miércoles, 17 de diciembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Micro Mundo de los Átomos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Resultado de imagen de El misterioso mundo cuántico

Cuando por primera vez se puso este trabajo, dio lugar a comentarios que nos llevan hasta la realidad de hasta donde, resulta para nosotros incomprensible ese micro mundo de la cuántica, ese “universo” infinitesimal donde ocurren cosas que, no llegamos a comprender.

Sí, existe otro mundo que no vemos pero…, ¡está en éste!

La mecánica cuántica domina en el micromundo de los átomos y de las partículas “elementales”. Nos enseña que en la naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. Esta onda no es como una onda de agua.  Es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.

 

Por el contrario, la relatividad general era siempre necesaria cuando se trataba con situaciones donde algo viaja a la velocidad de la luz, o está muy cerca o donde la gravedad es muy intensa. Se utiliza para describir la expansión del universo o el comportamiento en situaciones extremas, como la formación de agujeros negros. Sin embargo, la gravedad es muy débil comparada con las fuerzas que unen átomos y moléculas y demasiado débil para tener cualquier efecto sobre la estructura del átomo o de partículas subatómicas, se trata con masas tan insignificantes que la incidencia gravitatoria es despreciable. Todo lo contrario que ocurre en presencia de masas considerables como planetas, estrellas y galaxias, donde la presencia de la gravitación curva el espacio y distorsiona el tiempo.

http://elojocondientes.files.wordpress.com/2011/03/la-tierra-no-es-redonda.png

La Gravedad hace que la Tierra se vea como un mapa. Es una vista altamente exagerada, pero ilustra a las claras cómo la atracción gravitatoria que se manifiesta desde la masa de roca bajo nuestros pies no es la misma en todo lugar. La gravedad es más fuerte en áreas amarillas y más débil en las azules. (Imagen tomada por el satélite Goce)

Como resultado de estas propiedades antagónicas, la teoría cuántica y la teoría relativista gobiernan reinos diferentes, muy dispares, en el universo de lo muy pequeño o en el universo de lo muy grande. Nadie ha encontrado la manera de unir, sin fisuras, estas dos teorías en una sola y nueva de Gravedad-Cuántica.

¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son.

File:Observable universe logarithmic illustration.png

Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño.  La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33  centímetros, más joven que el Tiempo de Planck, 10-43 segundos y supere la temperatura de Planck de 1032 grados.  Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.

Resultado de imagen de La naturaleza cuántica de la gravedad

En los intentos más recientes de crear una teoría nueva para describir la naturaleza cuántica de la gravedad ha emergido un nuevo significado para las unidades naturales de Planck. Parece que el concepto al que llamamos “información” tiene un profundo significado en el universo. Estamos habituados a vivir en lo que llamamos “la edad de la información”.  La información puede ser empaquetada en formas electrónicas, enviadas rápidamente y recibidas con más facilidad que nunca antes.

Los tiempos cambian y la manera de informar también, lejos nos queda ya aquellos toscos aparatos impresores del pasado, ahora, en espacios muy reducidos, tenemos guardada más información que antes había en una colección de libros.

Nuestra evolución en el proceso rápido y barato de la información se suele mostrar en una forma que nos permite comprobar la predicción de Gordon Moore, el fundador de Intel, llamada ley de Moore, en la que, en 1.965, advirtió que el área de un transistor se dividía por dos aproximadamente cada 12 meses. En 1.975 revisó su tiempo de reducción a la mitad hasta situarlo en 24 meses. Esta es “la ley de Moore” cada 24 meses se obtiene una circuiteria de ordenador aproximadamente el doble, que corre a velocidad doble, por el mismo precio, ya que, el coste integrado del circuito viene a ser el mismo, constante.

grid computing

Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza. En 1.981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros.  Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos. Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen. El número máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2.  Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta ahora. Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la naturaleza.

 

La información llega a todos los rincones del Mundo

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias.

Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.

α = 2πehc ≈ 1/137

αG = (Gmp2)/ hc ≈ 10-38

La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro.

Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Resultado de imagen de Números puros adimensionalesResultado de imagen de Números puros adimensionales

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos. Con los adelantos actuales, estudiando la luz lejana de cuásares muy antiguos, se estudia si la constante de estructura fina (α) ha variado con el paso del tiempo.

Resultado de imagen de Cuásares captados por el Hubble

“Detalles del cuásar 3C 273 observado con el Telescopio Espacial Hubble. La imagen de la izquierda muestra claramente lo brillante y compacto que es el objeto, lo que hizo que pareciese una estrella. Para conseguir la imagen de la izquierda se utilizó un instrumento (un coronógrafo) que bloqueaba la luz del cuásar, dejando ver su galaxia anfitriona. En ambas tomas se aprecia el chorro de gas a alta velocidad proveniente del agujero negro súper-masivo central. Una de las componentes de la emisión en radio de 3C 273 coincide perfectamente con este chorro de gas. | Crédito de la imagen: HST / NASA / ESA / STScI.”

El Universo es muy grande, inmensamente grande y, probablemente, todo lo que nuestras mentes puedan imaginar podrá exisitir en alguna parte de esas regiones perdidas en las profundidades cósmicas, en los confines del Espacio-Tiempo, en lugares ignotos de extraña belleza en los que otros mundos y otras criaturas tendrán, sus propios habitats que, siendo diferente al nuestro, también, sus criaturas, estarán buscando el significado de las leyes del Universo.

emilio silvera

¡La Física! Los Caminos de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (38)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Resultado de imagen de Cien mil millones de neuronas y conexiones sin fin

“Esta claro que la mayoría de lo que entendemos como nuestra vida mental implica la actividad del sistema nervioso, especialmente el cerebro. Este sistema nervioso está compuesto por miles de millones de células, las más simple de las cuales son las células nerviosas o neuronas. ¡Se estima que debe haber cien mil millones de neuronas en nuestro sistema nervioso! Hay tanto por descubrir.”

Resultado de imagen de Las aguas claras y cantarinas del río y las piedras pulidas de su lecho
                                                              ¡Todas las cosas son!
El Tiempo, aunque a ciencia cierta no sabemos lo que es, sí sabemos que nos permite contar historias de hechos pasados, buscar las huellas que dejaron en nuestro mundo los pobladores de otras civilizaciones, los cambios habidos en la Naturaleza, y, durante su inexorable transcurrir, van pasando cosas, se están produciendo cambios, y, la Entropía convierte lo nuevo en viejo, mientras que, esa otra clase de Entropía negativa, crea nuevas estrellas, nuevos mundos y nuevas criaturas.
Pero esas son otras historias y, el día de hoy hablaremos del…

¡Preludio a la relatividad! -Las ecuaciones de Lorentz-Fitzgerald- Éste último pensaba y decía cosas comos estas:

 

 

              George FitzGerald

 

“… la telegrafía debe mucho a Euclides y otros geómetras puros, al griego y al árabe que fueron matemáticos magistrales que inventaron nuestra escala de numeración y el álgebra, de Galileo Newton, que fundaron la dinámica, para que Newton y Leibniz inventaran el cálculo, para que Volta descubriera la galvánica bobina, a Oersted quien descubrió la acción magnética de las corrientes, que a Ampère descubriera las leyes de su acción, a Ohm que descubrió la ley de la resistencia de los cables, a Wheatstone, de Faraday, a Lord Kelvin, a Clerk Maxwell, Hertz a… Sin los descubrimientos, invenciones, y las teorías científicas resumen de estos hombres la telegrafía y otras maravillas y conocimientos…  ¡serían imposibles ahora!”

