Planck, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.
Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einstein que, aunque eran muy amigos, no parecen que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven de maravilla.
Emilio Silvera Vázquez
Jun
12
La vida media de las partículas
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
Leucipo y Demócrito
Desde siempre, incluso cuando los miembros ancestrales de nuestra especie. miraban al cielo asombrados al ver aquellos “puntitos brillantes” luminarias en el cielo que destacaban en la oscuridad de la noche. desd4e entonces, nos hemos estado haciendo preguntas que no hemos sabido responder. En el Presente, las preguntas han cambiado pero, tampoco sabemos dar la respuesta.
La clave reside en el hecho de que, cuando conquistamos un nuevo saber… ¡Se nos plantean nuevas preguntas que antes de encontrar ese nuevo saber, no podíamos plantear! Así que, siempre perseguiremos secretos de la Naturaleza y del Universo que, permanecerán escondidos. Creo que existen reglas naturales para que seres como nosotros nunca sepan la verdad sobre todo.
Son más las preguntas que respuestas
La sensación que tenemos es que estamos apoyados sobre un gran signo de interrogación
Pocas dudas nos pueden caber del hecho cierto de que… ¡Las preguntas son muchas más que las respuestas! Con razón quería aquel gran filósofo hacer un trueque:
“Cambiaría todo lo que se, por la mitad de lo que ignoro.


resulta que el Futuro, para nosotros y todos los que se fueron, y, también los que vendrán… ¡Nunca existirá! Nadie ha estado nunca en el Futuro. Y, lo sorprendente del caso es que, cuando llega… ¡Se hace Presente! Sí, Futuro es el mañana, y, resulta que el mañana se convierte en Hoy en cuando asoma.
Todos estamos condenados a vivir en un Eterno Presente, nuestro Futuro es el Tiempo de los que detrás de nosotros vendrán, y, lo asombroso del caso es que… ¡Para ellos, también será Presente.
Sí, la Entropía se deja notar en las tres generaciones. El paso del Tiempo se deja sentir
El inexorable paso del Tiempo hace posible que, en estas grandes Nebulosas surjan nuevas estrellas, nuevos mundos, y,,,, ¿Nuevas formas de Vida? Lo cierto es que, lo que es hoy, mañana no será. Todo se convierte en algo distinto a lo que fue.

La mente humana es tan compleja que no todos ante la misma cosa vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugieren. De entre diez personas, sólo coinciden tres, los otros siete divergen en la apreciación de lo que el dibujo o la figura les trae a la Mente. Un paisaje puede ser descrito de muy distintas maneras según quién nos lo pueda contar.
Solo el 1% de las formas de vida que han vivido en la Tierra están ahora presentes, el 99%, por una u otra razón se han extinguido. Sin embargo, ese pequeño tanto por ciento de la vida actual, supone unos cinco millones de especies según algunas estimaciones. La Tierra acoge a todas esas especies u palpita de vida que prolifera por doquier. Hay seres vivos por todas partes y por todos los rincones del inmenso mosaico de ambientes que constituye nuestro planeta encontramos formas de vida, cuyos diseños parecen hechos a propósito para adaptarse a su hábitat, desde las profundidades abisales de los océanos hasta las más altas cumbres, desde las espesas selvas tropicales a las planicies de hielo de los casquetes polares. Se ha estimado la edad de 3.800 millones de años desde que aparecieron los primeros “seres vivos” sobre el planeta (dato de los primeros microfósiles). Desde entonces no han dejado de aparecer más y más especies, de las que la mayoría se han ido extinguiendo. Desde el siglo XVIII en que Carlos Linneo propuso su Systema Naturae no han cesado los intentos por conocer la Biodiversidad…, de la que por cierto nuestra especie, bautizada como Homo sapiens por el propio Linneo, es una recién llegada de apenas 200.000 años.
Ahora, hablaremos de la vida media de las partículas elementales (algunas no tanto). Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.
También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.
