martes, 30 de septiembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Entropía

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Variación de entropía del universo

Desde el punto de vista de la Termodinámica, el universo es el conjunto constituido por un sistema y sus alrededores. Es, por tanto, un sistema aislado (no hay nada fuera de él). De la misma manera en que se puede calcular la variación de entropía de un sistema termodinámico entre dos estados, puede calcularse la variación de entropía de sus alrededores (todo lo que ha interaccionado con nuestro sistema). La suma de ambas magnitudes se denomina variación de entropía del universo.

Como el universo es un sistema aislado, utilizando el teorema de Clausius se tiene que, para el universo:

 

Donde el signo igual es aplicable para una transformación reversible y el signo menor que cuando dicha transformación es irreversible. A continuación se analiza cada caso por separado.

Transformación irreversible

En el siguiente diagrama p – V se ha representado un ciclo irreversible.

 

Está constituido por dos transformaciones: la AB (representada en verde en la figura), que es irreversible, y la BA (en rojo) que es reversible. Como el ciclo en su conjunto es irreversible, debemos aplicar el teorema de Clausius con el signo menor:

La integral de línea que aparece en la ecuación anterior puede ser descompuesta en la suma de las integrales evaluadas en cada etapa del ciclo, quedando:

 

Ya que la integral evaluada a lo largo del tramo reversible es precisamente la variación de entropía entre los estados B y A. Por tanto,

Expresión conocida como desigualdad de Clausius.

El significado físico de esta ecuación es que la variación de entropía entre dos estados cualesquiera será siempre mayor que la integral del calor intercambiado irreversiblemente entre los dos estados partido por la temperatura.

Como aplicación de esta expresión, la variación de entropía en la expansión libre de Joule ha de ser mayor que cero (como efectivamente lo es) ya que el calor intercambiado en esta transformación irreversible es cero.

Como el universo es un sistema aislado, cuando en el universo se produce una transformación cualquiera AB irreversible el calor intercambiado es cero, por lo que:

Es decir, la entropía del universo siempre crece para cualquier transformación irreversible que se produzca.

Transformación reversible

Cuando en el universo tiene lugar una transformación reversible, debemos tomar el signo igual:

 

Agrupando ambos resultados:

 

Esta afirmación constituye un nuevo enunciado del Segundo Principio:

La entropía es una función de estado que, evaluada para todo el universo, aumenta en una transformación irreversible y permanece constante en una transformación reversible.

Salvo mejor parecer”

 

El origen del tiempo: la hipótesis que conecta la entropía ...

 

 

La Entropía “nació”  cuando lo hizo el Universo y el Tiempo. Parece que los tres se pusieron de acuerdo, y, con el inexorable transcurso del último nombrado, se cumple ese Principio universal de que todo tiene un Principio y un Final, que nada permanece y todo se transforma en algo distinto a lo que fue, y, ese trabajo lo hace despiadadamente la Entropía.

 

Boltzmann

  Boltzmann

Descripción

En física estadística, la ecuación de Boltzmann es una ecuación de probabilidad que relaciona la entropía S de un gas ideal con la cantidad W, el número de microestados reales correspondientes al macro-estado de gas: donde kB es la constante de Boltzmann e igual a 1.38065×10⁻²³ J/K.

 

La mecánica estadística: fundamentos, entropía de Boltzmann, sistemas microcanónico, canónico y macrocanónico, fermiones y bosones, gases ideales y la catástrofe ultravioleta. – Estudiar Física

La mecánica estadística: fundamentos, entropía de Boltzmann, sistemas micro-canónico, canónico y macro-canónico, fermiones y bosones, gases ideales y la catástrofe ultravioleta.

Algunas fórmulas de la Física merecen estar en un lugar destacado para que, cualquiera que pase por allí las puedan ver y, al ver aquellos jeroglíficos matemáticos, poder preguntar por sus significados. Uno de esos casos es el que aquí contamos. Muy justamente, la fórmula a la que nos estamos refiriendo, está inscrita en la cabecera de la lápida que indica el lugar en donde descansan los restos de Ludwig Boltzmann en el cementerio Zentralfriedhof de Viena:

                                S = k log W

Cuando algo nos gusta y nos atrae, cuando es la curiosidad la que fluía nuestros deseos por saber sobre las cosas del mundo, del Universo y las fuerzas que lo rigen, cuando la Física se lleva dentro al poder reconocer que es el único camino que nos dará esas respuestas deseadas, entonces, amigos míos, los pasos te llevan a esos lugares que, por una u otra razón tienen y guardan los vestigios de aquellas cosas que quieres y admiras. Así me pasó cuando visité el Fermilab, la tumba de Hilbert y, también en Viena, donde no pude resistir la tentación de ver, con mis propios ojos esa imagen de arriba y, desde luego, pensar en lo mucho que significaba la escueta S = k log W que figura en la cabecera de la lápida de Boltzmann como reconocimiento a su ingenio.

