jueves, 01 de enero del 2026 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Cosas de Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (15)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Einstein escribió cinco artículos memorables que fueron publicados en 1.905. El cuarto artículo de aquel año se titulaba Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig y mostraba una deducción de la ecuación de la relatividad que relaciona masa y energía. En este artículo se exponía que “la variación de masa de un objeto que emite una energía”.

http://3.bp.blogspot.com/-6Kvk1mYiO2E/TfySAwmEPdI/AAAAAAAABnM/XYrAwMpI5_k/s1600/tiposderadiactividad.jpg

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente, y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen en entredicho que el concepto de masa sea un atributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que empleam cuando no saben hacerlo bien. Y, así seguimos tras la incansable búsqueda de la verdadera “naturaleza” de la Naturaleza.

Leer más

Inicio de la Teoría de cuerdas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Geometría -> teoría de campos -> teoría clásica -> teoría cuántica

La Relatividad General tuvo una evolución normal y lógica, postula el principio de equivalencia y luego formuló este principio físico en matemáticas de una teoría de campos de Faraday y el Tensor Métrico de Riemann. Después llegaron las soluciones clásicas como los Agujeros Negros y el Big Bang.

Contrariamente, la teoría de supercuerdas ha estado evolucionando hacia atrás desde su descubrimiento accidental en 1.968. Esta es la razón de que nos parezca extraña y poco familiar, estamos aún buscando un principio físico subyacente, la contrapartida del principio de equivalencia de Einstein.

La teoría nació casi por casualidad en 1.968 cuando dos jóvenes físicos teóricos, Gabriel Veneziano y Mahiko Suzuki, estaban hojeando independientemente libros de matemáticas, figurense ustedes que, estaban buscando funciones matemáticas que describieran las interacciones de partículas fuertemente interactivas.

Mientras estudiaban en el CERN, el Centro Europeo de Física Teórica en Ginebra, Suiza, tropezaron independientemente con la función beta de Euler, una función matemática desarrollada en el S. XIX por el matemático Leonhard Euler. Se quedaron sorprendidos al descubrir que la función beta de Euler ajustaba casi todas las propiedades requeridas para describir interacciones fuertes de partículas elementales.

Vista aérea del CERN

               Vista aérea del CERN

Según he leido, durante un almuerzo en el Lawrence Berkeley Laboratory en California, con una espectacular vista del Sol brillando sobre el puerto de San Francisco, Suzuki le explicó a Michio Kaku, mientras almorzaban la excitación de descubrir, prácticamente por casualidad, un resultado parcialmente importante. No se suponía que la física se pudiera hacer de ese modo casual.

Leer más

Un buen Físico del que se habla poco

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Paul Ehrenfest
Born January 18, 1880
Vienna, Austria

 

Paul Ehrenfest (18 enero 1880 a 25 septiembre 1933) fue un físico austriaco y holandés, quien hizo importantes contribuciones al campo de la mecánica estadística y su relación con la mecánica cuántica, incluyendo la teoría de la transición de fase y el teorema de Ehrenfest. Trabajó y ayudó a los físicos más importantes. Einsten decía de él:

“Ehrenfest no era solamente el mejor maestro en neustro profesión que yo haya conocido; también estaba apasionadamente preocupado por el desarrollo y el destino de los hombres, especialmente de sus estudiantes. Entender a los demás, ganar su amistad y cinfianza, ayudar a cualquiera enzarzado en luchas externas o interiores, animar el talento joven; todo esto era su elemento real, casi más que su inmersión en problemas científicos.”

 

 

Albert Einstein and Hendrik Antoon Lorentz, photographed by Ehrenfest in front of his home in Leiden in 1921.

