viernes, 02 de enero del 2026 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Los Campos de Higgs! ¿Que es eso?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Los campos de Higgsrompen la simetría de gran unificación y, de no encontrarlo,  ¿Sería como un empezar de nuevo?

Bueno, no exactamente. Pero, soy de la opinión que no debemos adelantar los acontecimientos y, debemos tener todas nuestras esperanzas puestas en que, la física teórica está próxima a obtener un gran éxito: confirmando la potencia de la simetría para conformar de manera correcta nuestros razonamientos matemáticos cuando se aventura en las profundidades de lo desconocido de la Naturaleza. Parece que estamos cerca y, si la noticia es confirmada…

Otro triunfo de la aparición del Bosón de Higgs, sería la confirmación de que, las fuerzas, en tiempos pasados eran una sola fuerza, es decir, el universo era parte de un todo simétrico que se desgarró en lo que actualmente conocemos. Por otra parte, sabiendo de la existencia del océano de Higgs, nuestra noción del espacio vacío tendría que ser re-establecida. Un espacio vacío no tiene que ser sinónimo de la NADA ABSOLUTA que, según parece, como la eternidad y lo infinito, no existen.

En Física, cuando hablamos del Campo de Higgs, todos pensamos, de inmediato, que es el campo responsable de la ruptura de simetría asociado con el Bosón de Higgs. El Campo de Higgs puede ser tanto una cantidad escalar elemental como el campo asociado con un estado ligado de dos fermiones. En el Modelo Winberg-Salam, el Campo de Higgs se considera como un campo escalar. En realidad no se saber si estas hipótesis son correctas o no (ahora esperamos que, con “la aparición del Bosón de Higgs, algo más nos digan al respecto), aunque intentos de construir una teoría electrodébil con estados ligados para el Campo de Higgs, conocidos como teorías de Technicolor, no fueron exitosos.

Los Campos de Higgs también aparecen en sistemas de muchos cuerpos que pueden ser formulados como una teoría cuántica de campos con un Bosón de Higgs un ejemplo es la teoría BCS de la superconductividad, en la que el Campo de Higgs está asociado con un par de Cooper, en vez de con un campo escalar elemental.

Mucho es lo que se habló de los océanos de Higgs que dicen permear todo el espacio, pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo.  Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.  Esperémos que ahora, nos expliquen, con más conocimiento de causa, todas estas cuestiones que, una vez “hallado” el Bosón misterioso de Higgs, los interrogantes se habrán despejados.

 

¿Qué hace?   ¿estará buscando el Bosón de Higgs? ¡No hombre! Parece que ya ¡lo encontró!

 

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.  La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por P. Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

 

Las masas van de la del electrón 0’0005 GeV, a la del top, mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electro débil (Weinberg-Salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa  los W+, W, Zº y fotón que llevan la fuerza electro-débil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electro débil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard  ´t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

 

 

foto

 

Hasta hace algunas decenas de años, se consideraba que el espacio entre las estrellas estaba completamente vacío. Las observaciones ópticas y radioastronómicas han demostrado, en cambio, que éste está lleno de materia interestelar formada predominantemente por hidrógeno mezclado con minúsculas partículas sólidas, llamadas genéricamente polvo interestelar.

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una vez potente y segura nos dice: “! Higgs ¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmariana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

                           Siempre quisimos agarrar la fuente de la que surgía la materia.

Siempre nos hemos preguntado de dónde vino la materia. Hemos llegado a comprender que toda la materia está hecha y es energía concentrada. Con el paso del tiempo pudimos desmenuzar sus componentes y llegamos a ser conscientes de que toda la masa del Universo está conformada a partir de minúsculos objetos que llamamos partículas. Todo lo grande está hecho de cosas pequeñas.

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno, y, según mi amigo Ramón Márquez, las partículas toman su masa debido al efecto frenado, cuando en su caminar, se deslizan por los Océanos de Higgs.

 

Aparece el Bosón....

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

De todas las maneras, va siendo hora ya de que, de una vez por todas, podamos despejar la incognita que desde años atrás ha venido suponiendo el origen de la masa de las partículas y, si como se cree, la fuente está en ese campo de Higgs que ahora trata de sondear el LHC, esperemos que a no tardar mucho, tengamos la respuesta a esa pregunta.