La sencilla ecuación (como todas las que en Física han tenido una enorme importancia (E=mc2, por ejemplo), es la mayor aportaciópn de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación para el logaritmo es el siguiente: S es la entropía de un Sistema; W el número de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el nombre de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión entre el micro-mundo y el macro-mundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física conocida como Mecánica Estadística.

 

 

                       Todo lo grande está hecho de cosas pequeñas

La entropía de un sistema es el desgaste que el sistema presenta por el transcurso del tiempo o por el funcionamiento del mismo. Los sistemas altamente entrópicos tienden a desaparecer por el desgaste generado por su proceso sistémico. Es una medida de desorden o incertidumbre de un sistema.

Como todas las ecuaciones sencillas de gran trascendencia en la física, hay un antes y un después de su formulación: sus consecuencias son de un calado tan profundo que han cambiado la forma de entender el mundo y, en particular, de hacer Física, a partir de ellas. De hecho, en este caso al menos, la sutileza de la ecuación es tal que hoy, más de cien años después de la muerte de su creador, se siguen investigando sus nada triviales consecuencias.

La energía libre no es libre.

 

Balance de energía en sistemas cerrados

  1. La energía de un sistema cerrado se mantendrá constante.
  2. La entropía de un sistema cerrado se mantendrá constante o aumentará.

 

Entropia en sistemas cerrados. Teoría parte 1La Entropía | Blog de Jose Antonio Martin

 

Estos son los dos principios de la Termodinámica. Son, quizás, las leyes más sólidas y mejor demostradas de la naturaleza sostenidas por miles de observaciones experimentales y deducciones teóricas. Son estas misma leyes las que se pretenden violar una y otra vez cuando y charlatanes y embusteros tratan de separar a la gente de su dinero. Este es el caso de las Máquinas de Movimiento Perpetuo (MMP). La historia de estas máquinas es impresionante, la más antigua siendo una rueda diseñada por un astrónomo/astrólogo indio llamado Bhäskara II. Al principio los intentos para crear energía de la nada eran honestos; todavía no teníamos conocimientos como para entender cuán imposible era esto, cuan fundamental era el principio de que la energía no se crea ni se destruye. Intelectuales respetables como Pascal, Boyle y hasta Leonardo da Vinci diseñaron al menos una MMP.

Una de las consecuencias más importantes de la Entropía es, el principio de irreversibilidad del mundo macroscópico. Si las leyes de la Mecánica son reversibles, ¿Cómo es posible que haya una dirección temporal definida en el mundo que nos rodea, en la cual observamos que un vaso cae y se rompe pero nunca hemos podido observar que los añicos se recompongan para reconstruir el vaso original?

En una Revista de Física de las emitidas por la Real Sociedad Española de Física, pude leer un magnifico artículo que firmaba Joel Lebowitz (una autoridad mundial en la materia) en el cual, nos explicaba como la ecuación S = k log W podía dar una explicación satisfactoria del fenómeno.

 

La entropía es la clave para explicar un enigma sobre el agua | Noticias de la Ciencia y la Tecnología (Amazings® / NCYT®)

 

Los signos de la Entropía son comunes en nuestras vidas cotidianas y, como tantas otras cosas, forman parte de nuestro mundo en nuestro quehacer del día a día en el que, siempre estamos tratando de combatir a la entropía destructora. Al menos, nosotros, siempre que pensamos en la entropía la asociamos al desorden. Cosas que se hacen viejas y se rompen, habitaciones que se llenan de polvo, muebles deteriorados por el paso del tiempo, y, nosotros mismos que vemos marcadas en las arrugas del cuerpo la inexorable huella de la entropía.

De la célebre ecuación podemos derivar que: a mayor desorden mayor cantidad de microestados, es decir, mayor entropía. Los sistemas evolucionan siempre hasta alcanzar su estado máximo de entropía. ¿Si es así, como algunos hablan de la entropía como creadora de orden?