Hendrik Antoon Lorentz.jpg

    Hendrik Antoon Lorentz

 

Se le deben importantes aportaciones en los campos de la termodinámica, la radiación, el magnetismo, la electricidad y la refracción de la luz.  Formuló conjuntamente con George Francis FitzGerald una teoría sobre el cambio de forma de un cuerpo como resultado de su movimiento; este efecto, conocido como “contracción de Lorentz-FitzGerald”, cuya representación matemática de ella es conocida con el de transformación de Lorentz,  fue una más de las numerosas contribuciones realizadas por Lorentz al desarrollo de la teoría de la relatividad.

Fue, al igual que Henri Poincaré,  uno de los primeros en formular las bases de la teoría de la relatividad(frecuentemente atribuida primaria o solamente a Albert Einstein).  Fue ganador del Premio Nobel de Física en 1902, junto con su pupilo Pieter Zeeman,  por su investigación conjunta sobre la influencia del magnetismo en la radiación, originando la radiación electromagnética.  fue premiado con la Medalla Rumford en 1908 y la Medalla Coplay en 1918. Lorentz era hombre humilde y sencillo y le gustaba resaltar los logros de los demás:

 

 

 

Michael Faraday

 

“Como es probable que sepas, gran parte de nuestro conocimiento sobre la electricidad y el magnetismo se basa en los experimentos ingeniosísimos realizados por Michael Faraday en la primera parte del siglo XIX. Faraday era un experimentador genial, y descubrió numerosos fenómenos desconocidos hasta entonces, como la mutua. Estableció diversas leyes, pero no pudo elaborar una teoría global acerca del electromagnetismo porque sus conocimientos matemáticos no iban más allá de la trigonometría: hacía falta un teórico capaz de amalgamar el conocimiento adquirido por Faraday y otros experimentadores, como Hans Christian Ørsted, en una teoría general”.

Ese teórico era otro genio, James Clerk Maxwell, que estableció un conjunto de cuatro ecuaciones diferenciales bellísimas que describían de una manera extraordinariamente precisa los resultados de casi todos los experimentos de Faraday, Ørsted y compañía. Lo más sorprendente, el propio Maxwell y sus contemporáneos, fue una de las consecuencias inevitables de sus ecuaciones: la existencia de perturbaciones del campo eléctrico y el magnético que se propagaban por el espacio.”

 

 

A la contracción, Einstein le dio un marco teórico en la teoría especial de la relatividad. En teoría, un objeto de longitud l0 en reposo en un sistema de referencia parecerá, un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud contraccion_l-f, donde c es la velocidad de la luz. La hipótesis original atribuía contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

 

 

Un objeto que se moviera a 11,2 Km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 Km/s (la mitad de la velocidad de la luz) sería del 15%; a 262.000 Km/s (7/8 de la velocidad de la luz), del 50%. Es decir, que una regla de 30 cm que pasara ante nuestra vista a 262.000 Km/s nos parecería que mide sólo 15’24 cm, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 Km/s en números redondos, su longitud en la dirección del movimiento sería cero. Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse el universo.

 

 

 

AetherWind.svg

                                                                                 experimento conocido de Michelson-Morley

Todo aquello fue posible gracia a que en 1893, el físico irlandés George Francis FitzGerald emitió una hipótesis explicar los resultados negativos del experimento conocido de Michelson-Morley.  Adujo que toda materia se contrae en la dirección del movimiento, y que esa contracción es directamente proporcional al ritmo (velocidad) del movimiento.

Según tal interpretación, el interferómetro se quedaba corto en la dirección del “verdadero” movimiento terrestre, y lo hacía precisamente en una cantidad que compensaba con toda exactitud la diferencia de distancias que debería recorrer el rayo luminoso.  Por añadidura, todos los aparatos medidores imaginables, incluyendo los órganos sensoriales humanos, experimentarían ese mismo fenómeno.

Parecía como si la explicación de FitzGerald insinuara que la Naturaleza conspiraba con objeto de impedir que el hombre midiera el movimiento absoluto, lo cual introducía un efecto que anulaba cualquier diferencia aprovechable para detectar dicho movimiento.

Este asombroso fenómeno recibió el de “contracción de FitzGerald”, y su autor formuló una ecuación para el mismo que, referido a la contracción de un cuerpo móvil, fue predicha igualmente, y de manera independiente, por H.A.Lorentz (1853-1928) de manera que, finalmente, se quedaron unidas como “Contracción de Lorentz-Fitz Gerald”.

 

 

 

 

El efecto Fitzgerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las ecuaciones Lorentz-Fitzgerald.

 

 

 

 

 

 

La dilatación del tiempo es el fenómeno predicho por la teorçia de la relatividad,  por el cual un observador observa que el reloj de otro (un reloj físicamente idéntico al suyo) está marcando el tiempo a un ritmo menor que el que mide su reloj. Esto se suele interpretar normalmente como que el tiempo se ha ralentizado para el otro reloj, pero eso es cierto solamente en el contexto del sistema de referencia del observador. Localmente, el tiempo siempre está pasando al mismo ritmo. El fenómeno de la dilatación del tiempo se aplica a cualquier proceso que manifieste cambios a través del tiempo.

fórmula para determinar la dilatación del tiempo en la relatividad especial es:

 \Delta t = \gamma \ \Delta t_0 = \frac{\Delta t_0}{ \sqrt{1-\frac{v^2}{c^2}}} \,

 

Donde:

 

 \Delta t_0 \, es el intervalo temporal entre dos eventos co-locales para un observador en algún sistema de referencia inercial. (por ejemplo el número de tic tacs que ha hecho su reloj)
 \Delta t \, es el intervalo temporal entre los dos mismos eventos, tal y como lo mediría otro observador moviéndose inercialmente con velocidad v, respecto al primer observador
 v \, es la velocidad relativa entre los dos observadores
 c \, la velocidad de la luz y
 \gamma = \frac{1}{\sqrt{1-v^2/c^2}} \, es el también conocido como factor de Lorentz

De esta manera la duración del un ciclo de reloj del reloj que se mueve se ha incrementado: esta “funcionando más despacio”. Según lo indicado las transformaciones de Lorentz  pueden ser utilizadas para casos más generales.

Postulados de la Relatividad Especial

 

  • Primer postulado:  Principio especial de relatividad: Las leyes de la física son las mismas en todos los sistemas de referencia inerciales. En otras palabras, no existe un sistema inercial de referencia privilegiado, que se pueda considerar como absoluto.
  • Segundo postulado: Invariancia de c: La velocidad de la luz en el vacío es una constante universal, c, que es independiente del movimiento de la fuente de luz.

