Abr
26
¿Vida de Silicio? ¿Será posible?
por Emilio Silvera ~
Clasificado en El Universo y la Vida ~
Comments (3)

La idea de vida basada en silicio, en lugar de carbono, es un tema que ha obligado a la Ciencia a especular sobre esa posibilidad no verificada. Si la vida basada en silicio fuera posible, podría presentar desafíos significativos debido a la diferencia en la química del silicio con respecto al carbono, especialmente en relación con la respiración y la complejidad molecular.

Anoche acabé de repasar el pequeño librito de Asimov “Cien preguntas básicas sobre Ciencia” y, de entre todas ellas, os he sacado la que aquí os transcribo por ser un tema que muchas veces hemos comentado en esta página. Asimov, como sabéis, era químico y le gustaba la Ciencia en General, él se metía de cabeza en todos los campos y, para dejar volar su imaginación, se refugiaba en la Ciencia ficción, parcela en la que, no salió mal parado al conseguir grandes éxitos., como la trilogía de la Fundación, Yo, Robot…
“Todos los seres vivientes, desde la célula más simple hasta la sequoia más grande, contienen agua, y además, como la molécula más abundante, con mucho. Inmersas en el agua hay moléculas muy complejas, llamadas proteínas y ácidos nucleicos, que al parecer son características de todo lo que conocemos por el nombre de vida. Estas moléculas complejas tienen una estructura básica compuesta en cadenas y anillos de átomos de carbono. A casi todos los carbonos van unidos uno o más átomos de hidrógeno. A una minoría, en cambio, van ligadas combinaciones de átomos como los de oxígeno, nitrógeno, azufre y fósforo.
Los átomos de silicio reemplazan a los de carbono dentro del grafeno.¿ Lo hará también para la vida?
Expresándolo con la máxima sencillez podemos decir que la vida, tal como la conocemos, está compuesta de derivados de hidrocarburos en agua.
¿Puede la vida estar compuesta de otra cosa? ¿Existen otros tipos de moléculas que proporcionen la complejidad y versatilidad de la vida, algo distinto del agua que proporcione, sin embargo, las propiedades poco usuales, pero necesarias, que sirven como trasfondo de la vida?
¿Es posible concebir algo parecido al agua que pudiera sustituirla? Las propiedades del amoníaco líquido son las más afines a las del agua. En un planeta más frío que la Tierra, por ejemplo, Júpiter, donde el amoníaco abunda en estado de líquido mientras que el agua está solidificada, puede que sea concebible una vida basada en el amoníaco.
El amoniaco está constituido por moléculas de composición NH3. Los átomos del hidrógeno son equivalentes. La molécula tiene, por tanto, forma piramidal es decir presenta una hibridación sp3, donde tres de los orbitales se solapan con los hidrógenos y el que resta se queda con los electrones no compartidos. Los ángulos de enlace son algo menores que los de un tetraedro debido a la nube electrónica del par solitario que los reduce a un ángulo de 107º 20´. El nitrógeno ocupa el vértice de una pirámide, cuya base es un triángulo equilátero formado por los tres átomos de hidrógeno.
Así que, en el amoniaco tenemos átomos de hidrógeno unidos al nitrógeno , que es un átomo pequeño y electronegativo, por lo que el amoniaco presentará enlaces intermoleculares de puntos de hidrógeno al igual que la molécula de agua. El hecho de que el amoniaco presente este tipo de enlace entre sus moléculas hace que sus puntos de fusión y ebullición, el calor de vaporización, la constante dieléctrica, etc… sean anormalmente altos.
Mirando dentro del átomo…
Por otro lado, hay que decir que si el hidrógeno va unido a tantos puntos de la cadena de carbono es porque se trata de un átomo muy pequeño que se acopla en cualquier lugar. El átomo de flúor es parecido al de hidrógeno en algunos aspectos y casi tan pequeño como él. Así pues, igual que tenemos una química de los hidrocarburos podemos tener una química de los fluo-carburos, con la única salvedad de que éstos son mucho más estables que aquéllos. Quizá en un planeta más caliente que la Tierra podría concebirse una vida a base de fluoro-carburos.
Pero ¿y en cuanto al átomo de carbono? ¿Existe algún sustituto? El carbono puede unirse a un máximo de cuatro átomos diferentes (que pueden ser también de carbono) en cuatro direcciones distintas, y es tan pequeño que los átomos de carbono vecinos se hallan suficientemente próximos para formar un enlace muy fuerte. Esta característica es la que hace que las largas cadenas y anillos de carbono sean estables.