¿Cómo puede la entropía crear orden, si a mayor entropía mayor desorden? Claro que, la ecuación que es el “personaje principal” de este trabajo, es mucho más sutil que cualquier interpretación heurística que pueda hacerse de ella, y se puede llegar a ver que, de acuerdo con esta ecuación, pueden simultáneamente en un sistema aumentar la entropía y crearse estructuras ordenadas.

 

ENTROPIA - DESORDEN UNIVERSAL

La Entropía es el desorden

En las galaxias espirales tenemos un buen ejemplo de que, luchan contra la entropía que es la causa de la destrucción  de estrellas que al llegar al final de sus vidas (máximo nivel de entropía), se valen de las explosiones supernovas para crear Nebulosas que, a su vez, con la ayuda de la interacción gravitatoria, hacen posible que surjan a la vida nuevas estrellas, burlando así a la entropía destructora.

Erwin Schrödinger (1887-1961) 1933 @nobelprize_org -winning Austrian-Irish physicist who developed a number of fundamental results in quantum theory: the Schrödinger equation provides a way to calculate the wave function of a system

 

En un texto profético sobre la era del ADN, en What is Life? de Erwin Shródinger, las nociones del código genético y metabolismo celular aún eran discutidas juntas. En su libro, Schrödinger adelantó la idea que el cromosoma contenía un “cristal aperiódico” en la forma de un “code-script”, inspirando posteriormente el descubrimiento de la forma de doble-hélice del ADN. Sin embargo aún es raro que los “genetistas populares” y los “teóricos de la vida” recuerden la teoría de la entropía negativa articulada en el mismo texto.

 

La reproducción humana: los aparatos reproductores masculinos y femeninos. - Actiludis

                    Es nuestra manera de luchar contra la Entropía

Todos los seres vivos nos valemos de la reproducción para burlar a la Entropía, y, aunque no podamos esquivarla a nivel individual, si que lo podemos hacer en el ámbito de la Civilización que, al reproducirse perdura. Aquí es donde entra la frase: “mientras haya muerte hay esperanza”. ¿Podríamos considerar como entes vivos a las Galaxias y a los mundos que, como el planeta Tierra se regenera mediante explosiones surper-novas, terremotos, erupciones volcánicas y otros fenómenos naturales?

 

Entropía - Concepto, ejemplos y entropía negativa

      Y pensar que la Entropía acabará algún día con nuestro Universo…Es duro de asimilar y, sin embargo…

La cuestión sobre la flecha del tiempo intriga a los científicos porque la mayor parte de las leyes fundamentales de la física no separan el pasado del futuro. El concepto de entropía, a su vez, se basa en el flujo del tiempo, ya que establece que el desorden o caos aumenta con el paso del tiempo, tal como señaló el físico Ludwig Boltzmann hace ya más de un siglo.

Espacio y tiempo son conceptos que no tienen sentido antes de la aparición de la materia en el Universo, por lo que en el modelo cosmológico actual se considera que el espacio y el tiempo aparecen con la materia en el mismo momento del Big-Bang.

Según este modelo cosmológico, a medida que el tiempo fluye, la entropía global del Universo también aumenta. Como la flecha del flujo del tiempo es irreversible, la flecha de flujo de la entropía también es irreversible. En el Universo, la cantidad de energía útil disminuye paulatinamente y aumenta la forma degradada de energía.

Dado que la entropía global siempre está en constante aumento, causará en algún momento el desplome térmico de todos los biosistemas en el Universo conocido, fenómeno conocido como Muerte Térmica del Bio-cosmos. Fin del Universo, de la vida, del tiempo y también de la entropía, según el actual modelo cosmológico.

 

 

Claro que, hablamos y hablamos de la Entropía pero, no caemos en la cuenta de que, en el Universo, todo está relacionado. Existen hilos invisibles que atan unas cosas a las otras e inciden sobre los comportamientos y, si eso es así (que lo es), deberíamos pensar en eso que llamamos “vacío cuántico” y preguntar: ¿Qué incidencia podría tener sobre esa entropía destructora?