 

 

Aquí podemos ver el tiempo que tarda la luz en llegar desde la Tierra a la Luna situada a más de 380.000 Km

 Einstein que se apropió de aquella idea (de Lorentz) y, además, la amplió al contraer también el Tiempo. La contracción de la longitud ha sido verificada en el diseño, por ejemplo, del acelerador lineal de la Universidad de Stanford. Las partículas salen con una velocidad v = 0,999975c, por tanto, metro de tubo acelerador es “visto” por los electrones como 144 metros. Si, según la expresión anterior, un cuerpo con masa se moviera a la velocidad c desaparecería por contracción de su longitud para un observador en reposo, lo cual refuerza el carácter inalcanzable de velocidad. Si los objetos con masa alcanzan este límite de velocidad la estructura básica de la realidad se desvanece. Por otra parte, vemos que cualquier influencia que afecte al tiempo también lo hará con el espacio. Esto no nos debe de extrañar, ya que ambas magnitudes se encuentran íntimamente relacionadas por lo único que se nos mantiene invariable: la velocidad de la luz. En relatividad hablamos de espacio-tiempo ya que son inseparables.

A la contracción, Einstein, le dio un marco teórico en la teoría especial de la relatividad. En teoría, un objeto de longitud /0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud /0 , donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

Un objeto que se moviera a 11 km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 km/seg. (la mitad de la velocidad de la luz, c), sería del 15%; a 262.000 km/seg. (7/8 de la velocidad de la luz), del 50% Es decir, que una regla de 30 cm. que pasara ante nuestra vista a 262.000 km (seg., nos parecería que mide sólo 15’54 cm…, siempre y cuando conociéramos alguna manera medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 km/seg., en números redondos, su longitud, en la dirección del movimiento, sería cero.  Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse en el Universo. (Pero ¿existir también?).

El físico holandés Hendrik Antón Lorentz, como hemos dicho, promovió ésta idea pensando en los rayos catódicos (que ocupaban su actividad por aquellas fechas), se hizo el siguiente razonamiento: si se comprimiera la carga de una partícula reducir su volumen, aumentaría su masa.  Por consiguiente, una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitz Gerald, debería crecer en términos de masa.

Resultado de imagen de Una partícula aumenta su masa si viaja a la velocidad de la luz

        Un objeto que corra a velocidades cercanas a la de la luz, verá incrementada su masa

Lorentz presentó una ecuación sobre el acrecentamiento de la masa, que resultó muy similar a la ecuación FitzGerald sobre el acortamiento. A 149.637 kilómetros por segundo, la masa de un electrónaumentaría en un 15%; a 262.000 km/seg., en un 100% (es decir, la masa se duplicaría); y a la velocidad de la luz, su masa sería infinita.  Una vez más pareció que no podría haber ninguna velocidad superior a la de la luz, pues, ¿cómo podría ser una masa mayor que infinita? El efecto FitzGerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas las “ecuaciones Lorentz-FitzGerald.”

Mientras que la contracción FitzGerald no podía ser objeto de mediciones, el efecto Lorentz sobre masas si podía serlo…, aunque indirectamente. De hecho, el muón, tomó 10 veces su masa original fue lanzado, a velocidades relativistas, en el acelerador de partículas, lo que confirmó la ecuación de Lorentz. Los experimentos posteriores, han confirmado las ecuaciones de ambos: a velocidades relativistas, las longitudes se contraen y las masas se incrementan.

                                                                  Nada puede viajar a la velocidad de la luz

Como es conocido por todos, Einstein adoptó estos descubrimientos y los incorporó a su teoría de la relatividad especial que, aunque mucho más amplia, recoge la contracción de FitzGerald y el aumento de la masa de Lorentz cuando se alcanzan grandes velocidades.

¡Qué cosas!

Resultado de imagen de La persistencia de la memoria

                                    El Tiempo pasa inexorable pero… ¡La memoria queda!

Algunas veces pienso que, los artistas en general, y los poetas en particular, tendrían que adaptar e incluir a sus esquemas artísticos y poéticos, los adelantos científicos, para asimilarlos en las diversas expresiones y sentimientos que serán después puestos al servicio del consumo humano.

Estos adelantos científicos serían así coloreados con las pasiones humanas y transformadas, de alguna manera, en la sangre, y por qué no, los sentimientos de la naturaleza humana.

Posiblemente, de haberlo hecho así, el grado general de conocimiento sería mayor.

emilio silvera

La Mecánica Cuántica es endiabladamente compleja

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Mecánica cuántica

La Mecánica Cuántica ha alcanzado unas cotas increíbles de consistencia y experimentalmente, es una de las teorías más acreditadas. Sin embargo, mi parecer es que siendo una herramienta muy útil para los Físicos, no es la definitiva, en un futuro próximo tendremos muchas sorpresas de la mano del LHC que en este mismo año nos dará alguna alegría importante para el mundo de la Física.

Resultado de imagen de Relatividad Especial, un pilar de la física

El otro gran pilar en el que se apoya la Física, se llama Relatividad Especial. Todos sabéis lo que fue para la Física el año 1.905. Esa primera parte de la teoría relativista de Einstein, nos legó conocimientos muy importantes, tales como que un objeto viajando a velocidades cercanas a la de la luz aumenta su masa o que el hipotético viajero de una nave espacial que viaje a ésas velocidades relativistas, habrá conseguido ralentizar su tiempo. El tiempo pasa más lento cuando la velocidad es grande. Y, el otro logro importante que fue resumido en la ecuación más famosa de la historia de la Física, fue el hecho de descubrir que la masa y la energía son dos aspectos de la misma cosa. E=mc2 ¡cuánta belleza y profundidad expresado en tan poco espacio!

Resultado de imagen de Función de onda del Universo

Edwin Schrödinger, autor de la ecuación con su función de onda, se disgustó con algunas de las interpretaciones de su ecuación. Para demostrar lo absurdo de la situación creada, Schrödinger colocó un gato imaginario en una caja cerrada. El gato estaba frente a una pistola, que está conectada a un contador Geiger, que a su vez está conectado a un fragmento de uranio. El átomo de uranio es inestable y sufrirá una desintegración radiactiva. Si se desintegra un núcleo de uranio, será detectado por el contador Geiger que entonces disparará la pistola, cuya bala matará al gato.

Resultado de imagen de El gato de Schrödinger

Para decidir si el gato está vivo o muerto, debemos abrir la caja y observar al gato. Sin embargo, ¿cuál es el estado del gato antes de que abramos la caja? Según la teoría cuántica, sólo podemos afirmar que el gato esta descrito por una función de onda que describe la suma de un gato muerto y un gato vivo.

Para Schrödinger, la idea de pensar en gatos que no están ni muertos ni vivos era el colmo del absurdo, pero la confirmación experimental de la mecánica cuántica nos lleva inevitablemente a esta conclusión. Hasta el momento, todos los experimentos han verificado, favorablemente, la teoría cuántica.

La paradoja del gato de Schrödinger es tan extraña que uno recuerda a menudo la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Lewis Carroll: “Allí me verás”, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.