Se puede ver que la glucosa se compone de seis átomos de carbono (Carbo…) y los elementos de seis moléculas del agua (…hidrato). La glucosa es un azúcar simple, en el sentido de que a nuestra lengua su sabor es dulce. Hay otros azúcares simples que también habrás escuchado:
- Fructosa
- Galactosa
- Lactosa
- Sacarosa
- Maltosa
La glucosa, fructosa y galactosa se conocen como monosacáridos. Lactosa, sacarosa, maltosa y son llamados disacáridos (que contienen dos monosacáridos).
El silicio es, después del oxígeno (O) el segundo elemento más abundante en la tierra: la corteza terrestre está formada en aprox. 28 % de silicio. Cada átomo de silicio central puede enlazarse adicionalmente con dos átomos de carbono, normalmente en grupos metilo (CH3). En los átomos de silicio de los extremos se suelen enlazar tres grupos metilo. El silicio es un elemento tetravalente, es decir, que puede formar 4 enlaces covalentes. En la tabla periódica se encuentra en el grupo IV, justo debajo del carbono (C). El silicio presenta una gran afinidad con el oxígeno.
Las características de uno y el otro son diferentes en lo que a la adaptación se refiere
El silicio se parece mucho al carbono y también puede unirse a un máximo de cuatro átomos diferentes en cuatro direcciones distintas. El átomo de silicio, sin embargo, es mayor que el de carbono, con lo cual las combinaciones silicio-silicio son menos estables que las de carbono-carbono. La existencia de largas cadenas y anillos de átomos de silicio es mucho más improbable que en el caso de carbono.
Lo que sí es posible son largas y complicadas cadenas de átomos en las que alternan el silicio con el oxígeno.
Moléculas de dióxido de silicio formando una macla de cristales de cuarzo.
Créditos: www.123rf.com
Personalmente creo que el Silicio dará más juego en el campo de la I.A. (Vida Artificial) que en esta otra clase de vida que nosotros representamos.
La estructura de la silicona contiene átomos de silicio y oxígeno alternantes en unidades periódicas, llamadas siloxano. Las moléculas formadas por varias unidades de siloxano se denominan polisiloxano o silicona. Cada átomo de silicio puede unirse a otros dos átomos o grupos de átomos, y este tipo de moléculas se denominan “siliconas”.
A la molécula de silicona pueden ir unidos grupos de hidrocarburos o de flúor-carburos, y estas combinaciones podrían resultar en moléculas suficientemente grandes, delicadas y versátiles como para formar la base de la vida. En ese sentido sí que es concebible una vida a base de silicio.
Pero ¿existen realmente esas otras formas de vida en algún lugar del universo? ¿O serán formas de vida basadas en una química completamente extraña, sin ningún punto de semejanza con la nuestra?
Quizá nunca lo sepamos.
Al menos de momento, la vida basada en el Silicio ha sido cosa de la Ciencia ficción, nada hemos podido descubrir que nos indique esa dirección y, desde luego, aunque nunca podemos negar nada (el universo y su diversidad de mundos es muy complejo), afirmar que existe la vida basada en el Silicio, no tiene ninguna base científica.
El elemento químico básico que ha sido propuesto para un sistema bioquímico alternativo es el átomo de silicio, puesto que el silicio tiene muchas propiedades químicas similares al carbono, tiene los mismos cuatro enlaces, y está en el mismo grupo del cuadro periódico, el grupo 14.
En esta segunda imagen, obtenida por el mismo grupo de investigación, se observan los orbitales moleculares de la molécula (PTCDA) que en este caso está depositada sobre los átomos de silicio.
Parafraseando al premio Nobel Richard Feynman, efectivamente “hay un gran espacio al final”. Tenemos ante nosotros un universo de tamaño diminuto que justo ahora estamos comenzando a explorar, un lugar en donde los materiales se comportan de diferente manera y cuyas extrañas propiedades podemos aprovechar para desarrollar una mejor tecnología.
Tendrás este material la propiedad bioquímica para poder, a partir de ahí, otras formas de vida. La bioquímica que conocemos está basada en el Carbono pero…¡quién sabe! Es tan grande el Universo, son tantos los mundos que están alumbrados por estrellas distintas a las que… por distintas razones podríamos pensar que…Por ejemplo, pensemos en Titán.