Paul Erhrenfest era un santo Tomás dubitativo, pero era de sí mismo de quien dudaba. era un físico austríaco de mucho talento que trabajo con muchos de los máximos nombres de la ciencia a proncipios del siglo XX: Einstein, Heisenberg, Pauli, Dirac, todos se beneficiaron de su ayuda. Por encima de todo era un crítico incisivo, capaz de señalar los puntos débiles de cualquier argumento: la conciencia de la física. También era famoso por suis comentarios, como: “¿Por qué tengo tan buenos estudiantes? Porque soy muy estúpido”. O, “¿Usted dice eso por principio o sólo porque resulta que es cierto?”.

Image of Casimir, et al

Left to right: Hendrik Casimir (kneeling), Bart Bok, George Uhlenbeck, Samuel Goudsmit, Paul Ehrenfest, Mrs. Jaantje Logher Goudsmit, Enrico Fermi and Mrs. Else Uhlenbeck (sitting in front of Casimir). Credit: AIP Emilio Segrè Visual Archives.

Ehrenfest hizo importantesd contribuciones a la física en varias áreas y los estudiantes de licenciatura que estuan mecánica cuántica llegan invariablemente al “teorema de Ehrenfest”. Pero los niveles exigidos por Ehrenfest eran tan elevados que ni el podía estar a la altura. A pesar de la alta estima en que otros lo tenían y que le llevó a ser invitado a ocupar la cátedra de física de Leiden en 1912, cuando sólo tenía 32 años, Ehrenfest sufría de baja autoestima. Llegó a estar frustrado por su incapacidad de seguir el rápido ritmo de los desarrollos en la física cuántica y su Naturaleza cada vez más metafísica,

Einstein y Ehrenfest creían en una realidad objetiva inteligible para el hombre y en las leyes causales, y se opusieron de forma enérgica a la mecánica cuántica; Born y Bohr fueron los creadores de las concepciones más importantes contrarias a la causalidad y a la inteligibilidad, e incluso limitaron de un modo considerable la relevancia del concepto de realidad física. El caso de Schrodinger era más complicado, aunque rechazaba también la síntesis cuántica elaborada por Bohr. Todos ellos se opusieron al nazismo, aunque tenían diferentes opiniones políticas.

Ehrenfest dirigía seminarios los martes en la Universidad de Leyden en donde intervenían los grandes científicos de la época. Allí nació y se consolidó la hipótesis sobre el spin del electrón, y Ehrenfest fue su impulsor. También intervino como iniciador y organizador de la famosa polémica entre Bohr y Einstein.

 

 

Paul Ehrenfest dejó tras de sí ideas físicas que sobrevivieron la memoria de sus discípulos y amigos. Tendió un puente sobre el abismo que en la mente de sus contemporáneos separaba los fenómenos cuánticos de los clásicos por medio del conocido teorema de Ehrenfest, propuesto en un artículo en 1927. En él radica la esencia del principio de correspondencia que en 1918 formuló Niels Bohr.

Hay cuetiones y situaciones en la vida de una persona que, se tienen que vivir para poder comprender hasta que punto se puede uno ver afectado por los hechos y, si además, resulta que no eres de un carácter fuerte, las cosas se agravan hasta llegar a lo inevitable. El carácter apocado de este personaje se ahondó, exacerbado por los graves problemas mentales de su hijo Wassik, con síndrome de Down. Ludwig Boltzmann, que fue supervisor de Ehrenfest, se había suicidado en 1906 desesperado por la falta de reconocimiento de su trabajo, Paul Ehrenfest hizo lo mismo el 25 de Septeimbre de 1933, pegándose un tiro después de haber disparado a su hojo en la sala de espera del médico.

Ehrenfest demostró que en mundos con más de tres dimensiones no podían existir átomos estables en absoluto. O bien los electrones caían al núcleo en una trayectoria espiral o bien se dispersaban. Tambioén advirtió que las ondas tridimensiopnales tienen propiedades muy especiales. Sólo en tres dimensiones viajan las ondas en el espacio libre sin distorsión o reververación. El el mundo de dimensiones del espacio es par (dos, cuatro, seis…), entonces las diferentes partes de una perturbación ondulataria viajan a velocidades diferentes.