Resultado de imagen de el gato de alicia

                                             El gato Cheshire

Existen varias maneras de abordar esta dificultad de lo incomprensible en mecánica cuántica. En primer lugar, podemos suponer que cualquier situación que podamos pensar existe, incluso una consciencia universal.   Puesto que todas las “observaciones” implican un observador, entonces debe haber alguna “conciencia” en el universo. Algunos físicos como el premio Nobel Eugene Wigner, han insistido en que la teoría cuántica prueba la existencia de algún tipo de conciencia cósmica universal.

La segunda forma de tratar la paradoja es la preferida por la gran mayoría de los físicos en activo: ignorar el problema.

Resultado de imagen de Richard Feynman

El físico Richard Feynman dijo en cierta ocasión: “Creo que es justo decir que nadie comprende la mecánica cuántica. No siga diciéndose a sí mismo, si puede evitarlo, “¿pero cómo puede ser así?” porque usted se meterá “hasta el fondo” en un callejón sin salida del que nadie ha escapado.  Nadie sabe como puede ser eso”. De hecho, a menudo se ha dicho que de todas las teorías propuestas en el siglo XX, la más absurda es la teoría cuántica. Algunos dicen que la única cosa que la teoría tiene a su favor es que “es indudablemente correcta”.

Sin embargo, existe una tercera forma de tratar esta paradoja, denominada teoría de los muchos universos. Esta teoría (como el principio antrópico) no gozó de mucho favor en la última década, pero está siendo revitalizada por la función de onda del universo de Stephen Hawking.

Mientras que muchos físicos han interpretado generalmente la función de onda como una herramienta estadística que refleja nuestra ignorancia sobre las partículas que medimos, los autores del último artículo defienden que, en lugar de esto, es físicamente real.

Función de onda para una partícula bidimensional encerrada en una caja. Las líneas de nivel sobre el plano inferior están relacionadas con la probabilidad de presencia. La fórmula de De Broglie encontró confirmación experimental en 1927 en un experimento que probó que la ley de Bragg, la inicialmente formulada para rayos X y radiación de alta frecuencia, era también válida para electrones lentos si se usaba como longitud de onda la longitud postulada por De Broglie. Esos hechos llevaron a los físicos a tratar de formular una ecuación de ondas cuántica que en el límite clásico macroscópico se redujera a las ecuaciones de movimiento clásicas o leves de Newton. Dicha ecuación ondulatoria había sido formulada por Erwin Schödinger en 1925 y es la celebrada y famosa Ecuación de Schrödinger que se denota:

Resultado de imagen de La ecuación de función de onda de Schrödinger
Schrödinger, con su función de onda, nos dio una buena herramienta para buscar la partícula mediante un sistema de alta probabilidad de su situación.

Existe un principio de la física denominado Navaja de Ockham, que afirma que siempre deberíamos tomar el camino más sencillo posible e ignorar las alternativas más complicadas, especialmente si las alternativas no pueden medirse nunca.

Para seguir fielmente el consejo contenido en la navaja de Ockham, primero hay que tener el conocimiento necesario para poder saber elegir el camino más sencillo, lo que en la realidad, no ocurre. Nos faltan los conocimientos precisos para hacer las preguntas adecuadas.

Imagen relacionada

Hugo Everett, Bryce DeWitt y ahora Hawking (también otros), han propuesto la teoría de los universos múltiples. En unos universos los protones se desintegran antes haciendo inestable la materia, en otros, el átomo de uranio se desintegra mediante un proceso sin radiaciones, y en otros universos las constantes universales que existen en el nuestro, son totalmente diferentes y no dan posibilidad alguna para la existencia de seres vivos. Está claro que cualquier variación que en principio pudiera parecer sin importancia, como por ejemplo, la carga del electrón, la potencia de la fuerza de Gravedad, la velocidad de la luz…, podría transformar radicalmente nuestro universo.

Todo lo que ocurre tiene su origen en el pasado, es decir, dependiendo del inicio, de las condiciones presentes en aquel momento, así será el futuro. Cualquier cosa, hasta la más insignificante, puede tener una importancia vital. Como apuntó el físico Frank Wilczek:

Resultado de imagen de Helena de Troya

 

 

“Se dice que la historia del mundo sería totalmente distinta si Helena de Troya hubiera tenido una verruga en la punta de su nariz.”

 

 

Resultado de imagen de El secreto más profundo está en nosotros

 

El misterio más profundo…Está en nosotros

 

Y, a todo esto, no olvidemos una de las cosas más importantes: Nuestras imaginación es casi tan grande como el Universo mismo, y, si pensamos algo… lo podríamos hacer realidad.

 

¿No es eso tan extraño a más que la mecánica cuántica misma? Claro que, seguramente no hemos caído en la cuenta de que, nuestro cerebro, también está cuantizado, es parte del problema que estamos tratando.

¡Es todo tan complejo!

emilio silvera

¿El núcleo del átomo? ¡Una maravilla de la Naturaleza!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                   Las partículas del núcleo atómico. Protón y neutrón.

En 1920 (Rutherford) descdubrió las partículas positivas que forman los átomos, los protones.

Rutherford descubrió que bombardear átomos de nitrógeno con partículas alfa ( y esto es bien sencillo ya que basta con poner la sustancia radiactiva en el aire cuyo 75 % es nitrógeno) se producían una nuevas partículas con estas características:
Su carga eléctrica es la misma que la de los electrones, pero positiva, y su masa es semejante a la del átomo de hidrógeno (recuerda que la masa de los electrones es 1836 menor que la del átomo de hidrógeno. LLamó a estas partículas positivas protones.

Por lo tanto en los núcleos de los átomos hay unas partículas positivas que se llaman protones. En el hidrógeno solo hay una partícula ya que recordemos su masa era casi la misma.

Se comprobó que el número de protones es una característica especial de cada elemento quí­mico, ya que todos los átomos del mismo elemento tienen el mismo número de protones. Se llama nú­mero atómico (Z) al número de protones que tienen los átomos de un elemento químico. A cada elemento químico le corresponde un número atómico desde 1 hasta el 92 de la Tabla Periódica. Otros que son artificiales (transuránicos) son más complejos y radiactivos.

Todavía tenemos que buscar otras partículas en el núcleo atómico. La masa de los protones de un núcleo es mucho menor que la masa del núcleo.

ISÓTOPOS

 

Cada elemento químico se caracteriza por el número de protones de su núcleo, que se denomina número atómico (Z). Así, el hidrógeno ( 1H) tiene un protón, el carbono ( 6C) tiene 6 protones y el oxígeno ( 8O) tiene 8 protones en el núcleo.

El número de neutrones del núcleo puede variar. Casi siempre hay tantos o más neutrones que protones. La masa atómica (A) se obtiene sumando el número de protones y de neutrones de un núcleo determinado.

Un mismo elemento químico puede estar constituído por átomos diferentes, es decir, sus números atómicos son iguales, pero el número de neutrones es distinto. Estos átomos se denominan isótopos del elemento en cuestión. Isótopos significa “mismo lugar“, es decir que como todos los isótopos de un elemento tienen el mismo número atómico, ocupan el mismo lugar en la Tabla Periódica.

