Ago
15
La ilusion de simplificar la naturaleza.
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
Nuestras teorías nos llevan a especular sobre lo que la Naturaleza es, y, en ellas, tratamos de exponer como funciona y tratamos de desvelar los secretos profundamente escondidos que nos darían las respuestas que incansables perseguimos.
El gráfico representa un modelo de manguera de un espacio-tiempo de dimensiones más altas de tipo Kaluza-Kleim donde la longitud, o mejor, la dimensión a lo largo de la longitud de la manguera representa el 4-espacio-tiempo normal, y la dimensión alrededor de la manguera representa la dimensión extra “pequeñas” (quizá escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.

Nuestras Mentes están conformadas de forma tridimensional, nuestro mundo es de tres dimensiones espaciales, la cuarta, el Tiempo, no incide en la posible alteración evolucitva que podríamos acoger para experimentar el poder vislumbrar más altas dimensiones pero, ¿podrán alterarse las percepciones?
Para ver cómo dimensiones más altas simplifican las leyes de la Naturaleza, recordemos que un objeto tiene longitud, anchura y altura. Puesto que tenemos libertad para girar un objeto 90º, podemos transformar su longitud en anchura y su anchura en altura. Mediante una simple rotación, podemos intercambiar cualquiera de las tres dimensiones espaciales.
Ahora bien, si el tiempo es la cuarta dimensión, entonces es posible hacer “rotaciones” que convierten el espacio en tiempo y el tiempo en espacio. Estas rotaciones tetradimensionales son precisamente las distorsiones del espacio y del tiempo exigidas por la relatividad especial. En otras palabras, espacio y tiempo se mezclan de una forma esencial, gobernada por la relatividad. El significado del tiempo como la cuarta dimensión es que pueden hacerse relaciones entre el tiempo y el espacio de una forma matemáticamente precisa. A partir de entonces, deben ser tratados como dos aspectos de la misma magnitud: el espacio-tiempo. Así han quedado unificadas las leyes de la Naturaleza al pasar de tres a cuatro dimensiones.

La discusión de la unificación de las leyes de la Naturaleza fue más bien abstracta, y lo habría seguido siendo si Einstein no hubiese dado el siguiente paso decisivo. Él comprendió que si el espacio y el tiempo pueden unificarse en una sola entidad, llamada espaciotiempo, entonces quizá la materia y la energía pueden unirse también en una relación dialéctica. Si las reglas pueden contraerse y los relojes pueden frenarse, razonó, entonces cualquier cosa que midamos con regla y relojes también debe cambiar.
Sin embargo, casi todo en el laboratorio de un físico se mide con regla y relojes. Esto significa que los físicos tendrán que recalibrar todas las magnitudes del laboratorio que una vez dieron por hecho que eran constantes.

En concreto, la energía es una cantidad que depende de cómo midamos las distancias y los intervalos de tiempo. Un automóvil de prueba que choca a gran velocidad contra una pared de ladrillos tiene obviamente energía. No obstante, si el veloz automóvil se aproxima a la velocidad de la luz, sus propiedades se distorsionan. Se contrae como un acordeón y los relojes en su interior se frenan.
Lo que es más importante, Einstein descubrió que la masa del automóvil también aumenta cuando reacelera. Pero ¿de dónde procede este exceso de masa? Y él concluyó que procedía de la energía.
Esto tuvo consecuencias perturbadoras. Dos de los grandes descubrimientos de la física del siglo XIX fueron la conversación de la masa y la conservación de la energía; es decir, la masa total y la energía total de un sistema cerrado, tomadas por separado, no cambian. Por ejemplo, si el coche veloz choca contra el muro de ladrillos, la energía del automóvil no desaparece, sino que se convierte en energía sonora del choque, energía cinética de los fragmentos de ladrillo que vuelan por los aires, energía calorífica, y así sucesivamente. La energía total (y la masa total) antes y después del choque es la misma.

Sin embargo, Einstein decía ahora que la energía del automóvil podía convertirse en masa (un nuevo principio de conservación que decía que la suma total de la masa y la energía debe siempre permanecer constante. La materia no desaparece repentinamente, ni la energía brota de la nada. En este sentido, la materia desaparece sólo para liberar enormes cantidades de energía o viceversa.
Cuando Einstein tenía 26 años, calculó exactamente cómo debía cambiar la energía si el principio de la relatividad era correcto, y descubrió la relación E=mc2. Puesto que la velocidad de la luz al cuadrado (C2) es un número astronómicamente grande, una pequeña cantidad de materia puede liberar una enorme cantidad de energía. Dentro de las partículas más pequeñas de materia hay un almacén de energía, más de un millón de veces la energía liberada en una explosión química. La materia, en cierto sentido, puede verse como un depósito casi inagotable de energía; es decir, la materia es en realidad, energía condensada.
Einstein supo ver que las dimensiones más altas tienen un propósito: unificar los principios de la Naturaleza. Al añadir dimensiones más altas podía unir conceptos físicos que, en un mundo tridimensional, no tienen relación, tales como la materia y la energía o el espacio y el tiempo que, gracias a la cuarta dimensión de la relatividad especial, quedaron unificados.

Y, a todo esto, no podemos dejar de asombrarnos de nuestra presencia aquí, de todo lo que hemos sido capaces de entender en la configuración del mundo, y, como decía Einstein: “lo incomprensible del Universo es, que lo podamos comprender”.
Desde entonces, estos conceptos, los tenemos que clasificar, no por separado, sino siempre juntos como dos aspectos de un mismo ente materia-energía por una parte y espacio-tiempo por la otra. El impacto directo del trabajo de Einstein sobre la cuarta dimensión fue, por supuesto, la bomba de hidrógeno, que se ha mostrado la más poderosa creación de la ciencia del siglo XX. Claro que, en contra del criterio de Einstein que era un pacifista y nunca quiso participar en proyectos de ésta índole.

¿Existirán en realidad las dimensiones más altas?
Einstein completó su teoría de la relatividad con una segunda etapa que, en parte, estaba inspirada por lo que se conoce como principio de Mach, la guía que utilizó Einstein para crear esta parte final y completar su teoría de relatividad general.
Einstein enunció que, la presencia de materia-energía determina la curvatura del espacio-tiempo a su alrededor. Esta es la esencia del principio físico que Riemann no logró descubrir: la curvatura del espacio está directamente relacionada con la cantidad de energía y materia contenida en dicho espacio.

La masa del planeta curva el espacio-tiempo a su alrededor y configura la geometría local de esa región que está bajo el dominio de la Gravedad.
Albert Einstein realizó una verdadera hazaña intelectual y nos legó su teoría General de la Relatividad, una teoría construida desde la pura geometría, excediéndose en elegancia y efectiva en su espacio de aplicación. La relación entre el cuerpo y la curvatura del espacio-tiempo, es equivalente (Gµv). Significa, la manifestación visible o invisible de la energía [m=e/c2], y en este caso, manifestada en la forma masiva del cuerpo, curva el espació-tiempo.