Si miramos una tabla de las partículas más conocidas y familiares (fotón, electrón muón tau, la serie de neutrinos, los mesones con sus piones, kaones, etc., y, los Hadrones bariones como el protón, neutrón, lambda, sigma, psi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales maneras de desintegración, veríamos como difieren las unas de las otras.
Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.
Gráfica del Decaimiento | Calcular |
Gráfica del Decaimiento | Estudio de la Vida Media |
¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.
Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.
Una colisión entre un protón y un anti-protón registrada mediante una cámara de chispas del experimento UA5 del CERN. Lanzan haces de partículas a velocidades relativistas para hacerlas chocar y saber que sale de su interior, es la manera de conocer de qué está hecha la materia.
En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su carta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.
Colisionando partículas leptones tau positivos y negativos encontraron los Bosones W+ y W-.
Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.
Se habla de ondas cuánticas y también, de ondas gravitacionales. Las primeras han sido localizadas y las segundas están siendo perseguidas.
Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.
Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.
Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”
Si la vida de una partícula es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.
Bariones Delta. Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.
Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).
Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.
Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:
∆⁺⁺→р + π⁺; ∆⁰→р + πˉ; o п+π⁰
En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.
El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (aunque nos parezca lo contrario), son aún bastante limitados, nos queda mucho por descubrir antes de que podamos decir que dominamos la materia y sabemos de todos sus componentes. Antes de que eso llegue, tendremos que conocer, en profundidad, el verdadero origen de la Luz que esconde muchos secretos que tendremos que desvelar.
Esperemos que con los futuros experimentos del LHC y de los grandes Aceleradores de partículas del futuro, se nos aclaren algo las cosas y podamos avanzar en el perfeccionamiento del Modelo Estándar de la Física de Partículas que, como todos sabemos, es un Modelo incompleto que no contiene a todas las fuerzas de la Naturaleza. Además introduce cerca de una veintena de sus parámetros que son aleatorios y no han sido explicados. Uno de ellos era el Bosón de Higgs, que dicen que ha sido encontrado. Sin embargo, a mí particularmente me quedan muchas dudas al respecto.
Emilio Silvera Vázquez
Jun
12
Nosotros, el mundo y el Universo: Todo Energía
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
En concreto, la energía es una cantidad que depende de cómo midamos las distancias y los intervalos de tiempo. Un automóvil de prueba que choca a gran velocidad contra una pared de ladrillos tiene obviamente energía. No obstante, si el veloz automóvil se aproxima a la velocidad de la luz, sus propiedades de distorsionan. Se contrae como un acordeón y los relojes en su interior se frenan. Lo que es más importante, Einstein descubrió que la masa del automóvil también aumenta cuando se acelera. Pero, ¿de dónde procede este exceso de masa?, y él concluyó que procedía de la energía.
Nosotros somos energía conectados a la Galaxia
La teoría desarrolla un sistema de matemáticas con el fin de reconciliar estas afirmaciones en aparente conflicto. Una conclusión de la teoría es que la masa de un cuerpo, m, aumenta con su velocidad. Einstein también concluyó que si un cuerpo pierde energía L, su masa disminuirá en L/c2. Einstein generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con su ecuación m=E/c2 que, en su versión más conocida es E=mc2.
Esto tuvo consecuencias perturbadoras. Dos de los grandes descubrimientos de la física del siglo XIX fueron la conservación de la masa y la conservación de la energía; es decir, la masa total y la energía total de un sistema cerrado, tomados por separado, no cambian. Por ejemplo, si el coche veloz choca contra el muro de ladrillos, la energía del automóvil no desaparece, sino que se convierte en energía sonora del choque, energía cinética de los fragmentos de ladrillo que vuelan por los aires, energía calorífica, y así sucesivamente. La energía total (y la masa total) antes y después del choque es la misma.
