Sep
29
¡La Fisica!
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
Hablamos de física, y para animar el ambiente, a continuación os pongo la constante de Planck en sus dos versiones, h y ħ; la igualdad masa-energía de Einstein, la constante gravitacional de Newton, la constante de estructura fina (137) y el radio del electrón (omito las formulas).
- Constante de Planck:
- Constante de Planck racionalizada:
- Igualdad masa-energía:
- Constante gravitacional:
- Constante de estructura fina:
- Radio del electrón:
¡Me encantan sus mensajes!
Es verdaderamente meritorio el enorme avance que en tan poco tiempo ha dado la Humanidad en el campo de la física. En aproximadamente un siglo y medio, se ha pasado de la oscuridad a una claridad, no cegadora aún, pero sí aceptable. Son muchos los secretos de la naturaleza física que han sido desvelados, y el ritmo parece que se mantiene a un muy aceptable (nuevamente).
¡El tiempo!, ése precioso bien está a nuestro favor. Sólo tenemos que ir pasando el testigo para alcanzar las metas propuestas. Pongamos nuestras esperanzas en que no seamos tan irresponsables como para estropearlo todo.
Astronomía, gravedad o electromagnetismo; cuestiones sencillas de entender para los iniciados y, a veces, muy complejas para la gente corriente. Por tal motivo, si escribo sobre estos interesantes temas, mi primera preocupación es la de buscar la sencillez en lo que explico. No siempre lo consigo. Por ejemplo, expliquemos el magnetismo.
Sep
29
La Física: Nunca dejará de sorprendernos
por Emilio Silvera ~
Clasificado en Física ~
Comments (5)
Claro que tal asunto tampoco es tan fantástico. Muchas veces se ha oído decir que la realidad supera a la ficción y, precisamente en física, el salto cuántico es lo que ocurre cuando en el átomo, un electrón es golpeado por un fotón que le inyecta energía. De forma inmediata, el electrón desaparece del nivel en el que está situado y, sin recorrer la distancia que los separa, aparece de forma simultánea y surgiendo de la nada en un nivel inmediatamente superior al que se encontraba, surgido del vacío tras desaparecer Dios sabe cómo. ¿Quién puede explicar este fenómeno? De momento, nadie.
El electrón es un leptón como el muón y la partícula tau. Tiene una estructura (si en realidad la tiene) que aún no la tenemos resuelta. Si el electrón se considera como una carga puntual, su autoenergía es infinita y surgen dificultades de la ecuación de Lorentz-Dirac. Es posible dar al electrón un tamaño no nulo con un radio r0, llamado “radio clásico del electrón”, dado por e2/mc2 = 2’82 × 10–13 cm, donde e y m son la carga y la masa del electrón respectivamente, y c la velocidad de la luz.
Pero volvamos al tema que estábamos tratando sobre las estructuras más pequeñas en el espacio-tiempo que podrían representar “supercuerdas”, o quizá sean hebras de “algodón” atadas unas a otras, como defiende Ashteker y sus seguidores. Otros, como Gerard’t Hooft, creen que las estructuras dominantes en las escalas más pequeñas posibles son agujeros negros microscópicos. En cualquier caso, una conclusión parece inevitable: la cantidad de información que uno puede almacenar en un pequeño trozo de espacio parece ser limitada. Cualquiera que haya trabajado con computadoras sabe que la información se representa por una serie de ceros y unos. Si la “interacción” tiene lugar, los ceros y los unos son reemplazados por otros ceros y unos. ¿Significa esto que el mundo en que vivimos no es nada más que una supercomputadora gigante? Cualquier libro sobre los fundamentos de la mecánica cuántica le dirá que esto es una simplificación exagerada. Las leyes de la mecánica cuántica, leemos, son incompatibles con cualquier explicación “mecánica” de lo que vemos que ocurre en la naturaleza. Nuestro futuro no está determinado a partir del pasado por leyes “deterministas” sin ambigüedad.