Esto, a su vez, puede resumirse en la famosa ecuación de Einstein, que esencialmente afirma:
Materia-energía determina la curvatura del espacio-tiempo y se denota
Esta ecuación engañosamente corta es uno de los mayores triunfos de la mente humana (me he referido a ella en otras muchas ocasiones). De ella emergen los principios que hay tras los movimientos de las estrellas y las galaxias, los agujeros negros, el big bang, y seguramente el propio destino del Universo.
Es curiosa la similitud que se da entre la teoría del electromagnetismo y la relatividad general, mientras que Faraday experimentó y sabía los resultados, no sabía expresarlos mediante las matemáticas y, apareció Maxwell que, finalmente formuló la teoría.
Einstein, al igual que Faraday, había descubierto los principios físicos correctos, pero carecía de un formulismo matemático riguroso suficientemente potente para expresarlo (claro que Faraday no era matemático y Einstein si lo era). Carecía de una versión de los campos de Faraday para la Gravedad. Irónicamente, Riemann tenía el aparato matemático, pero no el principio físico guía, al contrario que Einstein. Así que, finalmente, fue Einstein el que pudo formular la teoría con las matemáticas de Riemann.
“¡Qué extraño sería que la teoría final se descubriera durante nuestra vida! El descubrimiento de las leyes finales de la Naturaleza marcará una discontinuidad en la Historia del intelecto humano, la más abrupta que haya ocurrido desde el comienzo de la ciencia moderna del siglo XVII. ¿Podemos imaginar ahora como sería?”
STEVEN WEINBERG.

¿Son tántas las clases de belleza en el Universo?
¿Es la belleza un principio Físico? Bueno, podríamos decir que también, pudiera ser un principio del Sentimiento de la Mente Humana, aunque, en Física, por ejmplo, el concepto de belleza tenga otras connotaciones.
La teoría de supercuerdas nos da una formulación convincente de la teoría del Universo, sin embargo, el problema fundamental radica en que una comprobación de dicha teoría, está más allá de nuestras posibilidades actuales. De hecho, la misma teoría predice que la unificación de todas las fuerzas ocurre a la energía de Planck, o 1019 miles de millones de electronvoltios, que como sabéis, es alrededor de mil billones de veces mayor que las energías actualmente disponibles en nuestros aceleradores de partículas, se denota por la ecuación:
Como la masa de Planck es del orden de 10 ^-8 kg (equivalente a una energía de 10 ^19 GeV), y, por ejemplo, la masa el protón es del orden de 10 ^-27 kg y las mayores energías alcanzables en los aceleradores de partículas actuales son de un orden muy inferior, los efectos de la gravitación cuántica no aparecen en los laboratorios de física de partícula (ni el LHC ni en el Fermilab). Sin embargo, en el universo primitivo las partículas tenían energías del orden de la masa de Planck, de acuerdo con la teoría el big bang, y es, por tanto, necesaria una teoría cuántica de la gravedad para estudiar las condiciones en la época conocida como Tiempo de Planck.
Ya he comentado otras veces que el físico David Gross (el de más edad de los miembros conocidos como el “cuarteto de cuerdos” y autores de la teoría llamada la cuerda heterótica) dijo en una ocasión: “El coste de generar esta fantástica energía, necesitaría el dinero de las tesorerías de todos los países del mundo juntos, y quizá, no llegara. Es verdaderamente astronómico.”
Siendo así, de momento estamos condenados a no poder verificar experimentalmente este motor (parado) que haría marchar el vehículo de la Física. La teoría decadimensional está paralizada en dos sentidos: el económico y el técnico – matemático. El primero por falta de dinero que nos pudiera construir aceleradores tan potentes como para descubrir la partícula de Higgs, los quarks e incluso las cuerdas vibrantes, esos previsibles y minúsculos objetos primordiales que conforman la materia. En segundo lugar, las formulaciones matemáticas complejas que, según parece, aún no se han inventado. Parece que hoy, ni siquiera Witten o Perelman, conocen el secreto de los números mágicos que nos puedan llevar hasta el final del camino iniciado con Einstein y Kaluza-Klein.

Estaría bueno que, al final se descubriera que alfa (α) tuviera un papel importante en la compleja teoría de cuerdas, ¿Por qué no? En realidad alfa, la constante de estructura fina, nos habla del magnetismo, de la constante de Planck y de la relatividad especial, es decir, la velocidad de la luz y, todo eso, según parece, emergen en las ecuaciones topológicas de la moderna teoría de cuerdas. ¡Ya veremos!
Sí, es cierto, que la teoría tiene muchos detractores y algunos han llegado a denominarla Física de Circo pero, particularmente opino que la teoría de cuerdas nos dará muchas alegrías y que en ella están las respuestas a muchas preguntas que no sabemos contestar. Simplemente se trata (como nos dice E. Eitten) de una teoría adelantada a su tiempo.
Dentro del mundo de la Física, los hay de todas las opiniones: en contra y a favor. Es famosa la postura detractora del Nóbel Sheldoy Glasgow de Harvard, no quiere ni oír hablar de la teoría de supercuerdas a la que califica de “física de Teatro”.
Otros muchos, la mayoría, como Murray Gell-Marn, Steven Weinberg (ambos Premios Nóbel) o el mismo. E. Witten (Medalla Field), opinan lo contrario y ven en esta teoría de dimensiones más altas el futuro de la Física.

Ya sabemos que en física toda teoría debe ser verificada, una y otra vez, en uno y en otro lugar, experimentalmente, obteniendo siempre el mismo resultado, es la única manera de que sea aceptada por la comunidad científica, mientras tanto, la teoría no es fiable y queda a la espera de ser comprobada, verificada sin ningún lugar para la duda.
Pero, ¿Se puede recrear la creación?
La teoría de supercuerdas trata de eso. Quiere explicarnos todos los misterios del Universo a partir de ese primer momento, ¡la creación!
Emilio Silvera, el Jueves, 19 de julio de 2012. (Lo publicaron en Taringa)
Ago
13
Siempre buscaremos nuevas teorías de la Física del Universo
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)

Una nueva clase de reacción de fisión nuclear observada en el CERN ha mostrado importantes puntos débiles en nuestro entendimiento actual del núcleo atómico. La fisión del mercurio-180 se suponía una reacción “simétrica” que daría lugar a dos fragmentos iguales, pero en lugar de ello ha producido dos núcleos con masas bastante diferentes, una reacción “asimétrica” que plantea un serio desafío a los teóricos.
Una reacción nuclear “desafiante”
La Ciencia no duerme. En todo el mundo (ahora también fuera de él -en el espacio), son muchos los Científicos que trabajan de manera tenaz para buscar nuevas formas de alcanzar lo ahora inalcanzable y, para ello, se emplean las más sofisticadas estructuras técnicas de avanzados sistemas tecnológicos que hacen posible llegar allí donde nunca nadie había llegado.
Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.
Vista hemisférica de Venus. (Cortesía de NASA) Han sido confeccionados mapas de superficie por radar, tanto la Tierra como desde sondas espaciales, que indican la presencia de regiones montañas y de extensas llanuras onduladas.
El segundo planeta a partir del Sol. Tiene la órbita más circular de todos los planetas. Su albedo geométrico medio, 0,65, es el mayor de todos los planetas, como resultado de su cubierta de nubes blancas sin fracturas. En su máximo alcanza magnitud -4,7, mucho más brillante que cualquier otro planeta. Su eje de rotación está inclinado casi 180º con respecto a la vertical, de manera que su rotación es retrógrada. Rota alrededor de su eje cada 243 días, y, por tanto, muestra siempre la misma cara hacia la Tierra cuando los dos planetas se encuentran en su máxima aproximación.
La atmósfera de Venus es en un 96,5% de dióxido de carbono y un 3,5 de nitrógeno, con trazas de dióxido de azufre, vapor de agua, argón, hidrógeno y monóxido de carbono. La presión en la superficie es de 92 bares (es decir, 92 veces la presión a nivel del mar en la Tierra). La temperatura superficial promedio es de 460 ºC debido al “efecto invernadero” en la atmósfera del planeta. Los rayos son muy frecuentes. Existe una densa capa de nubes a una altitud de unos 45/65 Km. compuesta de ácido sulfúrico y gotitas de agua.
VENUS: El Planeta Imposible
Mundos inimaginables que tendrán, como en el nuestro, formas de vida de una rica diversidad que ni podemos imaginar. Y, según creo, basado en que todas las leyes del Universo funcionan de la misma manera en todas partes, esas vidas, también, estarán basadas en el Carbono. Otra cosa será sus morfologías.
Nuestros sueños de visitar mundos remotos, y, en ellos, encontrar otras clases de vida, otras inteligencias, es un sueño largamente acariciado por nuestras mentes que, se resisten a estar sólas en un vasto Universo que, poseyendo miles de millones de mundos, también debe estar abarrotado de una diversidad de clases de vida que, al igual que ocurre aquí en la Tierra, pudieran (algunas de ellas) estar haciéndose la misma pregunta: ¿Estaremos sólos en tan inmenso Universo.
Hace algún tiempo que los medios publicaron la noticias:
Lo cierto es que, en nuestro Universo, todo parece relacionado de alguna manera
“Físicos británicos creen que el bosón de Higgs y su relación con la gravedad puede ser la clave para crear una ecuación única que explique el Universo entero.”
“La teoría del todo, también conocida como teoría unificada, fue el sueño que Einsteinnunca pudo cumplir. Consiste en una teoría definitiva, una ecuación única que explique todos los fenómenos físicos conocidos y dé respuesta a las preguntas fundamentales del Universo. Esa teoría unificaría la mecánica cuántica y la relatividad general, dos conocimientos aceptados pero que describen el Cosmos de forma muy diferente. Albert Einstein no consiguió formularla. Tampoco nadie después de él, pero sigue siendo la ambición de muchos científicos. En este empeño, físicos de la británica Universidad de Sussex han dado un nuevo paso para probar que solo hay una fuerza fundamental en la naturaleza. Creen haber observado como el campo de Higgs interactúa con la Gravedad.”
Si hablamos de nuestra Galaxia, la Vía Láctea, lo hacemos de algo que tiene 100.000 millones de años-luz de diámetro y más de ciento cincuenta mil millones de estrellas, no digamos de mundos y otra infinidad de objetos de exótica estructura e increíbles conformaciones que, como los púlñsares, los agujeros negroso los manétares, no dejan de asombrarnos. Somos, una especie viviente que ha llegado a poder generar pensamientos y crear teorías encaminadas a descubrir la verdad de la Naturaleza, y, nuestra aparente“insignificante presencia”, podría ser un signo de que, el universo “ha permitido” observadores para que lo expliquen y se pueda comprender.
Tenemos el Universo dentro de nuestras mentes
El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que está planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas. Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.
Algunos dicen que para cuando tengamos una Teoría de Todo, el mundo habrá cambiado, habrá pasado tanto tiempo que, para entonces, la teoría habrá quedado vieja y se necesitará otra nueva teoría más avanzada. Eso significa, si es así, que nunca tendremos una explicación de todo y siempre quedarán cuestiones enigmáticas que tendremos que resolver. ¡Menos mal!
La búsqueda de esa teoría final que nos diga cómo es el Universo, el Tiempo y el Espacio, la Materiay los elementos que la conforman, las Fuerzas fundamentales que interaccionan con ella, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que se han realizado durante las últimas décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado. Por otra parte, siempre andamos inventando ecuaciones para todo, que expliquen este o aquel enigma que deseamos conocer.

Lo cierto es que, no conocemos el futuro que le espera a la Humanidad pero, tal desconocimiento no incide en el hecho cierto de que siempre estemos tratando de saber el por qué de las cosas y, seguramente, si Einstein hubiera conocido la existencia de las cuatro fuerzas fundamentales, habría podido avanzar algo más, en su intento de lograr esa ecuación maravillosa que “todo” lo pudiera explicar.
Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.
La armoniosa combinación de la relatividad general y la mecánica cuántica es un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza. Allí, en sus ecuaciones, aparece el esquivo gravitón implicándo con ello que la teoría contiene implicitamente una teoría cuántica de la Gravedad.
Ahora, en la nueva etapa del LHC, tratarán de buscar partículas supersimétricas
Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la Naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.
Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo. En nuestro Universo, aunque no pueda dar esa sensación a primera vista, cuando se profundiza, podemos observar que, de alguna manera, todo está conectado, de la misma manera, nuestras mentes son parte del universo y, en ellas, están todas las respuestas.
Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impide ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar, a través de esa fisura parece que se escapa la luz de la comprensión que, en su momento, se podría alcanzar.
Muchos sueñan con encontrar esa Teoría del Todo
Mientras que la soñada teoría llega, nosotros estaremos tratando de construir ingenios que como el GEO600, el más sensible detector de ondas gravitacionales que existe ( capaz de detectar ínfimas ondulaciones en la estructura del espacio-tiempo ), nos pueda hablar de otra clase de universo. Hasta el momento el universo conocido es el que nos muestran las ondas electromagnéticas de la luz pero, no sabemos que podríamos contemplar si pudiéramos ver ese otro universo que nos hablan de la colisión de agujeros negros…por ejemplo.
GEO 600
La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble “belleza” y de logros y avances tecnológicos que ahora ni podemos imaginar.
Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.
Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.
Ellos nos legaron parte de las teorías que hoy manejamos en el mundo para tratar de conocer el Universo pero, sigue siendo insuficientes… ¡Necesitamos Nuevas Teorías! que nos lleven al conocimientos más profundos de la realidad en que se mueve la Naturaleza, sólo de esa manera, podremos seguir avanzando.
