lunes, 12 de enero del 2026 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Desintegración del núcleo y la partícula Beta ¿Masa perdida?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los físicos se vieron durante mucho tiempo turbados por el hecho de que a menudo, la partícula beta emitida en una desintegración del núcleo no alberga energía suficiente para compensar la masa perdida por el núcleo.  En realidad, los electrones no eran igualmente deficitarios.  Emergían con un amplio espectro de energías, y el máximo (conseguido por muy pocos electrones), era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o menor grado.  Las partículas alfa emitidas por un nucleido particular poseían iguales energías en cantidades inesperadas.  En ese caso, ¿qué era errónea en la emisión de partículas beta? ¿Qué había sucedido con la energía perdida?

En 1.922, Lise Maitner se hizo por primera vez esta pregunta, y, hacia 1.930, Niels Bohr estaba dispuesto a abandonar el gran principio de conservación de la energía, al menos en lo concerniente a partículas subatómicas.  En 1.931, Wolfgang Pauli sugirió una solución para el enigma de la energía desaparecida.

Tal solución era muy simple: junto con la partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida.  Esa misteriosa segunda partícula tenía propiedades bastante extrañas.  No poseía carga ni masa.  Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía.  A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.

Leer más

¿Serán en verdad invariantes?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física, La Mente - Filosofía    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las constantes fundamentales

Constante Símbolo Valor en unidades del SI
Aceleración en caída libre g 9,80665 m s-2
Carga del electrón e 1,60217733(49) × 10-19 C
Constante de Avogadro NA 6,0221367 (36) × 1023mol-1
Constante de Boltzmann K=R/NA 1,380658 (12) × 10-23 J K-1
Constante de Faraday F 9,6485309 (29) × 104 C mol-1
Constante de los gases R 8,314510 (70) × J K-1 mol-1
Constante de Loschmidt NL 2,686763 (23) × 1025 mol-3
Constante de Planck h 6,6260755 (40) × 10-34 J s
Constante de Stefan-Boltzmann σ 5,67051 (19) × 10-8 W m-2 K-4
Constante eléctrica ε0 8,854187817 × 10-12 F m-1
Constante gravitacional G 6,67259 (85) × 10-11 m3 Kg-1 s-2
Constante magnética μ0 × 10-7 H m-1
Masa en reposo del electrón me 9,1093897 (54) × 10-31 Kg
Masa en reposo del neutrón mn 1,6749286 (10) × 10-27 Kg
Masa en reposo del protón mp 1,6726231 (10) × 10-27 Kg
Velocidad de la luz c 2,99792458× 108 m s-1
Constante de estructura fina α 2 π e2/h c

Leer más

Nos empeñamos en hacer preguntas cuyas respuestas están en el próximo...

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El próximo paso, el aprovechar la potencia de la teoría de campo unificado, requiere un salto mucho mayor en nuestra tecnología, aunque sea un salto que probablemente tendrá implicaciones muchísimo más importantes.

El problema reside en que obligamos a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, cuando su “ámbito natural” está en la energía de Planck.  Energía que sólo fue liberada en el propio instante de la creación.  Es decir, la teoría de supercuerdas es una teoría de la propia creación, así nos puede explicar todas las partículas y la materia, las fuerzas fundamentales y el espacio-tiempo, es decir, es la teoría del propio Universo.

Durante estos comentarios, frecuentemente he reseñado la palabra “espacio-tiempo” refiriéndome a una geometría que incluye las tres dimensiones espaciales y una cuarta dimensión temporal.  En la física newtoniana, el espacio y el tiempo se consideraban como entidades separadas y el que los sucesos fueran simultáneos o no era una materia que se consideraba como obvia para cualquier observador capacitado.

En el concepto de Einstein del universo físico, basado en el sistema de geometría inventada por H. Minkowski (1864-1909), el espacio y el tiempo estaban considerados como enlazados, de manera que dos observadores en movimiento relativo podían estar en desacuerdo sobre la simultaneidad de sucesos distantes.  En la Geometría de Minkowski (inspirada a partir de la teoría de la relatividad especial de Einstein), un suceso se consideraba como un punto de universo en un continuo de cuatro dimensiones.