Se trata de una molécula de Silicio. Se ha especulado con la posibilidad de encontrar vida en Titán, la luna de Saturno. Sin embargo los científicos creen que de existir sería una vida de tipo microbiana basada probablemente en el silicio debido a las bajas temperaturas, escasez de agua y la falta de oxígeno de su entorno.
Si existen otras formas de vida en otros mundos… ¡Está por ver! Sin embargo, si nos paramos a pensar, si llegamos a la misma conclusión que llegó Einstein de que, el Universo, es igual en todas partes… Tendremos que convenir que si todo érl está regido por las mismas leyes y las mismas constantes… ¡También en todo el Universo pasarán las mismas cosas o muy simila5res!
Los mares de metano de Titán
Suponen también que su hábitat serían los hidrocarburos que se encuentran en Titán en forma líquida y que sus procesos biológicos serían muy distintos a los que conocemos, al ser el silicio más pesado que el Carbono. Son muchas las cosas que desconocemos y, de nada de lo que podamos encontrar, en el vasto universo, podremos sorprendernos.
Los Cristales de Cuarzo son una sorprendente creación de la Naturaleza, con dos moléculas de Silicio y una de Oxigeno (Si2 O) en su configuración química, podría decir que son agua fosilizada, su particularidad se podría explicar como catalizadora ya que enfoca, almacena, aumenta y transforma cualquier forma de energía. Muchas son las bellas formas que en la Naturaleza se pueden configurar con Silicio pero la vida…
Puede que aquí esté la clave de todo
Yo, de momento, apuesto por el Carbono y, algo me dice que, aunque existan seres distintos a nosotros (que existirán), estos, como nosotros, también estarán basados en el Carbono. Pienso que la mecánica del universo se rige por las leyes que conocemos y, siendo así (que lo es), todo lo que aquí ha ocurrido también podrá ocurrior en cualquier lugar lejano. La materia está conformada de la misma manera en todas partes y, sus transiciones de fase, tanto aquí como allí, siempre serán las mismas y, si es así…La Vida, será también la misma en todas partes independientemente de las formas que puedan adoptar en función de otros factores como gravedad del planeta, lejanía de su estrella, campo electromagnético, etc. etc.
Bueno, ya veremos si tenemos la oportunidad de comprobarlo.
Emilio Silvera Vázquez
Abr
25
Química: Alquimia y todavía más.
por Emilio Silvera ~
Clasificado en Química ~
Comments (2)
El 16 de febrero de 1785 Antoine-Laurent de Lavoisier sintetiza agua a base de hidrógeno y oxígeno. Lavoisier fue un químico francés que junto a su esposa, la científica Marie Lavoisier, realizó grandes contribuciones a la química. Se le considera el “padre de la química” por sus detallados estudios, entre otros: el estudio del aire, el fenómeno de la respiración animal y su relación con los procesos de oxidación, el análisis del agua y el uso de la balanza para establecer relaciones cuantitativas en las reacciones químicas estableciendo su famosa Ley de conservación de la masa
Antoine-Laurent Lavoisier (1743-1794) fue un financiero. Estableció un sistema de pesos y medidas que condujo al sistema métrico, vivió los primeros momentos turbulentos de la Revolución Francesa y fue pionero en la agricultura científica. Se casó con una jovencita de catorce años y fue decapitado durante el Terror. Se le ha llamado padre de la química moderna y, a lo largo de su atareada vida, sacó a Europa de las épocas oscuras de esta ciencia.
Una de las primeras aportaciones de Lavoisier surgió cuando éste hizo el experimento de hervir agua durante largos períodos de tiempo. En la Europa del siglo XVIII muchos científicos creían en la transmutación. Pensaban, por ejemplo, que el agua podía transmutarse en tierra, entre otras cosas. Entre las pruebas, la principal consistía en hervir agua en una cazuela: en la superficie interior se formaban residuos sólidos. Algunos científicos proclamaron que esto se debía a que el agua se convertía en un nuevo elemento. Robert Boyle, el gran físico y químico británico del siglo XVII que llegó al apogeo de su actividad científica cien años antes que Lavoisier, creía en la transmutación. Después de observar cómo crecían las plantas absorbiendo agua, llegó a la conclusión – al igual que muchos antes que él – de que el agua podía transformarse en hojas, flores y bayas. Según dice el químico Harold Goldwhite, de la State University de California, en Los Ángeles, “ Boyle fue un activo alquimista ”.
Boyle
El mérito que tuvieron aquellos pioneros…con tan pocos medios, agranda aún más los enormes logros y los descubrimientos que hicieron.