El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino al comprobar que las ecuaciones topológicas complejas de la nueva teoría nos habla de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.
La expansión del universo se ha estudiado de varias maneras diferentes, pero la misión WMAP completada en 2003, representa un paso importante en la precisión y los resultados presentados hasta el momento con mayor precisión para saber, en qué clase de Universo estamos, cómo pudo comenzar y, cuál podría ser su posible final. Todo ello, es un apartado más de ese todo que tratamos de buscar para saber, en qué Universo estamos, cómo funcionan las cosas y por qué lo hacen de esa determinada manera y no de otra diferente.
La relatividad general nos dijo cómo es la geometría del Universo
El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividadgeneral y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch.
Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.
Pero… ¿somos en verdad tan insignificantes?
Los logros alcanzados hasta el momento parecen desmentir tal afirmación, el camino recorrido por la humanidad no ha sido nada fácil, los inconvenientes y dificultades vencidas, las luchas, la supervivencia, el aprendizaje por la experiencia primero y por el estudio después, el proceso de humanización (aún no finalizado), todo eso y más nos dice que a lo mejor, es posible, pudiera ser que finalmente, esta especie nuestra pudiera tener un papel importante en el conjunto del universo. De momento y por lo pronto ya es un gran triunfo el que estemos buscando respuestas escondidas en lo más profundo de las entrañas del cosmos.
Tengo la sensación muy particular, una vez dentro de mi cabeza, un mensaje que no sé de dónde pero que llega a mi mente que me dice de manera persistente y clara que no conseguiremos descubrir plenamente esa ansiada teoría del todo, hasta tanto no consigamos dominar la energía de Planck que hoy por hoy, es inalcanzable y sólo un sueño.
Sus buenas aportaciones a la Física fueron bien recompensadas de muchas maneras.
En mecánica cuántica es corriente trabajar con la constante de Planck racionalizada, (ħ = h/2p = 1’054589×10-34 Julios/segundo), con su ley de radiación (Iv = 2hc-2v3/[exp(hv/KT)-1]), con la longitud de Planck , con la masa de Planck, y otras muchas ecuaciones fundamentales para llegar a lugares recónditos que, de otra manera, nunca podríamos alcanzar.
Todo lo anterior son herramientas de la mecánica cuántica que en su conjunto son conocidas como unidades de Planck, que como su mismo nombre indica son un conjunto de unidades, usado principalmente en teorías cuánticas de la gravedad, en que longitud, masa y tiempo son expresadas en múltiplos de la longitud, masa y tiempo de Planck, respectivamente. Esto es equivalente a fijar la constante gravitacional (G), como la velocidad de la luz (c), y la constante de Planck racionalizada (ħ) iguales todas a la unidad. Todas las cantidades que tienen dimensiones de longitud, masa y tiempo se vuelven adimensionales en unidades de Planck. Debido a que en el contexto donde las unidades de Planck son usadas es normal emplear unidades gaussianas o unidades de Heaviside-Lorentz para las cantidades electromagnéticas, éstas también se vuelven adimensionales, lo que por otra parte ocurre con todas las unidades naturales. Un ejemplo de esta curiosidad de adimiensionalidad, está presente en la constante de estructura fina (2pe2/hc) de valor 137 (número adimensional) y cuyo símbolo es la letra griega a (alfa).
Estas unidades de Planck nos llevan a la cosmología del nacimiento del universo y nos proporciona un marco elegante, coherente y manejable mediante cálculos para conocer el universo remontándonos a los primeros momentos más breves posteriores a la explosión o Big Bang. El tiempo de Planck por ejemplo, expresado por , tiene un valor del orden de 10-43 segundos, o lo que es lo mismo, el tiempo que pasó desde la explosión hasta el tiempo de Planck fue de: 0,000.000.000.000.000.000.000.000.000.000.000.000.000.001 de 1 segundo. En la fórmula, G es la constante universal de Newton, ħ es la constante de Planck racionalizada y c es la velocidad de la luz.
Es una unidad de tiempo infinitesimal, como lo es el límite de Planck que se refiere al espacio recorrido por un fotón (que viaja a la velocidad de la luz) durante una fracción de tiempo de ínfima duración y que es de 0,000.000.000.000.000.000.000.000.000.000.001 de cm.
Hasta tal punto llegan los físicos en sus cálculos para tratar de adecuar los conocimientos a la realidad por medio del experimento. Buscamos incansables…¡las respuestas! Hasta que no podamos tocar con nuestras propias manos esa partícula final…
Sin embargo, cuando hablamos de estas unidades tan pequeñas, no debemos engañarnos. Precisamente, para tratar de llegar hasta esos límites tan profundos se necesitan máquinas que desarrollan inmensas energías: los aceleradores de partículas, que como el Fermilab o el LHC en el CERN, han facilitado a los físicos experimentadores entrar en las entrañas de la materia y descubrir muchos de los secretos antes tan bien guardados. Ahora, disponiendo de 14 TeV, tratán de nbuscar partículas supersimñétricas y el origen de la “materia oscurta”.
Desgraciadamente, el hallazgo del Bosón de Higgs no ha podido completar el Modelo Estándar de la Física de Partículas, ya que, aún tiene 19 parámetros aleatorios que no podemos explicar. Y, por supuesto, más lejos queda la posibilidad de que podamos construir un acelerador que pudiera alcanzar la energía de Planck, del orden de 1019 eV (1 eV = 10-19 julios) = 1’60210×10-19. Hoy por hoy, ni nuestra tecnología ni todos los recursos que tenemos disponibles si empleáramos todo el presupuesto bruto de todos los países del globo unidos, ni así digo, podríamos alcanzar esta energía necesaria para comprobar experimentalmente la existencia de “cuerdas” vibrantes que confirmen la teoría de Todo.
Claro que, pudiera ser que, todo se pudiera alcanzar de manera mucho más simple y que, teniéndolo a la vista, no hemos sabido ver. Habrá que agudizar el ingenio para resolver estas y otras cuestiones que, como la de la Velocidad de la Luz, nos tienem atados y bien atados a este granito de arena inmerso en un vasto universo y que, nosotros, llamamos mundo.
emilio silvera
Ago
13
¡La misteriosa Mecánica cuántica!
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)

¡Qué maravilla! Poder imaginar…y comprobar
El modelo estándar de la física de partículas es una teoría que describe las relaciones entre las interacciones fundamentales conocidas y las partículas elementales que componen toda la materia. Es una teoría cuántica de campos desarrollada entre 1970 y 1973 que es consistente con la mecánica cuánticay la relatividad especial. Hasta la fecha, casi todas las pruebas experimentales de las tres fuerzas descritas por el modelo estándar están de acuerdo con sus predicciones. Sin embargo, el modelo estándar no alcanza a ser una teoría completa de las interacciones fundamentales debido a que no incluye la gravedad, la cuarta interacción fundamental conocida, y debido también al número elevado de parámetros numéricos (tales como masas y constantes que se juntan) que se deben poner a mano en la teoría (en vez de derivarse a partir de primeros principios).