Si al fin aparece el dichoso Bosón de Higgs (y espero que algunas cosas más), sabremos un poco más de los misterios de la Naturaleza y, podremos seguir adelante con la construcción de un Modelo Estándar que, para mi gusto, tiene demasiado parámetros aleatorios para que todo encaje.

¡Veremos qué pasa!

 

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

De todas las maneras, va siendo hora ya de que, de una vez por todas, podamos despejar la incognita que desde años atrás ha venido suponiendo el origen de la masa de las partículas y, si como se cree, la fuente está en ese campo de Higgs que ahora trata de sondear el LHC, esperemos que a no tardar mucho, tengamos la respuesta a esa pregunta.

Si al fin aparece el dichoso Bosón de Higgs (y espero que algunas cosas más), sabremos un poco más de los misterios de la Naturaleza y, podremos seguir adelante con la construcción de un Modelo Estándar que, para mi gusto, tiene demasiado parámetros aleatorios para que todo encaje.

¿El Bosón de higgs! Estará realmente ya, con nosotros.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

De acuerdo con el Modelo Estándar, la teoría y el éxito notable de cómo las partículas fundamentales interactúan, y en el cual, el bosón de Higgs es responsable de dotar a toda otra partícula con masa, la última partícula restante es dictada por el modelo estándar y por la cual aún no se ha detectado. Su descubrimiento es uno de los principales objetivos del LHC, el acelerador de partículas más poderoso del planeta, y tal vez, el esfuerzo más complejo jamás intentado por los científicos.

Miro en mi viejo Diccionario de Física, y me dice que el Bosón de Higgs es una partícula de espín cero, con masa no nula, predicho por Peter Higgs y que existen en ciertas teorías gauge, en particular en la teoría electrodébil (el modelo de Winberg-Salam). El Sosón de Higgs aún no ha sido encontrado, pero se piensa que se encontrará con aceleradores mayores en los próximos pocos años, especialmente después de que otras predicciones de la teoría, incluyendo los bosones W y Z, hayan sido confirmadas.

El bosón de Higgs es una parte integral de nuestra comprensión de la naturaleza. Se trata de una partícula que es una excitación de lo que se llama el campo de Higgs. El campo de Higgs impregna todo el espacio y cuando algunas de las partículas fundamentales que viajan a través de este campo adquieren masa. La cantidad de masa que adquieren depende de la fuerza en que interactúan con el campo de Higgs. Algunas particulas, como el electrón adquieren una pequeña masa, mientras que otras adquieren una masa mucho mayor.
Un aspecto peculiar de esto es que este campo de Higgs que impregna en todo el espacio es parte de lo que llamamos espacio vacío o el vacío. Es sólo su impacto sobre las partículas que viajan a través de él y el bosón de Higgs que podemos observar en el laboratorio. El bosón de Higgs vive por un lapso muy corto de tiempo, así que no lo observan directamente, sino que más bien se observa que las partículas se descompone en y tienen que inferir su existencia a partir de eso. En la teoría actual que tenemos para comprender la naturaleza podemos hacer afirmaciones precisas acerca de qué fracción del tiempo que se desintegra en dos fotones en comparación con dos quarks abajo.
                 Peter Higgs
La Organización Europea para la Investigación Nuclear (CERN) ha descubierto una nueva partícula subatómica que confirma con más de un 99% de probabilidad la existencia del bosón de Higgs, conocido popularmente como la ‘partícula de Dios’, un hallazgo fundamental para explicar por qué existe la materia tal y como la conocemos. ATLAS, uno de los dos experimentos del CERN que busca el bosón de Higgs, ha confirmado la observación de una nueva partícula, con un nivel de confianza estadística de 5 sigma (superior al 99,99994%), en la región de masas de alrededor de 125 GeV. Esta medición implica que la probabilidad de error es de una en tres millones, una cifra que, oficialmente, es suficiente para dar por confirmado un descubrimiento.