Inmensas energías de una explosión supernova han transformado los elementos simples en otros más complejos
Sin embargo, Einstein decía ahora que la energía del automóvil podría convertirse en masa (un nuevo principio de conservación que decía que la suma total de la masa y la energía debe siempre permanecer constante). La materia no desaparece repentinamente, ni la energía brota de la nada. En este sentido, la materia desaparece sólo para liberar enormes cantidades de energía o viceversa.
Cuando Einstein tenía 26 años, calculó exactamente cómo debía cambiar la energía si el principio de la relatividad era correcto, y descubrió la relación E = mc2. Puesto que la velocidad de la luz al cuadrado (c2) es un número astronómicamente grande, una pequeña cantidad de materia puede liberar una enorme cantidad de energía. Dentro de las partículas más pequeñas de materia hay un almacén de energía, más de un millón de veces la energía liberada en una explosión química. La materia, en cierto sentido, puede verse como un depósito casi inagotable de energía; es decir, la materia es en realidad energía condensada.
Einstein supo ver que las dimensiones más altas tienen un propósito: unificar los principios de la naturaleza. Al añadir dimensiones más altas podía unir conceptos físicos que, en un mundo tridimensional, no tienen relación, tales como la materia y la energía o el espacio y el tiempo, que gracias a la cuarta dimensión de la relatividad especial, quedaron unificados.
Desde entonces, estos conceptos los tenemos que clasificar no por separado, sino siempre juntos como dos aspectos de un mismo ente materia-energía por una parte y espacio-tiempo por otra. El impacto directo del trabajo de Einstein sobre la cuarta dimensión fue, por supuesto, la bomba de hidrógeno, que se ha mostrado la más poderosa creación de la ciencia del siglo XX, claro que en contra del criterio de Einstein, que era pacifista y nunca quiso participar en proyectos de esta índole.
Einstein completó su teoría de la relatividad con un segundo trabajo, que al menos en parte, estaba inspirado por lo que se conoce como principio de Mach; la guía que usó Einstein para crear esta secuela final y completar su teoría de la relatividad general.
“El principio de Mach es una hipótesis sobre la naturaleza de las fuerzas inerciales expresada por primera vez por el físico Ernst Mach en 1893. Este principio se enuncia de la siguiente forma:
Einstein enunció que la presencia de materia-energía determina la curvatura del espacio-tiempo a su alrededor. Ésta es la esencia del principio físico que Riemann no logró descubrir: la curvatura del espacio está directamente relacionada con la cantidad de energía y materia contenida en dicho espacio. Esto, a su vez, puede resumirse en la famosa ecuación de Einstein, que se denota:
Esta ecuación engañosamente corta es uno de los mayores triunfos de la mente humana. De ella emergen los principios que hay tras los movimientos de las estrellas y galaxias, los agujeros negros, el Big Bang, y seguramente, el propio destino del universo.
Hace tiempo ya que estamos pretendiendo subir la escalera que nos lleve hasta el secreto universal de la energía
Es curiosa la similitud que se da entre la teoría del electromagnetismo y la relatividad general; mientras que Faraday experimentó y sabía los resultados, no sabía expresarlos mediante las matemáticas, y apareció Maxwell que finalmente formuló la teoría.
Einstein, al igual que Faraday, había descubierto los principios físicos correctos, pero carecía de un formulismo matemático riguroso suficientemente potente para expresarlo (claro que Faraday no era matemático, y Einstein sí lo era). Carecía de una versión de los campos de Faraday para la gravedad. Irónicamente, Riemann tenía el aparato matemático, pero no el principio físico guía, al contrario que Einstein. Así que finalmente fue Einstein el que pudo formular la teoría con las matemáticas de Riemann.
Faraday y Maxwell
“¡Qué extraño sería que la teoría final se descubriera durante nuestra vida! El descubrimiento de las leyes finales de la naturaleza marcará una discontinuidad en la historia del intelecto humano, la más abrupta que haya ocurrido desde el comienzo de la ciencia moderna del siglo XVII. ¿Podemos imaginar ahora cómo sería?”
https://youtu.be/zyaveVWKniw
¿Es la belleza un principio físico?