Se que una vez Albert Einstein alagó al actor Charles Chaplin diciéndole: “Lo que siempre he admirado de usted es que su arte es universal, todo el mundo le comprende y admira”. A esto Chaplin respondió a Einstein: “Lo suyo es mucho más digno de respeto, todo el mundo le admira y prácticamente nadie le comprende”.
Es cierto lo que Chaplin decía, todos admiraban a Einstein y pocos comprendían sus postulados. De hecho, cuando estaba buscando la teoría de Todo, la gente se amontonaban, literalmente, ante los escaparates de la Quinta Avenida para ver las Ecuaciones que pocos entendían…¡Así somos los Humanos! Lo que no comprendemos nos produce temor o admiración, o, las dos cosas a la vez.
Gerad ´t Hooft
Hace algún tiempo, me desplace a Madrid invitado asistir a una Conferencia que sobre el LHC y el Bosón de Higgs impartía el físico y premio Nobel de Física Gerad ´t Hooft. La charla de ‘t Hooft se inscribía en el ciclo La ciencia y el cosmos, y, entre otras cosas nos decía a los presentes que, La física, en concreto la física de partículas, ha sido siempre su gran pasión. “cuando era joven, la física estaba cambiando el mundo radicalmente: la energía nuclear, la televisión, los ordenadores, las primeras misiones espaciales…. yo quería formar parte de todo eso”. Y las partículas elementales “eran el mayor misterio de todos”, añade. “En cierto modo aún lo son, aunque sabemos de ellas muchísimo más que entonces. Hoy los ordenadores siguen siendo emocionantes, la biología y el código del ADN, la astronomía y los vuelos espaciales… Sigue habiendo muchas cosas capaces de estimular la imaginación de jóvenes deseosos de aprender cosas nuevas impulsados por el deseo de estar ahí, en el momento en que se están haciendo los descubrimientos que cambian el mundo”.
Gerard ‘t Hooft explicó lo que significa, en los modelos teóricos, el famoso bosón: “El campo de la partícula de Higgs actúa como una especie de árbitro; proyectado contra otras partículas, este campo determina su comportamiento, si tienen carga o masa y hasta qué punto se diferencian de otras partículas. Si no encontramos el Higgs, si realmente no está, necesitaremos algo más que haga ese papel de árbitro”. Eso significaría, continuaba el Nobel, que “nuestras teorías ya no funcionan, y han funcionado tan bien hasta que eso es difícil de imaginar”.
Claro que, después de aquello se encontró el Bosón de Higgs y todos contentos. Ahora se busca el Fotón oscuro en el LHC.
Sí, al LHC se le resiste el Gravitón, bueno, si es que anda por ahí
Fue en 199 cuando ‘t Hooft recibió el premio Nobel de Física 1999 (junto con su colega y director de tesis Martinus Veltman), por “dilucidar la estructura cuántica de las interacciones electrodébiles” -según palabras de la Academia sueca- de la física de las partículas elementales.
Acera del Gran Colisionador de Hadrones (el acelerador LHC situado en el Laboratorio Europeo de Física de partículas, CERN, junto a Ginebra), el científico holandés explica que se trata “de una máquina única en el mundo” y continúa: “Esperamos descubrir nuevas cosas con él y poner a prueba teorías que, hasta donde hemos podido comprobar, funcionan muy bien, pero necesitamos ir más allá”.
El descubrimiento de la partícula de Higgs, o bosón de Higgs, era el objetivo número uno del LHC, y tras un largo período de funcionamiento del acelerador, los miles de físicos que trabajan en los detectores, lograron acotar el terreno de búsqueda, aunque, hasta que la insistencia dio el resultado esperado. lo que supuso una revolución en la física de partículas, confirmando un parámetro aleatorio del llamado Modelo Estándar, que describe todas las partículas elementales y sus interacciones, y que hasta ahora funciona con altisima precisión aunque, dicen los expertos, está incompleto.
Al fin, tras largo búsqueda y trabajo, nos hicieron partícipe del esperado descubrimiento que viene a refrendar el Modelo Estándar que, incompleto aún, con el dichoso Bosón queda mejor conformado al desaparecer uno de los casi veinte parámetros aleatorios que en él estaban presentes. Ya sólo quedan diecinueve.
Gerard ‘t Hooft, uno de los grandes físicos teóricos de partículas elementales, considera que será muy difícil desarrollar una teoría del todo, un cuerpo teórico capaz de explicar todas las fuerzas que actúan en la naturaleza aunando la Relatividad General de Einstein y la Mecánica Cuántica, tan eficaces por separado en la descripción del macrocosmos y el microcosmos, respectivamente. “Mi impresión es que esta teoría unificadora, una teoría del todo, aún requerirá el trabajo de muchas nuevas generaciones de investigadores jóvenes y listos”, afirma. “No llegaremos a ella de un momento a otro por la simple razón de que el universo es demasiado complejo para que una única teoría lo abarque todo. Vale, no digo que sea imposible, pero me parece muy improbable. Y mientras llega, queda mucho por , incluso hallazgos espectaculares”.
El CERN, a la caza del misterioso Fotón oscuro
Por otra parte, el científico holandés ha señalado que el LHC realiza más actividades que intentar encontrar el bosón de Higgs. En este sentido, ha destacado que se buscan también partículas que podrían construir la materia oscura, un de materia de la que los físicos tienen la certeza de que es cinco veces más abundante que el universo que la materia ‘normal’, pero que no absorbe, refleja ni emite luz, lo que hace muy difícil su detección y, por tanto, estudiar su naturaleza. Del mismo modo, también se está desarrollando una teoría capaz de unificar la teoría de la relatividad general de Einstein y la mecánica cuántica que, según ha explicado Hooft, “permitiría lo que ocurre dentro de los átomos”.
Recuerdo un pasaje escrito por él al principio de su interesante e instructivo libro “Partículas Elemetales”, que decía:
“Mi intención es narrar los últimos 25 años de investigación sobre las partículas más pequeñas que constituyen la materia. Durante esos 25 años, yo empecé a ver la Naturaleza como un test de inteligencia para toda la humanidad en su conjunto, como un gigantesco puzle con el que podemos jugar. Una y otra vez, nos tropezamos con nuevas piezas, grandes y pequeñas, que encajan maravillosamente con las que ya tenemos. Yo quiero compartir con ustedes la sensación de triunfo que sentimos en esos momentos.”
Tenía la intención (si se presentaba la oportunidad), de preguntarle sobre “su Principio Holográfico” pero, no pudo ser. Sólo pude saludarlo e intercambiar unas breves palabras junto con Ignacio Cirac presente en el evento.