 

El Acelerador LHC ha explorado con detalle la alta escala de energía del TeV, con un potencial de descubrimiento de hasta 14 Tera electrón Voltios. Con esta trampa descomunal construida por el hombre, se esperaba atrapar al esquivo bosón que, según todos los indicios, es el que proporciona la masa a las partículas. Hoy creemos en la existencia de una presencia espectral en el Universo que nos impide conocer la verdadera naturaleza de la materia. Es como si algo quisiera impedirnos ese conocimiento final que nos daría la luz necesaria para que, nuestras mentes, pudieran al fin comprender esa realidad del Universo que, hasta el momento, no hemos sabido vislumbrar, sólo su sombra se nos aparece en algunos experimentos. Parece que, por fín, hemos hallado algo…¡ya veremos!

En los años 60 del S.XX, independientemente, Peter Higgs, Francois Englert, Robert Brout, Gerald Guralnik, Dick Hagen y Tom Kibble, propusieron precisamente, que el universo estaba lleno de un campo más tarde llamado Campo de HIGGS. Como ya se ha comentado, las interacciones de las partículas con este campo provoca que adquieran masa. Podemos pues imaginar el espacio lleno de estas partículas virtuales (Bosones de Higgs) que al interaccionar con las demás partículas provocan en ellas “dicficultade” para moverse. Es decir, las partículas adquieren inercia y por tanto masa. A más interacción con el campo Higgs más masa. Por ejemplo, los fotones  no interaccionan con ese campo mientras que los quarks “top ” lo hacen muy intensamente.

                         Cualquiera sabe como serán los Campos de Higgs

 

Allá por el año 1974, algunos físicos propusieron aquella primera teoría para alcanzar la gran unificación. Ellos, propusieron que las tres interacciones o fuerzas fuerte, débil y electromagnética, eran parte de una fuerza unificada en aquellos momentos en que la temperatura del universo recién nacido estaba más alta que 10²⁸ de grados –unos mil trillones de veces la temperatura del centro del Sol-, y, esas condiciones extremas existían antes de 10¯³⁵ segundos contados a partir del Big Bang.

Por encima de dicha temperatura, los fotones, los gluones de la fuerza fuerte, así como las partículas W y Z, podrían intercambiarse libremente entre sí –una teoría gauge más potente que la de la teoría electrodébil- sin ninguna consecuencia observable. Todo esto sugiere que habría simetría completa entre las partículas de las tres fuerzas no gravitatorias.

Claro que, aquella teoría de gran unificación que los físicos sugerían, no la podemos ver el mundo que nos rodea –la fuerza nuclear fuerte que mantiene pegados protones y neutrones en el núcleo de los átomos, parece independiente de la fuerza débil y electromagnética.

Cuando la temperatura cayó por debajo de 10¯²⁸ grados, se hizo patente el nacimiento de otro campo que, ahora conocemos como el campo de Higgs y que denominamos Higgs de gran unificación. Y, como sucede con el campo electrodébil, cuando se formó ese océano de Higgs de gran unificación, el universo sufrió una transición de fase con la consiguiente reducción de simetría. En este caso, debido a que el océano de Higgs de gran unificación tiene un efecto diferente entre los gluones que el que tiene sobre las otras partículas de fuerza, la fuerza fuerte se desgajó de la fuerza electromagnética, dando dos fuerzas no gravitatorias distintas donde previamente había sólo una. Una fracción de segundo y un descenso de trillones de grados más tarde, el Higgs electrodébil se condensó, haciendo que también se separaran la fuerza débil y electromagnética. La idea es de una gran belleza, ¡la gran unificación!, sin embargo, no ha podido ser confirmada experimentalmente.

El concepto de ruptura de simetría, y su realización mediante el campo de Higgs electrodébil, desempeña claramente un papel fundamental en la física de partículas y también en cosmología. Claro que, en este punto se nos ocurre la pregunta si un océano de Higgs es un algo invisible que llena lo que normalmente llamamos espacio vacío, ¿no estamos dándole vida a un nuevo éter?

peter higgs y fabiola gianotti

El físico británico Peter Higgs felicita a la portavoz del experimento ATLAS, Fabiola Gianotti. Imagen: EFE.