Como resultado, si la emisión ondulatoria es continua habrá reververación en el receptor: ondas que salen en distnates diferentes llegarán al mismo tiempo. Si el número de dimensiones del espacio es un número impar, todas las perturbaciones viajan a la misma velocidad, pero si hay tres dimensiones la onda se distorsionará cada vez más. Las omndas tridimensionales son especiales.

El imaginativo estudio de Ehrenfest demostraba que las dimensiones del mundo tiene un efecto de largo alcance sobre cómo son las cosas. Los mundos tridimensionales son muy inusuales. Imponen propiedades espciales a las leyes y constantes de la Naturaleza.

Pese a todo, Ehrenfest no fue más lejos en 1917 y no extrajo conclusiones filosóficas especiales de sus resultados. No fue el primero en advertir que había algo especial en las órbitas planetarias en mundos tridimensilaneles.

William Paley había explicado ya en 1802 las características únicas en apoyo de la Lye inversa del cuadrado de la gravedad, y el examen que hizo Vallace en 1905 en El lugar del hombre en el Universo habíam reiterado estas características especiales. Pero estos autores habñian escrito anteas de que hubiera surgido la teoría cuántica de la materia y Ehrenfest podía hacer un razpnamiento mucho más completo y más profundo sobre la singularidad física de los mundos tridimensionales.

Como profesor de la Universidad de Leiden en Holanda, Ehrenfest aplica un poco el pragmatismo estadounidense que asimiló en sus viajes a América, y crea un enlace entre los académicos y los ingenieros en pro del desarrollo industrial del país. El laboratorio experimental de la empresa Philips, por ejemplo, fue alimentado por alumnos de Leiden.

Asimismo, gradúo a varios físicos que resultaron valiosos no sólo en el campo de la física. Por ejemplo, Jan Tinbergen, alumno de Ehrenfest, aplicó conceptos de la termodinámica a la economía y se hizo acreedor al primer Premio Nobel de Economía en 1969.

Resumen

En los orígenes de la física cuántica, a principios del siglo XX, la asimilación y maduración de las nuevas teorías requirió del establecimiento de vínculos con sus antecesoras, antes de poder desprenderse de ellas y formar una nueva estructura totalizadora de comprensión en esta disciplina. En este artículo analizamos el papel que jugó Paul Ehrenfest en una parte de ese proceso. En la primera parte destacamos el paralelismo de sus investigaciones con las de Niels Bohr, mostrando cómo el trabajo conjunto de ambos nos permite argumentar en favor de la continuidad conceptual en el desarrollo de teorías científicas. Sin embargo, también mostramos que dicha continuidad tiene un límite. En nuestro caso de estudio hacemos uso del análisis que Paul Ehrenfest y Albert Einstein hacen del experimento de Stern–Gerlach para mostrar que, en una revolución del conocimiento, al final surgen en verdad nuevos paradigmas con los que finalmente las nuevas teorías se desprenden de las anteriores.

Palabras clave: Ehrenfest, Bohr, mecánica cuántica, principio de correspondencia, principio adiabático.

Hay personajes que pudieron llegar a la más  alta cumbre cientñifuica y, sin embargo, por su caracter, las circuntancias de sus vidas y otros elementos que no pudieron soslayar, le dejaron casi…en el anonimato y, algunos, como es el caso de nuestro personaje de hoy, dejó al menos, una muestra de su talento.

emilio silvera

¡Los mitos de la Física! ¿serán realidad algún día?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (23)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Mirando, como es mi costumbre, los comentarios a los trabajos expuestos para poder contestarlos, me encuentro en el que denominé “De lo pequeño a lo grande”, una entrada de Ton Wood que, por “falta de tiempo” (según sus propias palabras), nos remite con un enlace a una página de Ciencia Kanija en la que, se comentaba sobre un Artículo publicado por Matt Crenson el 23 de abril de 2011 en Science News.