Esta afirmación está basada en un experimento imaginario inventado por Einstein, Podolski y Rosen. Es un esquema ingenioso diseñado de forma que la predicción de la mecánica cuántica no es compatible con ninguna teoría determinista. Más tarde, John Bell en el CERN (Conseil Européen pour la Recherche Nucléaire, Organización Europea para la Investigación Nuclear, situada en Ginebra, Suiza), convirtió este argumento en un teorema matemático rigurosamente formulado. Así podemos imaginar experimentos para los cuales las leyes de la mecánica cuántica conocidas predicen exactamente lo que se observará, y será imposible, de acuerdo con Bell, reproducir esta predicción con ninguna teoría determinista. Él hizo, sin embargo, una suposición: que la información no se puede propagar con una velocidad superior a la de la luz (este experimento se llevó a cabo, y como todo el mundo esperaba, las predicciones de la mecánica cuántica eran las correctas). Aquí tenemos otro ejemplo de un “teorema de imposibilidad”, un teorema que establece con certidumbre cómo no intentar construir una teoría porque no tendría éxito.
Sep
28
¿Un mundo de más dimensiones?
por Emilio Silvera ~
Clasificado en Física Relativista ~
Comments (0)
Nosotros sólo vemos tres dimensiones de espacio y una de tiempo. Sin embargo, hay teorías que nos hablan de otras dimensiones que, en la época del Big Bang, en lugar de expandirse se enrollaron en el límite de Planck.
Esta idea ya había sido sugerida por Theodor Kaluza en 1919 y fue elaborada posteriormente por Oskar Klein en Estocolmo, Suiza. Pero descubrieron algo más: ¡la componente del campo gravitatorio en la dirección en la que se enrolla el espacio obedece de forma exacta a las mismas leyes que las del electromagnetismo de Maxwell!
¿Podría ser que el electromagnetismo no sea sino gravedad con una dimensión enrollada? Cuando Einstein oyó tal idea se entusiasmó con ella, pero pronto comprendió que con esa teoría no se podía predecir nada y la abandonó.
Los expertos en supergravedad redescubrieron esta idea de Kaluza-Klein que operaba en cinco dimensiones. En realidad abrió las puertas de par en par para que se pudieran coger las dimensiones que hicieran falta: así entramos en el paraíso de las matemáticas donde podemos enrollar las cosas de muchas maneras diferentes.
Los componentes de los campos de fuerza gravitatoria en las direcciones enrolladas actúan como diferentes campos gauge. Se obtiene así, prácticamente por nada, no sólo el electromagnetismo sino también otras fuerzas gauge. El número mágico de dimensiones es once, tres de las cuales forman el espacio ordinario, una el tiempo, y las otras siete restantes están enrolladas. Haciendo ciertos trucos con los números, este sistema resulta tener una simetría mayor que nuestro viejo sistema espaciotemporal de cuatro dimensiones. Los campos y las partículas observadas ahora pueden ser fácilmente acoplados, ya que una simetría mayor significa que los indeseados infinitos se cancelan unos con otros con mayor perfección que antes.
Aquí, en este universo de once dimensiones, la mecánica cuántica y la relatividad general, no sólo no se rechazan, sino que se necesitan y complementan para formar un todo.
Sep
28
Sobre el Modelo Estandar de la Fisica
por Emilio Silvera ~
Clasificado en Física ~
Comments (2)
Engañosa perfección
El modelo estándar es una poderosa herramienta pero no cumple todas las expectativas; no es un modelo perfecto. En primer lugar, podríamos empezar por criticar que el modelo tiene casi veinte constantes que no se pueden calcular. Desde luego, se han sugerido numerosas ideas para explicar el origen de todos estos parámetros o números inexplicables y sus valores, pero el problema de todas estas teorías es que los argumentos que dan nunca han sido enteramente convincentes. ¿Por qué se iba a preocupar la naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo, tal como el principio de la relatividad, pero no queremos abandonar todos los demás principios que ya conocemos. Ésos, después de todo, han sido enormemente útiles en el descubrimiento del modelo estándar. El mejor lugar para buscar un nuevo principio es precisamente donde se encuentran los puntos débiles de la presente teoría.
Una regla universal en la física de partículas es que para partículas con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez más pequeñas en el espacio y en el tiempo.
El modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero existen varias razones para sospechar que sus predicciones pueden, finalmente (cuando podamos emplear más energía en un nivel más alto), resultar equivocadas.