La noticia se ha dado con alborozo pero, algo tímidamente, no quieren echar las campanas al vuelo y que ocurra como con los neutrinos “más rápidos que la luz”, ahora se trata de asegurarse de que todo transcurra como debe ser en un estamento científico de prestigio como lo es el CERN.

Si existe…¿Cómo sería el Campo de Higgs?

La única respuesta que a dicha pregunta podemos dar es que si, en algunos aspectos nos recuerda al éter. Como el éter, un campo de Higgs condensado permea el espacio, nos envuelve a todos, se filtra a través de todo lo material y, como una característica intrínseca del espacio vacío (al menos que recalentemos el universo por encima de 10¹⁵ grados, lo que en realidad no podemos hacer) redefine nuestra concepción de la nada. Pero a diferencia del éter original, que fue introducido como medio indivisible para transportas las ondas luminosas de la misma manera que el aire transporta ondas sonaras, un océano de Higgs no tiene nada que ver con el movimiento de la luz, y por eso los experimentos de finales de siglo que descartaron el éter cuando se estudiaba el movimiento de la luz no tienen relación alguna con el océano de Higgs.

El océano de Higgs no tiene ningún conflicto con nada que se mueva a velocidad constante y, siendo así, todos los observadores con velocidad constante siguen estando en total pie de igualdad, y por ello un océano de Higgs, no entra en conflicto con la relatividad especial.

Claro que estas observaciones no son ninguna prueba de la existencia de los océanos de Higgs; lo que muestran es que, pese a ciertas similitudes con el éter, los campos de Higgs no están en conflicto con ninguna teoría o experimento.

No obstante, si existe un océano de Campos de Higgs debería tener otras consecuencias que fueran experimentalmente comprobables por estas fechas en que contamos con la valiosa ayuda del LHC.

Si, experimentos de altas energías, nos pueden llevar a confirmar el Campo de Higgs, ¿lo habrán hecho ya realmente?

Como ejemplo fundamental, de la misma forma que los campos electromagnéticos están compuestos de fotones, los campos de Higgs están compuestos de partículas que, de forma nada sorprendente, se han dado en llamar partículas de Higgs. Los cálculos teóricos han demostrado que existe un océano de Higgs que permea el espacio y, debería haber partículas de Higgs entre los restos de colisiones de altísimas energías que ya han tenido lugar en el Gran Colisionador de Hadrones, ese acelerados de átomos de gigantescas proporciones que, de momento ha utilizado la energía que proporcionan 7 TeV y, se propone, por estas fechas, hacer la prueba con 8 TeV.

Claro que, el marco teórico que lleva en vigor unas pocas decenas de años, se vendría abajo, se derrumbaría como un viejo edificio si, finalmente, no se encontrara el océano de Higgs repletos de bosones que proporcionan masa a las otras partículas.

Así que, en bien de la Física en particular y de la Ciencia en General, esperémos que la Noticia que ha saltado en todos los medios del mundo, sea un fiel reflejo de la realidad de esa Naturaleza tan profundamente escondida en los misteriosos “Campos de Higgs” que nos habla del origen de la materia.

emilio silvera

 

Más sobre Partículas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Partículas, espín, familias, materia…

Conforme a lo que aceptamos hoy en día, toda la materia estaría constituida a partir de estados ligados de Quarks y Leptones, es decir de los quarks u “up” y d “down”, electrones e y neutrinos ѵ, y sus antipartículas. De todos estos objetos, pueden existir hasta un total de otras dos familias más en las que los quarks reciben otras denominaciones y los leptones, en vez de electrones podrían ser muones μ y partícula tau τ. Señalamos que estos objetos poseen distintas masas. Sin embargo, todas tienen en común que son partículas de espín ½. Si a estos objetos le añadimos los Bosones de espín 1, que son los responsables de las interacciones entre ellos, resulta que el poseer esa propiedad mecánica llamada espín es una de las características más importantes de los objetos elementales que constituyen la materia y de los vehículos que utilizan estas partículas elementales para su comunicación. Toda la materia que nos rodea se mueve y rota

Espín  electrón

El espín del muón es ½. Cuando el espín de una partícula es semi-entero, se la clasifica como perteneciente al grupo denominado fermiones. La carga eléctrica de un muón es igual que la del electrón, pero su existencia es de sólo 2,2 microsegundos. En cambio el electrón es un elemento estable en la Naturaleza.