Gráficos textura. Equipo prestados fondo. 3D fractal. La velocidad de la luz verde borroso. Foto de archivo - 3851179


Lo cierto es que, sobre la Teoría de Supergravedad, Supersimetría, de Cuerdas y Supercuerdas, la Cuerda Heterótica y la Teoría M, sin olvidar aquella pionera Teoría de Kaluza-Kleim, se vienen desarrollando un sin fin de “teorías” que podrían ser excesivas si tenemos en cuenta la verdadera validez de algunas. Toda esta proliferación de “teorías” nos puede llevar a una especie de crisis de ideas que nos llevarían a una física degradada, sin sentido, que más que una Teoría del Todo se podría denominar Teoría del Vacío, de la Nada, ya que nada podríamos esperar de ella. Así que, lo recomendable es, dar aquellos pasos que estén fiermemente asentados en realidades o aquellos otros que, sin estarlo (aun), puedan tener auténticos visos de que son (al menos) la sombra de esa realidad soñada y que son merecedores de ser perseguidos. De otra manera, perderemos el rumbo.

El artículo que publica Ciencia Kanija,  comenzaba con una pregunta: ¿Existe una teoría del todo?

El autor reconoce que la Física, en realidad son dos ciencias divididas entre la Cúantica y la Gravedad. Sigue desarrollando su tesis para hablarnos de que, ambas ramas de la física han sido objeto de múltiples intentos que han llevado a cabo una pléyade de físicos de todo el mundo para tratar de unir, ambas versiones, Gravedad y Cuántica, en una sólo Teoría del Todo.

A partir de ahí, el autor, desarrolla una serie de hipótesis y recordatorios de autores que han ido postulando esta o aquella teoría, y, se aferra al LHC para que nos lleve en volandas hacia ese futuro solado en el que, una única y gran teoría (la Teoría del Todo) nos dará la respuesta a todo aquello que quereamos preguntarle.

Nuestro contertulio Tom Wood (), al respecto de todo esto, hizo un comentario que, por su destacado valor al realizarlo y el profundo pensamiento que lleva implícito, me parece digno de ser reproducido aquí, para que, todos nosotros – los amigos de este lugar-, podamos ver que no es oro todo lo que reluce y que, algunas veces hay que ceñirse a la realidad y dejar a un lado los sueños que, por muy bonitos que puedan ser, podrían confundir al lector no versado que tendría una imagen equivocada de esa realidad que no siempre sabemos transmitir.

[DSC02200.JPG]

“Tom Wooddice:

04/01/2012 a las 4:14 pm

“cada uno de menos de una milmillonésima de milmillonésima de milmillonésima de centímetro de largo”

Esto asusta y confunde al lector recién iniciado, para divulgación es mejor usar la notación científica, la dada por los científicos en sus publicaciones. Que no es tan confusa como puede creerse; como diez elevado a la menos 33cm. (10E-33cm) (1/1000…hasta llegar a 33 ceros). Incluso si los economistas la usaran para cuantificar el PIB de los países; los periodistas, (que escriben para lectores de todos los niveles) no confundirían al lector con el billón o trillón de dolares hispano o norteamericano. Por eso llevan décadas aclarando lo mismo; sin resultados, un trabajo que se ahorrarían o seria fácil de eliminar con solo usar la notación científica.

Por lo demás el articulo es mas de lo mismo, puro marketing. Están asustados porque los mitos y los embrujos se están derribando. Además, con la crisis los recursos ya no les fluyen como antes a los cuerditas anglosajones.”

Alguien, en respuesta a sus palabras le responde…

“el fleadice:

Puedes explicar que mitos y embrujos Tom Woods?”