Resultado de imagen de La masa del protón, del neutrón y del electrón

En general, los átomos de los elementos se representan con dos índices que preceden al símbolo específico: AZX, donde:

  • X es el símbolo del elemento químico
  • Z es el número de protonesnúmero atómico
  • A es la masa atómica

El número de neutrones será la diferencia (A-Z).

isótopos del Hidrógeno

isótopos del Carbono

Desde 1918 estaba probado que existían los isótopos. Estos, eran átomos que tenían propiedades químicas iguales (parecían elementos iguales, por tanto), tenían el mismo número atómico, pero sus masas atómicas eran di­ferentes. En el núcleo debían existir partículas neutras que contribuyeran a la masa pero no tuvieran carga eléctrica.

Estas partículas neutras del núcleo se descubrieron en 1932 y se llamaron neutrones. Chadwick consiguió detectarlas y medir su masa. Un neutrón  tiene una masa ligeramente mayor que la del protón (exactamente 1,00014 veces). Los neutrones proporcionan las fuerzas de unión que estabilizan el núcleo atómico.
Resultado de imagen de Representación del átomo de helio
Representación aproximada del átomo de Helio,  en el núcleo los protones están representados en rojo y los neutrones en azul. En la realidad el núcleo también es simétricamente esférico.
Hasta aquí tenemos una idea de las partículas que forman el núcleo atómico y de otras propiedades que en él pueden estar presentes. Sin embargo, el núcleo atómico tiene que ser visto como el corazón central del átomo que contiene la mayor parte de su masa, exactamente, el 99,9%. Digamos que el núcleo más masivo que se encuentra en la Naturaleza es el del Uranio-238 que contiene 92 protones y  146 neutrones. El núcleo más simple es el del Hidrógeno que consiste en un único protón.
Resultado de imagen de proton neutron y electron
Hasta aquí hemos dado un repaso sobre los componentes de los núcleos atómicos y algunas de sus particularidades para saber, sobre ellos y tener una idea más exacta de cómo fueron descubiertos y que son en realidad con sus cargas y sus masas. Sin embargo, podemos seguir explicandolo de manera sencilla pero con algo más de detalles.
El tamaño de un átomo

La curiosidad acerca del tamaño y masa del átomo atrajo a cientos de científicos durante un largo período en el que la falta de instrumentos y técnicas apropiadas impidió lograr respuestas satisfactorias. Con posterioridad se diseñaron numerosos experimentos ingeniosos para determinar el tamaño y peso de los diferentes átomos.

El átomo más ligero, el de hidrógeno, tiene un diámetro de aproximadamente 10-10 m (0,0000000001 m) y una masa alrededor de 1,7 x 10-27 kg (la fracción de un kilogramo representada por 17 precedido de 26 ceros y una coma decimal).

 

 

Empecemos por decir que los átomos son muy pequeños, tan pequeños que necesitaríamos una fila de unos diez millones para poder rellenar el espacio que ocupa un milímetro, es decir, los átomos son tan pequeños que los tamaños típicos son alrededor de 100 pm (diez mil millonésima parte de un metro). Una peculiaridad del átomo es que está casi vacío, su estructura conformada por el núcleo rodeado de electrones que orbitan a su alrededor lo hace un objeto singular.
Resultado de imagen de Demócrito y el átomo
Si el átomo tuviera 10 metros de diámetro el núcleo sería un puntito diminuto central de apenas un milímetro, y, sin embargo… ¡Cuanta complejidad contiene dentro tan minúsculo objeto! Tenemos que señalar que algunos núcleos pueden ser inestable y se desintegran emitiendo partículas Alfa, con carga positiva, mientras que otros emiten partículas Beta, con carga negativa. También pueden emitir radiación Gamma.
Pero dejémos tranquilas a las partículas Alfa y Beta de las que nos ocuparemos en otra oportunidad. El tema de este pequeño trabajo es el núcleo atómico y, a él, nos dedicaremos. Nunca podré dejar de asombrarme ante los hechos mágicos que la Naturaleza es capaz de realizar. En realidad, la Naturaleza se vale de estos pequeños objetos llamados átomos para que unidos sean los responsables de conformar toda la materia que existe (al menos la conocida) estén formando cualquier objeto, grande o pequeño que podamos ver en el Universo. Desde las estrellas y los mundos hasta las inmensas galaxias, todo está conformado por átomos.
Cuando hablamos del núcleo atómico, por lo general, nos referimos a que está hecho de protones y neutrones, dos partículas que pertenecen a la familia de los Hadrones en la rama de los Bariones donde están las partículas de materia. Cuando nos referimos a ellas situadas en el núcleo atómico, las solemos llamar nucleaones.
Pero veámos que hay ahí, dentro de los nucleones (protones y neutrones).
Monografias.com
Los hadrones (protones y neutrones), a su vez, están hechos por otras partículas más pequeñas que pertenecen a la familia de los Quarks. Tanto el protón como el Neutrón están conformados por tripletes de Quarks. El protón de 2 quarks up y un quark down, mientras que el nutrón está hecho por 2 quarks down y 1 quark up.
La familia Quark
Resultado de imagen de familia de quarks

Como no es el objeto del trabao, no hablaremos hoy de los Quarks, y, simplemente diremos que en la naturaleza no se encuentran quarks aislados. Estos siempre se encuentran en grupos, llamados Hadrones. de dos o tres quarks, conocidos como mesones y bariones respectivamente. Esto es una consecuencia directa del confinamiento de color.  En el año 2003 se encontró evidencia experimental de una nueva asociación de cinco quarks, los Pentaquarks, cuya evidencia, en principio controvertida , fue demostrada gracias al Colisionador de Partículas LHC en el pasado Julio de 2.015.

Imagen relacionadaResultado de imagen de Partículas elementales campos

Imagen relacionada

Pero sigamos con lo que nos ocupa y veámos que los Quarks están confinados dentro de los nucleones (protones y neutrones) donde la fuerza fuerte les retiene y nos los deja que se vayan alejando más de lo debido como se explica en el cuadro de arriba.

Dentro del nucleo se desatan las fuerzas de la Naturaleza, la que conocemos como fuerza nuclear fuerte, la más potente de las cuatro fuerzas fundamentales que, intermediada por otras partículas de la familia de los Bosones, los Gluones, no dejan que los Quarks se alejen y son retenidos allí, dentro de los nucleones donde tienen su función de conformar los hadrones másicos del núcleo que le aporta la materia al átomo.

Los Gluones, son las partículas intermediarias de la fuerza fuerte, y, de la misma manera, existen otros Bosones encargados de mediar en las otras fuerzas conocidas de la Naturaleza: El Fotón para los fenómenos electromagnéticos, el Gravitón (no encontrado aún) para la fuerza de Gravedad, y, los W+,  Wy Zº para la fuerza nuclear débil.

Resultado de imagen de Gifs de como se mueven los electrones alrededor del núcleo atómico

Lo cierto es que, el núcleo atómico está cargado positivamente y, tal carga, hace la llamada para que, un enjambre de electrones, con cargas negativas, vengan a rodear el núcleo atómico y, de esa manera, queda estabilidado el átomo, ese pequeño objeto que conforma todas las cosas hechas de materia.