Leer más

S = k log W

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Simples pensamientos recordando

De vez en cuando, como pequeño homenaje, he dejado aquí la referencia de algún personaje de la Física que, con su trabajo e ingenio,  le dio a la Humanidad la herramienta para que pudiera seguir avanzando en el difícil laberinto de la Cienca, y, no hace mucho que se cumplió el centenario de la muerte de Ludwig Boltzmann (Viena, 1844 – Duino, cerca de Trieste, 1.906), que es sin duda uno de los físicos más ilustres del siglo XIX.

El trabajo científico desarrollado por Boltzmann en su época crítica de transición que puso el colofón a la física “clásica” – cuya culminación podríamos situar en Maxwell – y antecedió (en pocos años) a la “nueva” física, que podemos decir que comenzó con Max Planck y Einstein. Aunque ciertamente no de la importancia de los dos últimos, la labor científica de Boltzmann tiene una gran relevancia, tanto por sus aportaciones directas (creador junto con “su amigo” Maxwell y Gibbs de la mecánica estadística, aunque sea el formulismo de éste último el que finalmente haya prevalecido; esclarecedor del significado de la entropía, etc.) como por la considerable influencia que tuvo en ilustres físicos posteriores a los que sus trabajos dieron la inspiración, como es el caso de los dos mencionados, Planck y Einstein.

Boltzmann fue un defensor a ultranza del atomismo, polemizando sobre todo con Mach y Ostwald, antiatomistas partidarios de la energética y claros exponentes de la corriente idealista de la física alemana. Tuvo que abandonar su ambiciosa idea de explicar exactamente la irreversibilidad en términos estrictamente mecánicos; pero esta “derrota”, no ocultaré que dolorosa desde el punto de vista personal, le fue finalmente muy productiva, pues de alguna manera fue lo que le llevó al concepto probabilista de la entropía. Estas primeras ideas de Boltzmann fueron reivindicadas y extendidas, en el contexto de la teoría de los sistemas dinámicos inestables, sobre todo por la escuela de Prigogine, a partir de la década de 1970.

Leer más

Inmersos en el espaciotiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para el cosmólogo, la única certeza es que el Universo morirá un día.  Algunos creen que la muerte final del Universo llegará en la forma del big crunch. La gravitación invertirá la expansión cósmica generada por el big bang y comprimirá las estrellas y las galaxias, de nuevo, en una masa primordial.  A medida que las estrellas se contraen, las temperaturas aumentan espectacularmente hasta que toda la materia y la energía del universo están concentradas en una colosal bola de plasma ardiente que será el resultado final de la destrucción del Universo tal como lo conocemos.

Todas las formas de vida serán borradas de la faz de los mundo que las pudieran contener: evaporadas por las enormes temperaturas o aplastadas, ¡qué más dá! No habrá escape.

Científicos y filósofos, como Charles Darwin y Bertrand Russell, han escrito lamentándose de la futilidad de nuestras míseras existencias, sabiendo que nuestra civilización morirá inexorablemente cuando llegue el fin de nuestro mundo.  Las leyes de la física, aparentemente, llevan la garantía de una muerte final e irrevocable para todas las formas de vida, inteligente o no, del Universo.

Yo, como Gerald Feinberg, físico de la Universidad de Columbia (ya desaparecido), creo que sí puede haber, quizá sólo una esperanza de evitar la calamidad final.

Él especuló que la vida inteligente, llegando a dominar los misterios del espacio de más dimensiones (para lo que contaba con un poderoso aliado, el Tiempo de miles de millones de años), sabría utilizar las dimensiones extras para escapar de la catástrofe del Big Crunch.  En los momentos finales del colapso de nuestro Universo, el Universo hermano se abriría de nuevo y el viaje interdimensional se haría posible mediante un túnel en el Hiperespacio hacia un Universo alternativo, evitando así la pérdida irreparable de la inteligencia de la que somos portadores.

Leer más