Tom Wooddice:

Rapidito: 10E-33cm, es una longitud inalcanzable para la física, por unos cuantos siglos. Toma una regla escolar, mira la distancia entre dos milímetros (1mm), he imagina que comienzas a dividirla en 10 partes, después en 100, después en 1 000 y así hasta llegar a dividir ese 1mm por 100 000 000 000 000 000 000 000 000 000 000. Por ahí tendrías una “cuerda”, después agrégale energía, modos de vibración, y cualquier cosa con lógica física que se te ocurra. Como medir uno solo de esos parámetros, ningún ser humano sobre la faz de la tierra puede saberlo.

    Como nos dice Tom, hay parámetros no medibles por el hombre que, no dispone de los medios que, de momoento al menos, son inalcanzables y, las cuerdas, si están ahí, son uno de esos inalcanzables objetos que tantas respuestas nos podrían ofrecer.

http://es.wikipedia.org/wiki/Teor%C3%ADa_de_cuerdas

Los neutrinos que los “tocamos” todos los días, posiblemente acabemos este siglo y no los habremos caracterizados físicamente, no sabremos que son. Ni siquiera se sabe como medir su masa en reposo, lo que en una buena física implica, que tiene la misma certidumbre decir que son partículas, electromagnéticos o alguna nueva forma de materia.

Los electrones (descubiertos en 1897, unos 10E+130 en el universo observable), los leptones, sabemos que tienen adentro, NO. Algo que manipulamos diariamente, todos los equipos que nos rodean trabajan con corriente eléctrica, corrientes de electrones. ¡Pero no que no sabemos que tienen adentro!, sino que no hay sobre la faz de la tierra un humano que se imagine o tenga un esquema burdo de lo que tienen adentro un leptón (mi campo de estudio). Pero el radio clásico del electrón es “conocido” (2,8x10E-17cm) y su longitud de onda Compton (2,4x10E-14cm, otra posible medida de su radio) también. Pero el asunto es más complejo cuando lo vemos como ondas o como partículas, pero dejémoslo ahí, para no entrar en contiendas o discusiones estériles. http://es.wikipedia.org/wiki/%C3%93rdenes_de_magnitud_(longitud)

Los protones, los quarks, que los “tocamos” todos los días, sabemos que son, podemos medir sus propiedades. Supongamos que ellos están confinados por debajo de una esfera de 10E-17cm de radio, pero no podemos medir directamente lo poco que conocemos de ellos, casi todo son simulaciones físico-matemáticas hechas en superordenadores. Así, que las cosas no son tan fáciles para los físicos como pudiera decirse.

Las simulaciones por ordenador son no pocas veces el único camino que encuentran los físicos para poder acercarse a lo que podría ser “esa” realidad buscada de objetos infinitesimales que, no siempre podemos ver y, la solcuión, es simular con modelos que, más o menos certeros nos llevarán (con suerte)m a esa realidad buscada.

http://francisthemulenews.wordpress.com/2010/07/08/la-medida-mas-precisa-del-radio-de-un-proton-en-un-hidrogeno-muonico-arroja-un-valor-un-5-mas-pequeno-de-lo-obtenido-con-hidrogeno-electronico/