Así, los electrones que rodea el núcleo, con su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). Y, sin embargo, la importancia del electrón es vital en el universo.

Repasando todo esto, no puedo dejar de recordar aquellas palabras que el físico Freeman Dyson escribió:

 

 

 

https://signosconciencia.files.wordpress.com/2013/08/perseids.jpg

 

Cuando miramos en el universo e identificamos los muchos accidentes de la física y la astronomía que han colaborado en nuestro beneficio, casi parece que el universo debe haber sabido, en cierto sentido, que nosotros íbamos a venir“.

 

Fijaros en el hecho cierto de que, si la carga del electrón, o, la masa del protón, variaran aunque sólo fuese una diezmillonésima parte… ¡La vida no podría existir en el Universo! Estamos hechos de átomos y, con tal cambio, éstos nunca se habrían podido constituir.

emilio silvera.

Einstein le llamó fotón: ¡El cuanto de Luz!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                       ¡Esas partículas! Algunas son más elementales que otras

Quarksfotónneutrinoelectrónprotónneutrónmuóntaukaónsigmaomega, W y Z, gluónfotóngravitón…, son muchas más pero estas se consideran las más importantes al formar la materia e intermediar en las interacciones con las cuatro fuerzas fundamentales del universo. Sus  nombres son muy familiares y, cada una de ellas nos trae una imagen que está asociada a aquello de lo que creemos que forma parte.

El fotón es el cuanto de luz, radiación electromagnética de una longitud de onda comprendida entre 380 y 780 mm, que produce percepción visual. Se define como el producto de visibilidad por el poder radiante, siendo éste último la intensidad de propagación de la energía luminosa.

Un fotón gamma de más alta energía tendría una velocidad menor que otro de baja energía según algunas ideas. Foto: NASA. Según los datos de Fermi, los fotones gamma de alta energía tienen la misma velocidad aunque sus energías sean diferentes. Esto apoya obviamente la Relatividad Especial y contradice algunos resultados teóricos relacionados con teorías cuánticas de gravedad que predecían lo contrario.

El fotón, como partícula, con masa nula en reposo que recorre el espacio vacío a 299.792.458 metros por segundo, puede ser considerado como una unidad de energía igual a hf, donde h es la constante de Plancky f es la frecuencia de la radiación en hertzios. Son necesarios para explicar el fenómeno fotoeléctrico y otros fenómenos que requieren que la luz tenga carácter de partícula.

De la luz, nos podríamos estar hablando horas y horas, de sus propiedades en fotónica, fotoquímica, fotosfera y otros muchos ámbitos del saber humano con la luz relacionados, como por ejemplo, la claridad luminosa que irradian los cuerpos en combustión, ignición o incandescencia.

En estos tiempos se ha logrado el teletransporte de un haz de fotones a larga distancia que, entre otras cosas, facilitará tanto transmitir información como protegerla de un eventual robo de datos. Un grupo de físicos chinos hizo realidad la teletransportación cuántica de fotones a una distancia de 97 kilómetros. Su haz recreado conservaba la capacidad de llevar información. Lejos queda ya aquel tiempo en el que, aquel genio…,  llamado

 

Newton nos descubrió que la luz del Sol o luz blanca, era el producto de la mezcla de todos los componentes coloreados, hizo pasar un rayo de luz por un prisma y, la habitación donde hacía el experimento, sus paredes, se llenaron de luciérnagas luminosas de muchos colores, el arco iris estaba allí, del rojo al violeta, descompuestos en mariposas luminosas.

Aunque el tema de la luz me fascina, no quiero repetirme, y,  en uno de mis últimos trabajos, traté ampliamente el tema. El estado natural (último) de la materia, no será sólido, líquido, gaseoso, plasma o materia oscura, el estado final de la materia, cuando pase por todas las fases y trascienda a un estado superior de conexión total con el Universo, será la LUZ. Ahí, dentro de los rayos luminosos, estarán gravados todos los recuerdos, toda la conciencia de la Humanidad que, para entonces, será otra cosa y, sonreirá al ver que un día muy lejano, discutían de Tiempo, de Materia, de… Energías… Cuando no sabían que todo, es la misma cosa en diferentes estadios de su trayectoria universal.

Un equipo internacional de científicos del experimento MINOS en el laboratorio del Acelerador Nacional Fermi (Fermilab) ha anunciado la medición más precisa del mundo hasta la fecha de los parámetros que rigen las oscilaciones antineutrino (de atrás y hacia adelante), es decir las transformaciones de antineutrinos de un tipo a otro. Este resultado proporciona información crucial sobre la diferencia de masa entre diferentes tipos de antineutrinos. La medición mostró una diferencia inesperada en los valores para neutrinos y antineutrinos. En este parámetro de diferencia de masa, el valor de los neutrinos es aproximadamente un 40 por ciento menor que el de los antineutrinos.

Si hablamos de neutrinos, estamos hablando de Leptones y, a pesar de lo que digan esas mediciones… el neutrino y su oponente antineutrino, deben tener exactamente la misma masa. De no ser así, se rompería el equilibrio que debe existir y, de hecho existe.

Después de tres meses de experimentos en un laboratorio de el Imperial College de Londres, los científicos pueden confirmar –con más confianza que nunca– que el electrón es muy, muy redondo.En las mediciones más exquisitas hasta la fecha, los investigadores declararon que la partícula es una esfera perfecta dentro de una mil millonésima de una mil millonésima de una mil millonésima de centímetro. Si los electrones se aumentaran a escala hasta tener el tamaño del sistema solar, cualquier desviación de su redondez sería menor que el ancho de un cabello humano, señaló el equipo.

El electrón es la partícula principal de la familia leptónica y está presente en todos los átomos en agrupamientos llamados capas electrónicas alrededor del núcleo. Tiene una masa en reposo (me) de numeración 9,1093897(54) × 10-31 Kg y una carga negativa de 1,602 17733(49) × 10-19 culombios. La antipartícula es el positrón que, en realidad, es copia exacta de todos sus parámetros, a excepción de la carga que es positiva.

File:Generaciones delamateria.png

Las dos familias: Quarks y Leptones, conforman la materia y, la familia de Bosones intermedian en las cuatro fuerzas fundamentales.

Si el electrón se considerara como una carga puntual, su autoenergía es infinita y surgen dificultades de la ecuación de Lorentz-Dirac. Es posible dar al electrón un tamaño no nulo con un radio r0 llamado el radio clásico del electrón, dado por r0 = e2/(mc2) = 2’82×10-13 cm, en donde e y m son la carga y la masa del electrón y c la velocidad de la luz.

El electrón es muy importante en nuestras vidas, es un componente insustituible de la materia y los átomos que son posibles gracias a sus capas electrónicas alrededor de los núcleos positivos que se ven, de esta forma equilibrados por la energía igual, negativa, de los electrones.

Resultado de imagen de Utilizando grandes aceleradores de partículas hemos conseguido conocer la materia

“Un nuevo reto estaba sobre la mesa. ¿Cuándo dejan de danzar los quarks dentro de los bariones? Esto es lo que trataron de explicar durante el verano de 2017 en el supercolisionador. Una investigación que aún está llevándose a cabo describe el comportamiento de los quarks pesados de un barión como planetas orbitando alrededor de una gran estrella.”