Publicó el principio holográfico, el cual explica que la información de una dimensión extra es visible una curvatura del espacio tiempo con una menos dimensiones. Por ejemplo, los hologramas son imágenes de 3 dimensiones colocadas en una superficie de 2 dimensiones, el cual da a la imagen una curvatura cuando el observador se mueve. Similarmente, en relatividad general, la cuarta dimensión manifestada en 3 dimensiones observables como la curvatura de un sendero de un movimiento de partícula (criterio) infinitesimal. Hooft ha especulado que la quinta dimensión es realmente la fábrica del espacio-tiempo.
Acordaos de que, a mediados del año 2,003 apareció la noticia de que la “información sería el componente fundamental de la naturaleza” postulada por un grupo de físicos entre los que se incluyen el Premio Nóbel danés Gerard t´Hooft y el físico de la Universidad de California Raphael Bousso, basadas en el “Principio Holográfico”. teoría, por singular y chocante que pareciese en su momento ha tenido a lo largo de estos siete años una influencia notable tanto en la sociedad científica como en los círculos alternativos.
Personajes tan influyentes Deepak Chopra sin ir más lejos habla del ámbito cuántico como el campo de información de donde todo lo conocido, materia, emociones, pensamientos. El controvertido joven físico Nassam Haramein defiende un universo basado en el holograma. Científicos japoneses -al igual que del resto del mundo- investigan con hologramas creando imágenes 3D o explican el funcionamiento del mundo físico basado en los campos de energía e información. Hay hasta “farmacología holográfica” a cargo de empresas farmaceúticas. El año pasado el físico Craig Hogan tras la detección de un extraño ruido en el detector de ondas gravitacionalesel GEO 600, afirma que podría probar que, efectivamente, vivimos en un holograma.
La información sería el componente fundamental de la naturaleza. Es la que especifica el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia. El Big Bang que dio lugar al nacimiento del Universo tendría más que ver con una gigantesca “bajada” de bytes de información por parte de un superordenador, que con una explosión masiva de materia, según una nueva teoría que establece que en su origen la naturaleza está formada únicamente por pequeños paquetes de información pura que son los que especifican el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia.
Mucho antes de que todos estos seres existieran ocurrieron muchas cosas que no sabemos. Nuestro origen no está en ninguno de ellos, sino que, partiendo de células replicantes que evolucionaron durante algunos millones de años, pudimos llegar a “SER”.
El Ser humano continúa con su carrera particular para lo que siempre ha querido saber: quiénes somos y de dónde venimos. Esas dos preguntas esenciales son, en realidad, el motor gracias al cual se mueve gran parte de la investigación científica de todos los tiempos.
En carrera por buscar certezas, cosas tan inquebrantables para explicar el origen del mundo como son los átomos o los quarks están quedando relegados a segundo término para dar paso a nuevas teorías.
Una de las más interesantes, postulada por un grupo de físicos entre los que se incluyen el Premio Nóbel danés Gerard t´Hooft y el físico de la Universidad de California Raphael Bousso, afirma que en el origen de la naturaleza podría haber únicamente ultrapequeños paquetes de información pura.
Aunque parezca raro la información no viaja en un bloque como lo haría una carta, sino que se divide en pequeños paquetes de información, viajando a través de los diferentes canales de la red y llegando todos al mismo punto. Para esto es preciso que todos los ordenadores hablen el mismo idioma, o lo que es decir el Protocolo TCP/IP, (que es el idioma) que en un principio empezó a usarse en 1983 para dirigir el tráfico de los paquetes de información por Arpanet, garantizando así que todos lleguen a su destino.
La @ que parece que nació a partir de internet se utilizaba en la antigüedad, como unidad de peso o incluso para decir a cuanto costaba algo en libros de contabilidad. Sin embargo se puso de moda gracias al ingeniero estadounidense Ray Tomilson, que diseñaba un sistema de correo electrónico para Arpanet, simplemente bajo los ojos al teclado y eligió un signo que no se utilizara en los nombres de usuario.
Según explica al respecto Newsfactor, teoría, basada en el “Principio holográfico”, establece que la información (“información” en este caso significa bits fundamentales de materia y las leyes físicas que los gobiernan) especifica el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia. La información sería pues, una variable para llegar a una “teoría del todo”.
Y, más allá de las cuerdas…
Según la teoría cuerdas, el espacio está descrito por la vibración, en miles de maneras, de diminutas cuerdas de una dimensión. Una cuerda vibrando arriba y abajo a cierta frecuencia podría crear un átomo de helio o una ola gravitacional, tal y las cuerdas de una guitarra crean diferentes sonidos a diferentes frecuencias.
Los teóricos de teoría han mantenido hace mucho tiempo que estas cuerdas son el componente fundamental de la naturaleza. El “Principio Holográfico”, sin embargo, cambia esta noción y mantiene que, mirando más de cerca una cuerda, se ven bits cuánticos, llamados “baldosas de Planck”, que, engarzados, dicen a las cuerdas como tienen que vibrar.
Una de las más interesentes, postulada por un grupo de físicos entre los que se incluyen el Premio Nóbel danés Gerard t´Hooft y el físico de la Universidad de California Raphael Bousso, afirma que en el origen de la naturaleza podría haber únicamente ultrapequeños paquetes de información pura.
Estas “baldosas de Planck” son bits cuadrados que delimitan un “área de Planck”, o lo que es lo mismo, un trillón de un trillón, de un trillón de un trillón de un trillón de un trillón de un centímetro cuadrado. Una cuerda de baldosas de Plank sería la versión natural de un byte.
El “Principio Holográfico”, descrito por Gerard t´Hooft y Leonard Susskind y refinado por Bousso, nos permite saber cuántos (bits y bytes) son necesarios para decirnos en detalle cada cosa que ocurre en cualquier región del espacio.
¡Por imaginación que no quede!
emilio silvera
Ago
13
Los Quarks invisibles
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
Una vez que se ha puesto orden entre las numerosas especies de partículas, se puede reconocer una pauta. Igual que Dimitri Ivanovich Mendeleev descubrió el sistema periódico de los elementos químicos en 1869, así también se hizo visible un sistema similar para las partículas. Esta pauta la encontraron independientemente el americano Murray Gell-Mann y el israelí Yuval Ne’eman. Ocho especies de mesones, todos con el mismo espín, u ocho especies de bariones, con el mismo espín, se podían reagrupar perfectamente en grupos que llamaremos multipletes. El esquema matemático correspondiente se llama SU(3). Grupletes de ocho elementos forman un octete “fundamental”. Por esta razón Gell-Mann llamó a esta teoría el “óctuplo camino”. Lo tomó prestado del budismo de acuerdo con el cual el camino hacia el nirvana es el camino óctuplo.
Pero las matemáticas SU(3) también admiten multipletes de diez miembros. Cuando se propuso este esquema se conocían nueve bariones con espín 3/2. Los esquemas SU(3) se obtienen al representar dos propiedades fundamentales de las partículas, la extrañeza S frente al isoespín I₃ , en una gráfica.
Imagen de trazas en la cámara de burbujas del primer evento observado incluyendo bariones Ω, en el Laboratorio Nacional Brookhaven.