Entonces cuando comienzas ha hacer mediciones de algo a través de mediciones indirectas, que a la vez son mediciones de otras indirecta, entonces la certidumbre de que lo que mides es cierto; es casi cero. Entonces tienes que suponer teorías físico-matemáticas, que al menos predigan la existencia de algo mas medible y ese algo mas medible (supongamos una nueva partícula) se encuentre; eso te da cierta certidumbre de que lo que supones podría ser cierto y si esto se repite, aumentas la certidumbre de tu suposición (teoría). El asunto es que en la medida que mides cosas más chiquitas, puedes medir menos parámetros físicos de lo que mides. Y en los niveles que estamos, ya casi nada de lo que se mide, tiene ni siquiera un parámetro medible directamente, así que nadie puede decir que va a pasar cuando sigamos profundizando. Ni siquiera puede decir nadie, si los métodos actuales servirán para seguir profundizando, porque al nivel que se esta, el instrumento de medición ya es un ruido insoportables en las mediciones. De ahí los análisis estadísticos de “millones de millones de millones…” de colisiones (entiéndase, búsqueda del higgs) para dentro de esto encontrar, por discriminación algunas buenas señales. Actualmente en las mediciones, se infiere y se aproxima mucho, esto hace que incluso el valor experimental de un parámetro del micromundo o el macromundo cósmico, calculado por un método, no sea igual al calculado por otro. Por lo que con tantas aproximaciones de mediciones indirectas, que ya han sido aproximadas de otras indirectas aproximadas, no podamos saber cual de los dos es el valor más correcto, si los valores obtenidos están muy próximos, algo que antes no era un problema discernir. Hay tantos equipos ultrasensibles implicados en las mediciones, en lo que se quiere medir, que esos mismos equipos son verdaderas hazañas científicas, por lo que cada uno de ellos necesita un cuerpo de especialistas para mantenerlos a punto. Incluso al nivel actual, importa hasta el método de calculo que usa las cadenas de computadoras que monitorean y calculan todo esto, por lo que ya a este nivel puedes haber puesto, 5,4568603 por 5,4578603 (5,45”6”8603 por 5,45”7”8603) en un programa de miles de códigos y eso estando el valor mas probable de la medición.

http://www.eurimaco.es/images/2012/07/04/aparece-bosn_250.jpg

                              Buscar en Higgs en marañas como esta de arriba, no resultará nada fácil

Lo que pasa es que los físicos tenemos simpatías por ciertas corrientes, debido a como te formaste o te formaron, debido a lo que investigas o te gusta investigar y entonces sobredimensionamos nuestras perspectivas, además de ignorancia y oportunismo. Lo malo no es que se divulguen estas cosas, lo malo es que se habla y se habla, y no se aclaran los límites físicos de las teorías o ideas físicas. Se divulga y se divulgan ideas, como si toda la sociedad fuera especialista, y la física actual no es un jueguito al alcance de la mano del PIB de cualquier país. Incluso países como España, entre los más desarrollados del mundo, no pueden tener ni un mínimo programa espacial autónomo. Son cosas muy serias, muy complejas, cosas que están más allá de los límites humanos, y es maravilloso que los humanos estemos en esos límites, pero hay que divulgar con responsabilidad. Ya llame la atención sobre eso en el blog de Emilio y de Francis y veo como ellos, se toman todas las licencias científicas que requiere la divulgación, pero ponen cuidado en aclarar los limites y la veracidad de la existencia de lo que tratan, no lo ven como un tiempo perdido, sino como algo muy importante para el lector. Por eso un divulgador científico, no puede ser un periodista, no puede ser un científico, la divulgación científica; es el patito feo a lo largo de la historia, del periodismo. Un periodista puede decirte los errores gramaticales, o sintácticos…, incluso puede lograr buenas entrevistas científicas (no muchas), pero jugar con las ciencias, con las físicas-matemáticas, con los numerología experimental, desentrañar misterios que parecen de Dios y que medianamente se entiendan, eso necesita un talento divino, que Dios le negó hasta los científicos mas iluminados. Si no se tiene esto en cuenta, si no se tiene en cuenta los límites, llega el momento que estos se convierten en un error, por lo que los objetivos que se perseguían con la divulgación, acaban perdiéndose en la confusión que adquiere el lector. Ya te encuentras personas discutiendo sobre cosas que no existen, que no se han encontrado, que no se han demostrado, dando fe de ellas como si fueran el pan nuestro de cada día. Pueden llegar hasta matar por lo que defienden, no hay quien los saque de su error, ¿de donde viene la confusión? Son personas inteligentes, de fe científica, personas que creen en la ciencia porque les gusta, porque la ven a su alrededor, o han sentido sus beneficios en un hospital, y están en el deber, por la fuerza de su propia realidad, de creer y defender lo que leen sobre la ciencia. De tener fe en todos los científicos con titulo, pero un científico no necesariamente puede explicarle la ciencia a cualquiera, no eso es un disparate muy común. Yo ni me arriesgo, se mis limites y que hay muchos mejores. Pero lo que habla un especialista, puede ser un poco para especialista. No por ser premio Nobel, se sabe explicar ciencia. Muchos de mis profesores mas premiados, no fueron de los que mas aprendí o entendíamos; recuerdo los comentarios y había consenso en esto. Recuerdo uno muy talentoso (muy tímido), fuera de serie, de análisis funcional, que se pegaba a la pizarra, habla tan bajito con el (un susurro), con la pizarra y sus ecuaciones, además de no moverse (una momia, increíble) de ese lugar, ni mirarnos durante toda la clase. Al punto de que nadie ni se movía para poder escucharlo, podías sentir hasta el aleteo de una mosca del silencio que había entre los estudiantes. ¿Crees que unas explicaciones divulgativas de un genio así no es codiciada por todo periodista?; pero no funcionaria, estoy seguro. Al final la polea informativa iría llena de cosas confusas.