                  Utilizando grandes aceleradores de partículas hemos conseguido conocer la materia

Resultado de imagen de La familia de los hadrones

Resultado de imagen de La familia de los hadrones

Los Quarks confinados dentro de los hadrones (nucleones) en el núcleo del átomo y sujetados por los Gluones que no los dejan separarse mediante la fuerza nuclear fuerte.

Los protones, como los neutrones, son de la familia de los Hadrones. El protón es una partícula (no elemental) que tiene carga positiva igual en magnitud a la del electrón y posee una masa de 1,672614 x 10-27 kg, que es 1836,12 veces la del electrón. El protón aparece en los núcleos atómicos, por eso, junto al neutrón, también son conocidos como nucleones.

La familia de los Hadrones es la clase de partícula subatómica que interaccionan fuertemente, e incluye protonesneutrones y piones. Los hadrones son o bien bariones, que se desintegran en protones y que se cree están formados por tres quarks, o mesones, que se desintegran en leptones o fotones o en pares de protones y que se cree que están formado por un quark y un antiquark.

La materia bariónica, es la que forman planetas, estrellas y Galaxias, y la podemos ver por todas partes. Nosotros mismos estamos hechos de Bariones. La otra materia, esa que no podemos ver y que, nuestra ignorancia nos ha llevado a llamar oscura, esa, de momento no sabemos ni lo que es, o, si realmente existe y, los fenómenos observados que ella se adjudican, tienen su fuente en otra parte.

Resultado de imagen de La familia de los hadronesResultado de imagen de La familia de los Quarks

        Todo lo que vemos en el universo está hecho de materia bariónica, es decir: Quarks y Leptones

Resultado de imagen de La familia de los Bosones

En el Modelo Estándar de la física de partículas, los Bosones aparecen en la última fila vertical, y, representan los mensajeros de las cuatro fuerzas fundamentales. El gravitón sigue sin dejarse “ver”.

Las partículas conocidas como bosonesfotóngluóngravitón, partícula W+ W– y Zº son las que median en el transporte de las fuerzas fundamentales de la naturaleza. Electromagnetismo, fuerza fuerte, la Gravedad, y la fuerza débil. El Fotón transporta el electromagnetismo, la luz y todas las formas de radiación electromagnéticas. El Gluón (el de la libertad asintótica de David Politzer, Frank Wilczek y David Gross), transporta la fuerza nuclear fuerte que se desarrolla en el núcleo del átomo. El Gravitón (ese que aún no hemos localizado), es el mensajero de la Gravitación Universal, haciendo posible que nuestros pies estén bien asentados sobre la superficie del planeta y que el Sistema solar sea estable. Y, por último, las partículas W y Z, responsables de la radiación natural y espontánea de algunos elementos como el Uranio.

Este pequeño repaso a modo de recordatorio, es algo inevitable, si hablamos de materia, las partículas se nos cuelan y, como si tuvieran vida propia (que la tienen), nos obliga a hablar de ellas, lo que, por otra parte no esta mal.

File:Combustion methane.es.png

Cuando se enunció la ley de la conservación de la materia no se conocía el átomo, pero con los conocimientos actuales es obvio: puesto que en la reacción química no aparecen ni destruyen átomos, sino que sólo se forman o rompen enlaces (hay un reordenamiento de átomos), la masa no puede variar.

Como la única verdad del Universo es que todo es lo mismo, la materia ni se fabrica ni se destruye, sino que, en cada momento, cada cosa ocupa su lugar exacto por la evolución, la entropía y el paso del tiempo, resulta que, al final, se hable de lo que se hable, aunque sea de la conciencia y del ser, venimos a parar al mismo sitio: El Universo, la materia, la luz, el tiempo… ¡Y nuestras mentes que son el producto de más alto nivel en la evolución de la materia!

Parece mentira como a veces, cuando estoy inmerso en mis más profundos pensamientos, y creo tener una conexión directa con algo que, estando dentro de mí,  intuyo superior, lo veo todo más claro y, en ese momento especial,  todo es más fácil.El Universo está ante mí como un todo de diáfana claridad. Sin embargo, son efímeros momentos que se esfuman y me traen a la realidad de esa complejidad insondable que nos hace comprender, cuan ignorantes somos.

Claro que, si seguimos evolucionando y la Naturaleza nos respeta… ¡Hasta donde podremos llegar! Muchas veces hemos dicho aquí que somos conscientes y aplicamos nuestra razón natural para clasificar los conocimientos adquiridos mediante la experiencia y el estudio para aplicarlos a la realidad del mundo que nos rodea.

También hemos dicho que el mundo que nos rodea es el que nos facilita nuestra parte sensorial, la mente, y que este mundo, siendo el mismo, puede ser muy diferente para otros seres, cuya conformación sensorial sea diferente a la nuestra. Parece que, realmente es así, lo que es para nosotros, para otros no lo será y, tenemos que tener en cuenta esta importante variable a la hora de plantearnos ciertos problemas que, de seguro, tendremos que afrontar en el futuro. Hay diferentes maneras de resolver el mismo problema, solo tenemos que tratar de entenderlos.

                               No todos ven “el mundo” de la misma manera

La Naturaleza de la mente es el misterio más profundo de la humanidad., se trata, además de un enigma de proporciones gigantescas, que se remonta a milenios atrás, y que se extiende desde el centro del cerebro hasta los confines del Universo. Es un secreto que provocó vértigo y depresión en alguna de las mentes más preclaras de algunos de los filósofos y pensadores más grandes que en el mundo han sido. Sin embargo, este amplio vacío de ignorancia está, ahora, atravesado, por varios rayos de conocimiento que nos ayudará a comprender cómo hemos podido llegar hasta aquí y qué conexión existe realmente entre nuestras mentes y el universo inmenso.

Haga clic para mostrar el resultado de "Cerebro" número 3Resultado de imagen de El cerebro humano... ¡Esa maravilla!

Hablar de la “Mente” y del “Cerebro” es querer ir mucho más allá de nuestros conocimientos. Una Galaxia como la Vía Láctea tiene más de 100 000 millones de estrellas, y, un cerebro humano, tiene casi las mismas neuronas y, además, conexiones sin fin que generan ideas y pensamientos, algo que la galaxia no puede hacer. Así que, nos encontramos ante un complejo dilema: La verdad no puede ser experimentada de la misma forma que podemos experimentar con los objetos que están fuera, separados de nosotros y que podemos ver y observar, estudiar sus mecanismos y funciones pero, eso que llamamos “La Mente” es algo más, mucho más que una simple galaxia que “sólo” tiene Estrellas, Nebulosas y Mundos, una Mente, amigos míos, tiene dentro mucho más. Tanto es lo que tiene que no hemos podido llegar a comprender, siendo algo tan cercano a nosotros y que -creemos- está dentro de nosotros mismos, y, sin embargo, no sabemos lo que es, como funciona, y, hasta dónde puede llegar.