Vistas a través del microscopio, las constantes de la naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático no hay nada que objetar, pero la credibilidad del modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas, o lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas. ¿Y por qué debería ser el modelo válido hasta aquí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables. ¿Dónde está la partícula de Higgs? ¿Cómo se esconde de nosotros el gravitón?
Si deseamos evitar la necesidad de un delicado ajuste de las constantes de la naturaleza, creamos un nuevo problema: ¿cómo podemos modificar el modelo estándar de tal manera que el ajuste fino no sea necesario? Está claro que las modificaciones son necesarias, lo que implica que muy probablemente haya un límite más allá del cual el modelo tal como está deja de ser válido. El modelo estándar no será nada más que una aproximación matemática que hemos sido capaces de crear, de forma que todos los fenómenos que hemos observado hasta el presente están reflejados en él, pero cada vez que se pone en marcha un aparato más poderoso, tenemos que estar dispuestos a admitir que puedan ser necesarias algunas modificaciones del modelo para incluir nuevos datos que antes ignorábamos.
Más allá del modelo estándar habrá otras respuestas para preguntas que, en este momento, no sabemos ni plantear.
Veremos si con el LHC se puede mejorar el Modelo o nos llevamos una enorme decepcion si no aparece el Boson de Higgs. Ahora mismo no puedo decir cual sera la solucion final pero, una cosa esta clara, no pararemos hasta desvelar algunos secretos que tiene profundamente guardados la Naturaleza, y, cuando eso llegue…¿que nos encontraremos?
emilio silvera
Sep
26
El origen de la teoría de cuerdas
por Emilio Silvera ~
Clasificado en Física ~
Comments (3)
Ya he comentado que la teoría de cuerdas tiene un origen real en las ecuaciones de Einstein en las que se inspiro Kaluza para añadir la quinta dimensión y perfeccionó Klein (teoría Kaluza-Klein). La teoría de cuerdas surgió a partir de su descubrimiento accidental por Veneziano y Suzuki, y a partir de ahí, la versión de más éxito es la creada por los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohm; ellos son conocidos en ese mundillo de la física teórica como “el cuarteto de cuerdas”. Ellos han propuesto la cuerda heterótica (híbrida) y están seguros de que la teoría de cuerdas resuelve el problema de “construir la propia materia a partir de la pura geometría: eso es lo que en cierto sentido hace la teoría de cuerdas, especialmente en su versión de cuerda heterótica, que es inherentemente una teoría de la gravedad en la que las partículas de materia, tanto como las otras fuerzas de la naturaleza, emergen del mismo modo que la gravedad emerge de la geometría”.
La característica más notable de la teoría de cuerdas (como ya he señalado), es que la teoría de la gravedad de Einstein está contenida automáticamente en ella. De hecho, el gravitón (el cuanto de gravedad) emerge como la vibración más pequeña de la cuerda cerrada, es más, si simplemente abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. Esta, de hecho, es la razón por la que Witten se sintió inicialmente atraído hacia la teoría de cuerdas.
Witten está plenamente convencido de que “todas las ideas realmente grandes en la física, están incluidas en la teoría de cuerdas”.
No entro aquí a describir el modelo de la teoría de cuerdas que está referido a la “cuerda heterótica”, ya que su complejidad y profundidad de detalles podría confundir al lector no iniciado. Sin embargo, parece justo que deje constancia de que consiste en una cuerda cerrada que tiene dos tipos de vibraciones, en el sentido de las agujas del reloj y en el sentido contrario, que son tratadas de forma diferente.
Las vibraciones en el sentido de las agujas de reloj viven en un espacio de diez dimensiones. Las vibraciones de sentido contrario viven en un espacio de veintiséis dimensiones, de las que dieciséis han sido compactificadas (recordemos que en la teoría pentadimensional Kaluza-Klein, la quinta dimensión se compactificaba curvándose en un circulo). La cuerda heterótica debe su nombre al hecho de que las vibraciones en el sentido de las agujas de reloj y en el sentido contrario viven en dos dimensiones diferentes pero se combinan para producir una sola teoría de supercuerdas. Esta es la razón de que se denomine según la palabra griega heterosis, que significa “vigor híbrido”.
















Totales: 84.108.005
Conectados: 34






