¿Será el LHC el que nos traiga esas partículas exóticas, el que nos deje vislumbrar la sombra de las cuerdas, el que nos lleve hasta la puerta de esas dimensiones compactadas en el “universo” infinitesimal, el que pueda tener la llave para abrir puertas hasta ahora cerradas que no nos dejan pasar hacia el futuro de la Física?

NO existe el Higgs hasta que no se encuentre, no existen las superarticulas por lo mismo, no existe la energía oscura o la materia oscura, no hay 100% de certeza de la existencia de agujeros negros, no se sabe si el universo es finito o infinito en espacio y tiempo; por lo que no sabemos si existió un Big Bang, no sabemos que son las cuerdas, ni siquiera que son las matemáticas de cuerda físicamente…, no podemos ir al pasado a comprarnos tickets de lotería. Ahora, la ciencia, y su cortita historia, esta hecha de sueños y aspiraciones, de un conjunto de ideas y creencias; pero estas ideas tienen que buscar los “vericuetos” de la materialización, la realidad, y después pasar a la ciencia o la ingeniería aplicada… Incluso hay cosas, que los contemporáneos de muchos científicos creían imposibles de realizarse o encontrarse, y después se encontró la forma; pero esto no nos puede llevar a limites fanáticos, hay que saber moverse sobre esa cuerda floja, sin caer al abismo, ese es el arte del físico, emparedarse correctamente entre la matemática, la física, la mente, la sicología de su lógica humana y la naturaleza; una relación de compromiso casi imposible, pero fascinante. Algo difícil, para el que además, quiere divulgar la física; porque puede desmotivar al que no es muy dado a la ciencia, pero la realidad siempre es más fuerte que uno y hay que tenerla en cuenta también, para no caer en babeos. Lo mejor es ir iniciándose poco a poco, comparando artículos, comprender que la naturaleza no le regala muchas cosas a los hombres de ciencia. Ver que para llegar a las rosas, los científicos se pinchan con sus espinas cortantemente, muchos científicos, los físicos sobre todo, les niegan esto a los lectores porque los toman como intelectualmente inferiores, la clásica soberbia académica. Por ellos saben, que también hubo que desterrar muchas fantasías de la cabeza de los científicos, para crear las comodidades que hoy nos rodean y que no existen en la naturaleza.

tomwoodgonzalez@hotmail.com
Miami.”

De Tom Wood sabemos, según él mismo nos dice:

Fisico.
Ubicación Florida, Miami, Estados Unidos
Introducción Nací el 21 de junio de 1967. El día de más luz del año; sin embargo, se fue la luz durante el parto y como usaban oxigeno, no podían encender los faroles chinos de emergencia, solo la luz de un camión a través de una ventana lo permitió. Por la hora en que nací; unas veces soy Gemini(2) y otras Cáncer(1). Mi vida ha sido tan intensa, que una hora de mi vida, equivale a una semana de cualquier otra persona.