De esta manera, Gell-Mann predijo un décimo barión, el omega-menos (Ω¯), y pudo estimar con bastante precisión su masa porque las masas de los otros nueve bariones variaban de una forma sistemática en el gráfico (también consiguió entender que las variaciones de la masa eran una consecuencia de una interacción simple). Sin embargo, estaba claro que la Ω¯, con una extrañeza S = -3, no tenía ninguna partícula en la que desintegrarse que no estuviera prohibida por las leyes de conservación de la interacción fuerte. De modo que, la Ω¯ sólo podía ser de tan sólo 10¯²³ segundos como los demás miembros del multiplete, sino que tenía que ser del orden de 10¯¹⁰ segundos. Consecuentemente, esta partícula debería viajar varios centímetros antes de desintegrarse y esto la haría fácilmente detectable. La Ω¯ fue encontrada en 1964 con exactamente las mismas propiedades que había predicho Gell-Mann.
Se identificaron estructuras multipletes para la mayoría de los demás bariones y mesones y Gell-Mann también consiguió explicarlas. Sugirió que los mesones, igual que los bariones, debían estar formados por elementos constitutivos “más fundamentales aún”. Gell-Mann trabajaba en el Instituto de Tecnología de California en Pasadena (CalTech), donde conversaba a menudo con Richard Feynman. Eran ambos físicos famosos pero con personalidades muy diferentes. Gell-Mann, por ejemplo, es conocido como un entusiasta observador de Pájaros, familiarizado con las artes y la literatura y orgulloso de su conocimiento de lenguas extranjeras. Feynman fue un hombre hecho a sí mismo, un analista riguroso que se reía de cualquier cosa que le recordara la autoridad establecida.
Hay una anécdota que parece no ser cierta de hecho, pero que me parece tan buena que no puedo evitar el contarla; podía haber sucedido de esta forma. Gell-Mann le dijo a Feynman que tenía un problema, que estaba sugiriendo un nuevo tipo de ladrillos constitutivos de la materia y que no sabía qué nombre darles. Indudablemente debía haber de haber pensado en utilizar terminología latina o griega, como ha sido costumbre siempre en la nomenclatura científica. “Absurdo”, le dijo Feynman; “tú estás hablando de cosas en las que nunc ase había pensado antes. Todas esas preciosas pero anticuadas palabras están fuera de lugar. ¿Por qué no los llamas simplemente “shrumpfs”, “quacks” o algo así?”.
Cuando algún tiempo después le pregunté a Gell-Mann, éste negó que tal conversación hubiera tenido lugar. Pero la palabra elegida fue quark, y la explicación de Gell-Mann fue que la palabra venía de una frase de Fynnegan’s Wake de James Joyce; “¡Tres quarks para Muster Mark!”. Y, efectivamente así es. A esas partículas les gusta estar las tres juntas. Todos los bariones están formados por tres quarks, mientras que los mesones están formados por un quark y un antiquark.
Los propios quarks forman un grupo SU(3) aún más sencillo. Los llamaremos “arriba (u)”, “abajo” (d), y “extraño” (s). Las partículas “ordinarias” contienen solamente quarks u y d. Los hadrones “extraños” contienen uno o más quarks s (o antiquarks ŝ).
La composición de quarks de espín 3/2 se puede ver en la tabla 5. La razón por la que los bariones de espín ½ sólo forman un octete es más difícil de explicar. Está relacionada con el hecho de que en estos estados, al menos dos de los quarks tienen que ser diferentes unos de otros.
Realmente, la idea de que los hadrones estuvieran formados por ladrillos fundamentales sencillos había sido también sugerida por otros. George Zweig, también en el CalTech, en Pasadena, había tenido la misma idea. Él había llamado a los bloques constitutivos “ases!, pero es la palabra “quark” la que ha prevalecido. La razón por la que algunos nombres científicos tienen más éxito que otros es a veces difícil de comprender.
Pero en esta teoría había algunos aspectos raros. Aparentemente, los quarks (o ases) siempre existen en parejas o tríos y nunca se han visto solos. Los experimentadores habían intentado numerosas veces detectar un quark aislado en aparatos especialmente diseñados para ello, pero ninguno había tenido éxito.
Loa quarks –si se pudieran aislar- tendrían propiedades incluso más extrañas. Por ejemplo, ¿cuáles serían sus cargas eléctricas? Es razonable suponer que tanto los quarks u como los quarks s y d deban tener siempre la misma carga. La comparación de la tabla 5 con la tabla 2 sugiere claramente que los quarks d y s tienen carga eléctrica -1/3 y el quark u tiene carga +2/3. Pero nunca se han observado partículas que no tengan carga múltiplo de la del electrón o de la del protón. Si tales partículas existieran, sería posible detectarlas experimentalmente. Que esto haya sido imposible debe significar que las fuerzas que las mantienen unidas dentro del hadrón son necesariamente increíblemente eficientes.
Aunque con la llegada de los quarks se ha clarificado algo más la flora y la fauna de las partículas subatómicas, todavía forman un conjunto muy raro, aún cuando solamente unas pocas aparezcan en grandes cantidades en el universo (protones, neutrones, electrones y fotones). Como dijo una vez Sybren S. de Groot cuando estudiaba neutrinos, uno realmente se enamora de ellos. Mis estudiantes y yo amábamos esas partículas cuyo comportamiento era un gran misterio. Los leptones, por ser casi puntuales, son los más sencillos, y por tener espín se ven afectados por la interacción que actúa sobre ellos de forma muy complicada, pero la interacción débil estaba bastante bien documentada por entonces.
Los hadrones son mucho más misteriosos. Los procesos de choque entre ellos eran demasiado complicados para una teoría respetable. Si uno se los imagina como pequeñas esferas hachas de alguna clase de material, aún quedaba el problema de entender los quarks y encontrar la razón por la que se siguen resistiendo a los intentos de los experimentadores para aislarlos.
emilio silvera
Si queréis saber más sobre el tema, os recomiendo leer el libro Partículas de Gerard ´t Hooft
Ago
9
El “universo” de las partículas I
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
¿Qué no será capaz de inventar el hombre para descubrir los misterios de la naturaleza?
Ha pasado mucho tiempo desde que Rutherford identificara la primera partícula nuclear (la partícula alfa). El camino ha sido largo y muy duro, con muchos intentos fallidos antes de ir consiguiendo los triunfos (los únicos que suenan), y muchos han sido los nombres que contribuyen para conseguir llegar al conocimiento que actualmente tenemos del átomo y del núcleo; los electrones circulando alrededor del núcleo, en sus diferentes niveles, con un núcleo compuesto de protones y neutrones que, a su vez, son constituidos por los quarks allí confinados por los gluones, las partículas mediadoras de la fuerza nuclear fuerte. Pero, ¿qué habrá más allá de los quarks?, ¿las supercuerdas vibrantes? Algún día se sabrá.