La teoría de supercuerdas nos da una formulación convincente de la teoría del universo, sin embargo, el problema fundamental radica en que una comprobación de dicha teoría está más allá de nuestras posibilidades actuales. De hecho, la misma teoría predice que la unificación de todas las fuerzas ocurre a la energía de Planck, o 1016 miles de millones de electronvoltios, que como sabéis, es alrededor de mil billones de veces mayor que las energía actualmente disponibles en nuestros aceleradores de partículas.
Ya he comentado otras veces que el físico David Gross (el de más edad de los miembros conocidos como el cuarteto de cuerdas y autores de la teoría llamada la cuerda heterótica) dijo en una ocasión: “El coste de generar esta fantástica energía necesitaría el dinero de las tesorerías de todos los países del mundo juntos, y quizá no llegara. Es verdaderamente astronómico.“
Siendo así, de momento estamos condenados a no poder verificar experimentalmente este motor (parado) que haría marchar el vehículo de la física. La teoría deca-dimensional está paralizada en dos sentidos: el económico y técnico y el matemático. El primero por falta de dinero que nos pudiera construir aceleradores tan potentes (el LHC sólo cumple parte de nuestros deseos) como para descubrir la partícula de Higgs, los quarks e incluso las cuerdas vibrantes, esos previsibles y minúsculos objetos primordiales que conforman la materia. En segundo lugar, las formulaciones matemáticas complejas que, según parece, aún no se han inventado. Parece que hoy, ni siquiera Witten o Perelman conocen el secreto de los números mágicos que nos puedan llevar hasta el final del camino iniciado por Einstein y Kaluza-Klein.
Aunque llegar hasta las cuerdas no será nada fácil, particularmente opino que la teoría de cuerdas nos dará muchas alegrías y que en ella están las respuestas a muchas preguntas que no sabemos contestar. Es cierto que no puede ser verificada al tener la energía necesaria para ello. Sin embargo, hay indicios de que las cuerdas pueden estar ahí, a la espera de que las podamos encontrar.
Dentro del mundo de la física los hay de todas las opiniones: en contra y a favor. Es famosa la postura detractora del Nobel Sheldon Glashow de Harvard; no quiere ni oír hablar de la teoría de supercuerdas a la que califica de física de teatro.
Otros muchos, la mayoría, como Murray Gell-Mann, Steven Weinberg (ambos premios Nobel) o el mismo E. Witten (medalla Field), opinan lo contrario y ven en esta teoría de dimensiones más altas el futuro de la física. Simplemente se trata de que, dicha teoría, nos ha llegado por casualidad mucho antes de lo que correspondía.
Los trabajos de Gabriele Veneziano (Florencia, 1942) son pioneros en uno de los temas estrella de la física teórica, la teoría de cuerdas, que permite desarrollar escenarios alternativos al Big Bang, mediante la existencia del tiempo y del espacio desde siempre.
La teoría de cuerdas se inventó a finales de los sesenta, y pasados los años se ha visto que era un escenario donde era posible describir al mismo tiempo la materia, el espacio y el tiempo, y de esa manera resolver un problema que se plantea en la teoría de la relatividad de Einstein. El mismo Einstein dedicó muchos años a intentar reconciliar su teoría de la relatividad con la mecánica cuántica. No lo consiguió, en su tiempo ni existían las matemáticas necesarias para ello, y, de hecho, aún seguimos esperando que aparezcan.
Ya sabemos que en física toda teoría debe ser verificada, una y otra vez, en uno y otro lugar, experimentalmente, obteniendo siempre el mismo resultado; es la única manera de que sea aceptada por la comunidad científica. Mientras tanto, la teoría no es fiable y queda a la espera de ser comprobada, verificada sin ningún lugar para la duda.
Pero, ¿se puede recrear la creación?