¡Ahí queda eso!  Si alguien tiene algo que añadir…

El Universo se expande, la Mente también

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://universodoppler.files.wordpress.com/2010/10/m101_cfht.jpg

Ya me gustaría contemplar, como contemplo la de arriba, a nuestra Galaxia, La Vía Láctea

Sólo en nuestra Galaxia existen más de 100.000 millones de estrellas. El Universo está poblado por cientos de miles de millones de Galaxias cuyo promedio es de 100 mil millones de estrellas cada una. En cada galaxia existen miles de miles de millones de soles con sus planetas, lo que supone una cantidad enorme de mundos. ¿Podemos pensar que de entre cientos y cientos de miles de millones de planetas, solo la Tierra alberga la vida inteligente? Parece algo pretencioso, ¿no te parece?

http://1.bp.blogspot.com/_1V5_8W84w7o/S-xnS05br4I/AAAAAAAAA60/lAjcp_jnBIY/s1600/biodiversidad3.jpg

Si nos asomamos al pasado y al presente, veremos que múltiples formas de vida han poblado el planeta. Ahora, solo el 1 por 100 de todas las especies que vivieron en nuestro planeta existen y, son millones las que disfrutan de este planeta con nosotros ¿cuántos miles de millones habrán desaparecido? El registro fósil no puede facilitarnos la respuesta a esa pregunta.

El Universo está lleno de vida que se aparece en mil formas diferentes, unas inteligentes y otras vegetativas, de distintas morfologías e incluso distintas en sus componentes básicos que, a diferencia de la nuestra, basada en el carbono, aquellas podrán tener u origen vital en el silicio o vaya usted a saber de qué componentes podrían estar formadas y si han dado origen a civilizaciones inteligentes que ni podemos imaginar.

No tenemos que asombrarnos de nada, nosotros mismos, de seguro asombraríamos a una raza inteligente que nos pudiera observar y viera que la patente n° 6.754.472, ha sido concedida a Microsoft y ampara los mecanismos o procedimientos para “transmitir datos y energía utilizando el cuerpo humano”. Se trata, según aparece, de aprovechar la conductividad de la piel para conectar una serie de dispositivos electrónicos por todo el cuerpo.

EL MICROCHIP EN EL CUERPO HUMANO Por más prácticas que sean las tarjetas comunes al microchip pueden ser siempre robadas, perdidas o dañadas. Ahora los grandes financieros presentaron la última solución: ligar físicamente a la persona con su carta, de modo que no haya posibilidad alguna de perderla. El microchip no estará más inserto en una tarjeta plástica, sino implantado directamente en el cuerpo humano, bajo la piel, como se hace actualmente con los animales con fines identificatorios. Se puede así saber a cada momento dónde se encuentra el animal, gracias a los satélites y a las antenas celulares. Pero, si esto sigue así, ¿dónde queda nuestra supuesta libertad?

http://fviso.blogspot.es/img/LLAMA.GIF

Además, muchos tratan de apagar esta llama de la libertad y del libre pensamiento. Hay que dejar transcurrir, dentro de una dinámica lógica del pensamiento que, las ideas fluyan y los proyectos se plasmen.

[matrix.gif]

Con certeza no sabemos hasta dónde podremos llegar. Sin embargo, por el camino emprendido…da un poco de miedo pensarlo.

Me viene a la mente una escena futurista en la cual, una raza avanzada, conecta un dispositivo metálico en la sien de un humano y, en una pantalla, aparecen las imágenes de sus recuerdos. Sí, pueden parecer exageraciones, pero a mí particularmente, me parecen escenas cotidianas de cualquier día del siglo XXIII.

Leer más