Leer más

Conociendo la materia III

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellos. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio.  En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos, procedentes de la Naturaleza; otros, sólo del laboratorio.

Por ejemplo, el hidrógeno presenta tres variedades;

En primer lugar, el corriente, que tiene un solo protón.  En 1.932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía. Y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de “hidrógeno pesado”.

El núcleo de hidrógeno pesado está constituído por un protón y un neutrón.  Como tiene un número másico de 2, el isótopo es hidrógeno 2.  Urey llamó a este átomo “deuterio” (de la voz griega deútoros, “segundo”), y al núcleo “deuterón”.  Una molécula de agua que contenga deuterio se denomina “agua pesada” que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que, la masa del deuterio, es dos veces mayor que la del hidrógeno corriente.  Mientras que éste hierve a 100°C y se congela a 0°C, el agua pesada hierve a 101’42 °C y se congela a 3’79 °C.  El punto de ebullición del deuterio es de -23’7°K, frente a los 20’4°K del hidrógeno corriente.

El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente.  En 1.934 se otorgó a Urey el premio Nóbel de Química por su descubrimiento del deuterio.

Leer más

El Modelo Estándar

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El modelo estándar: Historia resumida

Autores

Fechas

Partículas

Fuerza

Nota

Comentario

Tales (milesio)

600 a.C.

Agua

No se menciona

8

Fue el primero en explicar el mundo mediante causas naturales. Lógica en lugar de mito.

Empédocles (agrigento)

460 a.C.

Tierra, agua, aire y fuego

Amor y discordia

9

Aportó la idea de que hay múltiples partículas que se combinan para formar toda la materia.

Demócrito (Abdera)

430 a.C.

El átomo indivisible e invisible, o a-tomo

Movimiento violento constante

10

Su modelo requería demasiadas partículas, cada una con una forma diferente, pero su idea básica de que hay un átomo que no puede ser partido sigue siendo la definición básica de partícula elemental.

Isaac Newton (inglés)

1.687

Átomos duros con masa, impenetrables

Gravedad (cosmos); fuerzas desconocidas (átomos)

7

Le gustaban los átomos pero no hizo que su causa avanzase. Su gravedad fue un dolor de cabeza para los peces gordos en la década de 1.990

Roger J. Boscovich (dálmata)

1.760

“Puntos de fuerza” indivisibles y sin forma o dimensión

Fuerzas atractivas y repulsivas que actúan entre puntos

9

Su teoría era incompleta, limitada, pero la idea de que hay partículas de “radio nulo”, puntuales, que crean “campos de fuerza”, es esencial en la física moderna.

Michael Faraday (inglés)

1.820

Cargas eléctricas

Electromagnetismo

8’5

Aplicó el atomismo a la electricidad al conjeturar que las corrientes estaban formadas por “corpúsculos de electricidad”, los electrones.

Dimitri Mendeleev (siberiano)

1.870

Más de 50 átomos dispuestos en la tabla periódica de los elementos

No hace cábalas sobre las fuerzas

8’5

Tomó la idea de Dalton y organizó todos los elementos químicos conocidos. En su tabla periódica apuntaba con claridad una estructura más profunda y significativa.

Ernest Rutherford (neozelandés)

1.911

Dos partículas; núcleo y electrón

La fuerza nuclear fuerte más el electromagnetismo. La gravedad

9’5

Al descubrir el núcleo, reveló una nueva simplicidad dentro de todos los átomos de Dalton. Rutherford fue el experimentador por excelencia.

Bjorken, Fermi, Friedman, Gell-Mann, Glasgow, Kennedy, Lederman, Peri, Richter, Schwartz, Steinberger, Taylor, Ting, más un reparto de miles.

1.992

Seis quarks y seis leptones, más sus antipartículas. Hay tres colores de quarks

El electromagnetismo, la interacción fuerte y débil: doce partículas que llevan las fuerzas más la gravedad.

?

Demócrito de Abdera ríe.

emilio silvera