Sí, somos tan osados que ahí, debajo de ese círculo, el Gran Colisionador de Hadrones (LHC), situado cerca de Ginebra por la Organización Europea para la Investigación Nuclear (CERN), (formando un anillo de 27 kilómetros de circunferencia a 100 metros de profundidad, estamos pretendiendo recrear lo que en aquellos momentos (de la creación) pasó.
La teoría de supercuerdas trata de eso. Quiere explicarnos todos los misterios del universo a partir de ese primer momento, ¡la creación! ¿Cuántas y cuántas páginas no habré leído y escrito sobre estos temas fascinantes de los secretos del universo, las fuerzas que lo rigen, la materia de las galaxias y de los objetos que lo pueblan? No podría decirlo. Sin embargo, hay una cosa que sí puedo decir: ¡cuanto más profundizo en estas cuestiones, cuanto más conocimientos adquiero, más fascinación siento, y desde luego, mi capacidad de asombro persiste!
El LHC no es suficiente para generar las energías necesarias para llegar a las cuerdas
Qué lástima que no se construya un super-colisionador superconductor , que encontrara los vestigios subatómicos que mostrara una señal característica de la supercuerda, tal como la supersimetría. Claro que, no creo que hoy por hoy podamos ser capaces de construir un “monstruo” semejante que pudiera sondear la distante energía de Planck (1019 GeV), pero sí podría habernos ofrecido una evidencia muy fuerte (aunque indirecta) de la corrección de la teoría de supercuerdas.
Ese super-colisionador fue un proyecto fallido que se hubiese completado en las afueras de Dallas, Texas, hubiera contado con un tubo gigantesco de 85 Km de circunferencia rodeado de enormes bobinas magnéticas. Lanzaría protones a velocidades muy cercanas a la de la luz, que viajarían en el sentido de las agujas del reloj y el sentido contrario, para en un momento dado hacerlos colisionar a una energía de 40 billones de electronvoltios (TeV), generando una intensa ráfaga de residuos subatómicos analizados por detectores que encontrarían partículas exóticas que hubieran arrojado luz sobre la forma esencial de la materia. Los campos magnéticos para guiar los protones y los antiprotones dentro del tubo son tan excepcionalmente grandes (del orden de 100.000 veces el campo magnético de la Tierra) que hubieran sido necesarios procedimientos extraordinarios para generarlos y mantenerlos. Además, el enfriamiento de las bobinas hasta casi el cero absoluto (-273º) y otros problemas hubieran obligado a enormes avances tecnológicos. Sin embargo, la política retiró el proyecto y nos quedamos sin la esperada partícula de Higgs (que ahora busca el LHC), que es la que genera la ruptura de simetría y es por tanto el origen de la masa de los quarks, así que habríamos podido descubrir el origen de la masa mucho antes. Aunque a decir verdad…, no las tenemos todas consigo.
Acordaos de que hace unos días os contaba como allá por el siglo XIX algunos científicos declararon que la composición de las estrellas estaría siempre fuera del alcance del experimento. En 1.825, el filósofo y crítico social francés Auguste Comte, al escribir el Curso de Filosofía, declaraba que nunca conoceríamos las estrellas de otra forma que como inalcanzables puntos de luz en el cielo debido a su enorme distancia de nosotros. Las máquinas del siglo XIX, o de cualquier siglo, argumentaba, no eran suficientemente potentes como para escapar de la Tierra y alcanzar las estrellas.
Así que parecía que el determinar la composición de las estrellas era imposible, y lo curioso es que casi al mismo tiempo, el físico alemán Joseph von Fraunhofer estuviera haciendo precisamente eso. Utilizando un prisma y un espectroscopio pudo descomponer la luz blanca emitida desde las estrellas lejanas y determinar la composición química de dichas estrellas. De la misma manera pudiera, en este mismo instante, estar trabajando un físico-matemático en profundizar en la teoría de supercuerdas y estar formulando otro respetable avance hacia nuestro futuro. Podemos desconfiar pero…negar la posibilidad de algo, sería arriesgado.