Imagen relacionadaImagen relacionadaImagen relacionada

          Sí, nuestro cerebro, y nosotros mismos, podemos ser la obra más compleja del Universo

Es curioso constatar como el enorme flujo de información que llega a mi mente a velocidad de vértigo, a veces (como ahora me ha pasado), estoy hablando de una cosa y me transporto  a otra distinta, sin querer, sin que me de cuenta al principio elijo caminos diferentes a los que debía llevar para hacer coherente la conversación iniciada en un campo de objetos materiales. Estaba comentando sobre el cometido de las partículas.

Crookes tube-in use-lateral view-standing cross prPNr°11.jpg

La naturaleza de partícula del electrón se demostró por primera vez con un tubo de Crookes. En esta ilustración, un haz de electrones proyecta el perfil en forma de cruz del objetivo contra la cara del tubo.

  • En 1.897, J.Thomson, descubrió el electrón
  • En 1.911, Rutherford, descubrió el núcleo atómico y el protón
  • En 1.932, Chadwick, descubrió el neutrón.

Así quedó sentado que, el modelo atómico estaba completo basado en un núcleo consistente en protonesneutrones rodeados en su órbita, de un número suficiente de electrones que equilibraba la carga nuclear y lo hacía estable. Pero este modelo no era suficiente para explicar la gran estabilidad del núcleo, que claramente no podía mantenerse unido por una interacción electromagnética, pues el neutrón no tiene carga eléctrica.

Resultado de imagen de En 1.935, Yukawa sugirió que la fuerza de intercambio que lo mantenía junto estaba mediada por partículas de vida corta, llamadas mesones, que saltaban de un protón a un neutrón y hacía atrás de nuevo

Para los no vrsados en “el mundo” de las partículas, no resulta fácil entender las diferentes familias que las forman y el cometido que cada una de ellas …

En 1.935, Yukawa sugirió que la fuerza de intercambio que lo mantenía junto estaba mediada por partículas de vida corta, llamadas mesones, que saltaban de un protón a un neutrón y hacía atrás de nuevo. Este concepto dio lugar al descubrimiento de las interacciones fuertes y de las interacciones débiles, dando un total de cuatro interacciones fundamentales.

También dio lugar al descubrimiento de unas 200 partículas fundamentales de vida corta. Como antes comentaba, en la clasificación actual existen dos clases principales de partículas: Leptones, que interaccionan con el electromagnetismo y con la fuerza nuclear débil y que no tienen estructura interna aparente, y los Hadrones (nucleonespiones, etc.), que interaccionan con la fuerza nuclear fuerte y tienen estructura interna.

Resultado de imagen de Gell-mann y los Quarks

                   Murray Gell-Mann

Fue el modelo de Murray Gell-Mann, introducido en1.964, el que fijó la estructura interna de los hadrones que, estarían formado por minúsculas partículas elementales a las que llamó quarks. Este modelo, divide a los hadrones en bariones (que se desintegran en protones) y mesones (que se desintegran en leptones y fotones). lLos bariones están formados por tres quarks y los mesones por dos quarks (quark y antiquark) En la teoría quark, por tanto, las únicas partículas realmente elementales son los leptones y los quarks.

La familia quarks esta compuesta por seis miembros que se denominan up (u), down (d), charmed (c), strange (s), top (t) y, bottom (b). El protón siendo un barión está constituido por tres quarks, uud (dos quarks up y un quark dowm), y, el neutrón por udd (un quark up y dos dowm).

Fuerza fuerte

Fuerza nuclear fuerte

En un nuevo trabajo, los físicos de altas energía han observado dos estados cuánticos muy buscados en una familia de partículas subatómicas: los bottomonium. El resultado ayudará a los investigadores a comprender mejor una de las cuatro fuerzas fundamentales del universo, la fuerza nuclear fuerte, que ayuda a gobernar lasinteracciones de la

materia

Resultado de imagen de los Quarks confinados en el núcleo atómicoResultado de imagen de los Quarks confinados en el núcleo atómico

“La historia de los quarks nos muestra cómo, a veces, una interpretación más coherente de los datos empíricos obtenidos precisa de hipótesis que se podrían considerar osadas y que, por lo general, son inicialmente ignoradas por la comunidad científica para luego terminar siendo mayoritariamente aceptadas.”

Para que los quarks estén confinados en el núcleo dentro de los nucleones, es necesario que actúe una fuerza, la nuclear fuerte que, entre los quarks se puede entender por el intercambio de ocho partículas sin carga y sin masa en reposo, llamadas Gluones (porque mantienen como pegados a los quarks juntos). Aunque los Gluones, como los fotones que realizan una función similar entre los leptones, no tienen carga eléctrica, si tienen una carga de color. Cada Gluón transporta un color y un anticolor. En una interacción un quark puede cambiar su color, pero todos los cambios de color deben estar acompañados por la emisión de un Gluón que, de inmediato, es absorbido por otro quark que automáticamente cambia de color para compensar el cambio original.

El universo de los quarks puede resultar muy complejo para los no especialistas y como no quiero resultar pesado, lo dejaré aquí y paso de explicar el mecanismo y el significado de los sabores y colores de los quarks que, por otra parte, es tema para los expertos.

                       Dentro del núcleo las fuerzas son… inauditas

Esta teoría de los quarks completamente elaborada está ahora bien establecida por evidencias experimentales, pero como ni los quarks ni los Gluones han sido identificados nunca en experimentos, la teoría no se puede decir que haya sido directamente verificada. Los quarks individuales pueden tener la curiosa propiedad de ser mucho más masivos que los Hadrones que usualmente forman (debido a la enorme energía potencial que tendrían cuando se separan), y algunos teóricos creen que es, en consecuencia, imposible desde un punto de vista fundamental que existan aislados. Sin embargo, algunos experimentales han anunciado resultados consistentes con la presencia de cargas fraccionarias, que tendrían los quarks no ligados y en estado libre.

Resultado de imagen de LHC

En ocasiones anteriores, ya hablamos del LHC, ese acelerador de partículas que tantas esperanzas ha suscitado. Puede que él tenga la respuesta sobre los Gluones y los quarks, además de otras muchas como la partícula de Higgs que llegó a encontrar después de muchos episodios fallidos.

Mirad como es nuestra naturaleza. Resulta que aún no hemos podido identificar a los quarks, y, sin embargo, hemos continuado el camino con teorías más avanzadas que van mucho más allá de los quarks, ahora hemos puesto los ojos y la mente, sobre diminutas cuerdas vibrantes, filamentos cien mil veces más pequeños que los quarks y que serían los componentes más elementales de la materia.

Resultado de imagen de La materia que va creando espacios al expandirseResultado de imagen de La materia que va creando espacios al expandirse

                           La materia que va creando espacios al expandirse

Y, a todo esto, ¿qué será de la teoría final, esa que llaman del Todo y que se conoce como teoría de cuerdas? Si finalmente resulta que dichos diminutos objetos están ahí, podría resultar que tampoco sean los componentes finales de la materia, pero el avance será muy significativo. La teoría de supercuerdas, ahora refundida por E. Witten, en la teoría M, si realmente se verifica, nos dará muchas respuestas.

emilio silvera