Partículas
El universo de las partículas es fascinante. Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundarias. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior, han registrado la radiación primaria.
El físico estadounidense Robert Andrews Millikan, que recogió una gran cantidad de información acerca de esta radiación (y que le dio el nombre de rayos cósmicos), decidió que debería haber una clase de radiación electromagnética. Su poder de penetración era tal que, parte del mismo, atravesaba muchos centímetros de plomo. Para Millikan, esto sugería que la radiación se parecía a la de los penetrantes rayos gamma, pero con una longitud de onda más corta.
Otros, sobre todo el físico norteamericano Holly Compton, no estaban de acuerdo en que los rayos cósmicos fuesen partículas. Había un medio para investigar este asunto; si se trataba de partículas cargadas, deberían ser rechazadas por el campo magnético de la Tierra al aproximarse a nuestro planeta desde el espacio exterior. Compton estudió las mediciones de la radiación cósmica en varias latitudes y descubrió que en realidad se curvaban con el campo magnético: era más débil cera del ecuador magnético y más fuerte cerca de los polos, donde las líneas de fuerza magnética se hundían más en la Tierra.
Las partículas cósmicas primarias, cuando entran en nuestra atmósfera, llevan consigo unas energías fantásticas, muy elevadas. En general, cuanto más pesado es el núcleo, más raro resulta entre las partículas cósmicas. Núcleos tan complejos como los que forman los átomos de hierro se detectaron con rapidez; en 1.968, otros núcleos como el del uranio. Los núcleos de uranio constituyen sólo una partícula entre 10 millones. También se incluirán aquí electrones de muy elevada energía.
Ahora bien, la siguiente partícula inedita (después del neutrón) se descubrió en los rayos cósmicos. A decir verdad, cierto físico teórico había predicho ya este descubrimiento. Paul Adrien Dirac había aducido, fundándose en un análisis matemático de las propiedades inherentes a las partículas subatómicas, que cada partícula debería tener su antipartícula (los científicos desean no sólo que la naturaleza sea simple, sino también simétrica). Así pues, debería haber un antielectrón, salvo por su carga que sería positiva y no negativa, idéntico al electrón; y un antiprotón, con carga negativa en vez de positiva.
En 1.930, cuando Dirac expuso su teoría, no llamó demasiado la atención en el mundo de la ciencia. Pero, fiel a la cita, dos años después apareció el antielectrón. Por entonces, el físico americano Carl David Anderson trabajaba con Millikan en un intento por averiguar si los rayos cósmicos eran radiación electromagnética o partículas. Por aquellas fechas, casi todo el mundo estaba dispuesto a aceptar las pruebas presentadas por Compton, según las cuales, se trataría de partículas cargadas; pero Millikan no acababa de darse por satisfecho con tal solución.
Anderson se propuso averiguar si los rayos cósmicos que penetraban en una cámara de ionización se curvaban bajo la acción de un potente campo magnético. Al objeto de frenar dichos rayos lo suficiente como para detectar la curvatura, si la había, puso en la cámara una barrera de plomo de 6’35 mm de espesor. Descubrió que, cuando cruzaba el plomo, la radiación cósmica trazaba una estela curva a través de la cámara; y descubrió algo más. A su paso por el plomo, los rayos cósmicos energéticos arrancaban partículas de los átomos de plomo. Una de esas partículas dejó una estela similar a la del electrón. ¡Allí estaba, pues, el antielectrón de Dirac! Anderson le dio el nombre de positrón. Tenemos aquí un ejemplo de radiación secundaria producida por rayos cósmicos. Pero aún había más, pues en 1.963 se descubrió que los positrones figuraban también entre las radiaciones primarias.
Abandonado a sus propios medios, el positrón es tan estable como el electrón (¿y por qué no habría de serlo si el idéntico al electrón, excepto en su carga eléctrica?). Además, su existencia puede ser indefinida. Ahora bien, en realidad no queda abandonado nunca a sus propios medios, ya que se mueve en un universo repleto de electrones. Apenas inicia su veloz carrera (cuya duración ronda la millonésima de segundo), se encuentra ya con uno.
Así, durante un momento relampagueante quedaron asociados el electrón y el positrón; ambas partículas girarán en torno a un centro de fuerza común. En 1.945, el físico americano Arthur Edwed Ruark sugirió que se diera el nombre de positronio a este sistema de dos partículas, y en 1.951, el físico americano de origen austriaco Martin Deutsch consiguió detectarlo guiándose por los rayos gamma característicos del conjunto.
Pero no nos confundamos, aunque se forme un sistema positronio, su existencia durará, como máximo, una diezmillonésima de segundo. El encuentro del electrón-positrón provoca un aniquilamiento mutuo; sólo queda energía en forma de radiación gamma. Ocurre pues, tal como había sugerido Einstein: la materia puede convertirse en energía y viceversa. Por cierto, que Anderson consiguió detectar muy pronto el fenómeno inverso: desaparición súbita de rayos gamma para dar origen a una pareja electrón-positrón. Este fenómeno se llama producción en pareja. Anderson compartió con Hess el premio Nobel de Física de 1.936.
Poco después, los Joliot-Curie detectaron el positrón por otros medios, y al hacerlo así realizaron, de paso, un importante descubrimiento. Al bombardear los átomos de aluminio con partículas alfa, descubrieron que con tal sistema no sólo se obtenían protones, sino también positrones. Cuando suspendieron el bombardeo, el aluminio siguió emitiendo positrones, emisión que sólo con el tiempo se debilitó. Aparentemente habían creado, sin proponérselo, una nueva sustancia radiactiva. He aquí la interpretación de lo ocurrido según los Joliot-Curie: cuando un núcleo de aluminio absorbe una partícula alfa, la adición de los dos protones transforma el aluminio (número atómico 13) en fósforo (número atómico 15). Puesto que las partículas alfa contienen cuatro nucleones en total, el número masivo se eleva 4 unidades, es decir, del aluminio 27 al fósforo 31. Ahora bien, si al reaccionar se expulsa un protón de ese núcleo, la reducción en una unidad de sus números atómicos y masivos hará surgir otro elemento, o sea, el silicio 30.
Puesto que la partícula alfa es el núcleo del helio, y un protón es el núcleo del hidrógeno, podemos escribir la siguiente ecuación de esta reacción nuclear:
aluminio 27 + helio 4 = silicio 30 + hidrógeno 1
Nótese que los números másicos se equilibran:
27 + 4 = 30 + 1
Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico.
Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio. Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1.932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.
El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1.934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.
El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1.934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:
hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1
Este nuevo hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión a 20’5º K.
Como es mi costumbre, me desvío del tema y sin poderlo evitar, mis ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo un fugaz recuerdo; lo sigo y me lleva a destinos distintos de los que me propuse al comenzar. Así, en este caso, me pasé a la química, que también me gusta mucho y está directamente relacionada con la física; de hecho son hermanas: la madre, las matemáticas, la única que finalmente lo podrá explicar todo.
emilio silvera