Como científico, ingeniero y emprendedor alcanzó logros como el descubrimiento de las “líneas de Fraunhofer” en el espectro óptico de la luz del sol, inventó un nuevo método de manufactura de lentes e inició un negocio de producción de vidrio para microscopios y telescopios. Debido a su carácter multifacético el instituto tecnológico Fraunhofer-Gesellschaft lleva su apellido.
¿Qué sería de nosotros sin la física?
Tampoco los átomos eran verificables hace dos siglos y llegaron Planck, Einstein, Bohr, Heisenberg, Schrödinger, Feynman y tantos otros que dejaron todo el misterio al descubierto con la mecánica cuántica que nos puede facilitar datos con una precisión asombrosa.
La topología es probablemente la más joven de las ramas clásicas de las matemáticas. En contraste con el álgebra, la geometría y la teoría de los números, cuyas genealogías datan de tiempos antiguos, la topología aparece en el siglo diecisiete, con el nombre de analysis situs, ésto es, análisis de la posición. No podemos perderla de vista, ahí pueden estar las respuestas de la teoría de cuerdas.
Es la rama de las matemáticas dedicada al estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas. Es una disciplina que estudia las propiedades de los espacios topológicos y las funciones continuas. La Topología se interesa por conceptos como proximidad, número de agujeros, el tipo deconsistencia (o textura) que presenta un objeto, comparar objetos y clasificar, entre otros múltiples atributos donde destacan conectividad, compacidad, metricidad, o metrizabilidad, etcétera.
Retrato de Leonhard Euler, pintado por Johann Georg Bruker
De todas las maneras, yo no perdería de vista la funciones modulares de Ramanujan, una bella teoría para la teoría de cuerdas supone que cada modo o vibración de una cuerda fundamental representa una partícula elemental distinta, y puede explicar a la vez la naturaleza de la materia y del espacio-tiempo (las partículas en lugar de ser puntuales pasan a ser unidimensionales). Es la primera teoría cuántica de la gravedad: Cuando se calcularon por primera vez las ligaduras de auto-consistencia que impone la cuerda sobre el espacio-tiempo, se observó con sorpresa que las ecuaciones de Einstein ( teoría de la gravedad) emergían de la cuerda, de hecho, el gravitón o cuanto de gravedad era la menor vibración de la cuerda cerrada.
No sabemos todavía por qué la teoría de cuerdas está definida sólo en 10, 11 y 26 dimensiones, aunque parece seguro que esta teoría no podría unificar las fuerzas fundamentales con tan solo tres dimensiones. Las cuerdas se rompen y se forman en el espacio N-dimensional arrastrando con ellas una serie de términos que destruyen las maravillosas propiedades de la teoría. Afortunadamente, estos términos aparecen multiplicados por el factor (N-10), lo que nos obliga a elegir N=10 para eliminarlos.
Los teóricos de cuerdas al intentar manipular los diagramas de lazos KSV ( Kikkawa-Sakita-Virasoro) creados por las cuerdas en interacción encuentran unas extrañas funciones llamadas modulares que aparecen en las ramas más distantes e “inconexas” de las matemáticas((Yutaka Taniyama ( Japón, 1927-1958) observó que cada función modular está relacionada con una curva elíptica. Esto forma la base de la conjetura Taniyama-Shimura que demostró ser una parte importante en la demostración del Último Teorema de Fermat de Andrew Wiles )). Una función que aparece continuamente en la teoría de funciones modulares se denomina función de Ramanujan, en honor al matemático Srinivasa Ramanujan, nacido en 1887 en Erode, India, cerca de Madrás.
Ramanujan ¡Qué personaje misterioso! su mente estaba conformada por teoremas en lugar de por neuronas, y, aunque murió muy joven (como Riemann), sus trabajos del último año de su vida mientras se estaba muriendo, se podría comparar con el trabajo de toda una vida de los 10 mejores matemáticos del mundo. En otra ocasión ya os hablé de este personaje extensamente.
Emilio Silvera Vázquez