En el vacío, la existencia del cuanto de acción que está íntimamente unida a la propia naturaleza de la energía de las fluctuaciones cuánticas obliga a que su estructura sea discontinua, escalonada, fractal (prefractal), lejos de la continuidad clásica, por ello la geometría fractal puede enseñarnos algo que antes no podíamos ver. Pero las fluctuaciones cuánticas de energía del vacío no son simples variaciones sobre un fondo absoluto y estático. Las fluctuaciones determinan la propia geometría del espacio, por lo que analizando su estructura podremos averiguar algo más sobre la referencia espaciotemporal que determinan. La forma en que se puede proceder a analizarlas es idéntica a como se determina la dimensión fractal de una costa o cualquier figura fractal sencilla. La pauta que nos guia, en nuestro caso, es la variación de la energía virtual de las fluctuaciones con la distancia. Desde distancias astronómicas hasta la Longitud de Planck la energía asociada está siempre en proporción inversa a dicha distancia: si para una distancia D se le asocia una energía E, para una distancia 2D se le asocia una energía E/2.A pesar de lo intrincadas e irregulares que son las fluctuaciones cuánticas su dependencia con el inverso de la distancia permite al vacío cuántico que se nos presente de forma, prácticamente, similar al vacío clásico a pesar de las tremendas energías a las que se encuentra asociado. En este efecto tuvo mucho que ver la particular geometría que adoptó nuestro Universo : 3 dimensiones espaciales ordinarias y 6 compactadas. Esta geometría y la propia naturaleza del cuanto de acción están íntimamente ligadas. Con otra geometría diferente las reglas de la mecánica cuántica en nuestro universo serían completamente diferentes.

 

El espacio-tiempo está siendo deformado por las ondas gravitatorias | Euronews

 

La estabilidad del espacio-tiempo, de la materia y de la energía tal como los conocemos sería imposible y, a la postre, tampoco sería posible la belleza que esta estabilidad posibilita así como la propia inteligencia y armonía que, en cierta forma, subyace en todo el Universo.

Así que, entre el espacio que podemos ver, ese vacío que sabemos que está ahí y no podemos más más que algunas consecuencias de su existencia, lo que llamamos “materia oscura” que es la mayor concentración de “ese algo” que existe, y, que, bien podrían ser las semillas a partir de las cuales surge la materia normal o luminosa una vez que, con el tiempo y a partir de esa “semilla” se transforma en materia “normal”, Bariónica y, ahora sí, sujeta al electromagnetismo…Todo eso, amigos, no podría incidir de alguna manera en esa Entropía destructora que, sin que lo sepamos está siendo combatida por todos esos parámetros que ignoramos…a ciencia cierta.

Una ley científica es un fenómeno universal observado experimentalmente y que puede verificarse mediante el método científico. Algunas de leyes establecidas mediante el método científico que confirman la creación son:

Leyes de la Termodinámica y otras que henos podido descubrir pero… esa será otra historia.

Emilio Silvera Vázquez

 

  1. 1
    Pedro
    el 31 de mayo del 2024 a las 5:29

    Vaya con el video de Javier Garcia, si hasta ahora definían la entropia como el grado de desorden de un sistema.
    Si nos preguntarán cual es el grado de entropia de un sujeto disciplinado frente a otro no disciplinado, la respuesta resultaría muy obvia. Mayor entropia aquel sujeto menor disciplinado ya que trabajo útil si logra alguno muy restringido u limitado, sin sorprender a nadie por ello .

    Ahora viendo el video, resulta que definen la entropia como la capacidad que tiene un sistema de hacer lo más improbable, ya que subyace detrás mayor información que hasta entonces no se había considerado.

    Cara y cruz de la entropia, un sistema puede tener mucha o poca entropia, un sistema puede tener mucha o poca información, o un sistema puede tener mucha o poca sorpresa, esta no es la cuestión sino, la cuestión que no terminan de resolver es ¿Que pasa con un sistema que tiene muy poca informacion, sin embargo esta resultar muy relevante? Aún más ¿Relevante, para que o para quien?.
    .

    ¿Hay ecuación que cuantifique lo relevante de esto u aquello?

    Conclusion:”¿La matematizacion de esto u aquello es lo relevante o bien lo más relevante es como nos desvivimos por esto u aquello?.

    Responder
    • 1.1
      emilio silvera
      el 31 de mayo del 2024 a las 8:25

      ¡Estos Físicos!

      Responder
Cerrar respuesta

Responde a Pedro



Comentario:

XHTML

Subscribe without commenting