Lavoisier observó que el peso era la clave y que las mediciones eran fundamentales. Puso agua destilada en un hervidor especial en forma de tetera llamado pelícano, un recipiente cerrado con una tapa esférica que tomaba el vapor del agua y lo devolvía a la base del recipiente por dos tubos parecidos a unas asas. Hirvió el agua durante 101 días y encontró un residuo considerable. Pesó l agua, el residuo y el pelícano. El agua pesaba exactamente lo mismo. El pelícano pesaba algo menos, una cantidad exactamente igual al peso del residuo. Por lo tanto, el residuo no era producto de una transmutación, sino parte del recipiente: vidrio disuelto, sílice y otras sustancias.
Abr
25
Desde la noche de los tiempos… ¡Hemos tratado de conocer el...
por Emilio Silvera ~
Clasificado en El Universo ~
Comments (0)
¡El Universo! Gracias a la Astronomía, la Astrofísica y otras disciplinas y estudios relacionados, estamos conociendo cada día lo que en realidad es nuestro Universo que, nos tiene deparadas muchas, muchas sorpresas y maravillas que ni podemos imaginar. ¡Son tantas las cosas que aún tenemos que aprender de éste Universo Inmenso!
Las primeras estrellas aparecieron después de cientos de millones de años
Se estima que las primeras estrellas se formaron hace ahora unos 200 o 400 millones de añosmarcando el comienzo del “amanecer cósmico” y la reionización del universo. Este periodo siguió a la era oscura, donde el universo era opaco debido a la presencia de hidrógeno neutro.
Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo.
Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos. Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.
“¿Está el Corazón y el Alma de nuestra Galaxia localizadas en Casiopeia? Posiblemente no, pero ahí es donde dos brillantes nebulosa de emisión apodadas Corazón y Alma descansan. La Nebulosa del Corazón, oficialmente catalogada como IC 1805 y visible en la parte superior derecha, tiene una forma en luz visible que nos recuerda a un clásico símbolo de un corazón. La imagen de arriba, sin embargo , fue realizada en luz infrarroja por el recientemente lanzado telescopio WISE. La luz infrarroja penetra bien dentro de las enormes y complejas burbujas creadas por la formación estelar en el interior de estas dos regiones de formación de estrellas.
Los estudios de estrellas y polvo como éstos encontrados en las Nebulosas Corazón y Alma se han focalizado en cómo se forman las estrellas masivas y cómo les afecta su entorno. La luz tarda unos 6.000 años en llegarnos desde estas nebulosas, que juntas abarcan unos 300 años luz.”
(APOD)
Ubicadas en el brazo de Perseo de nuestra galaxia, la nebulosa Corazón (derecha) y la nebulosa Alma (izquierda) son muy brillantes (a pesar de eso es necesario un telescopio para verlas) en una región de la galaxia donde muchas estrellas se están formando. IC 1805 (la nebulosa Coraz´0n) es a menudo llamada también como la nebulosa del Perro Corriendo, debido obviamente a la apariencia de la nebulosa vista desde un telescopio.
Abr
25
¿Qué hay en Marte? ¿Cómo fue? ¿Cómo será?
por Emilio Silvera ~
Clasificado en Marte ~
Comments (0)
¿El planeta Marte? Siempre misterioso. Recordemos al astrónomo Schiaparelli que creyó descubrir los Canales de Marte por los que discurría el agua. Aquello desató la imaginación de muchos y, a no tardar mucho, aparecieron las historias de los “hombrecillos verdes de Marte”.
El módulo de aterrizaje de la misión ExoMars llevo el nombre del ingeniero italiano del siglo XIX que creyó ver cauces de agua en Marte. Sus impresiones dispararon las especulaciones sobre una civilización inteligente en el Planeta rojo.
En las suaves laderas alrededor de la montaña, Curiosity buscó moléculas orgánicas, los componentes químicos fundamentales de la vida. El Orbitador de Reconocimiento de Marte ha encontrado una intrigante marca de arcilla cerca de la parte inferior de la montaña y sulfatos minerales un poco más arriba. Ambos minerales se forman en presencia de agua, lo cual incrementa la posibilidad de existencia de ambientes propicios para la vida.
Buscando moléculas orgánicas
La sonda o nave Curiosity, miró al horizonte lejano y, vislumbró su destino marciano, y, estaba deseosa de comenzar las misiones encomendadas para poder enviar a la Tierra, algunos datos más de los que ya, aquí son bien conocidos pero, antes de que nos lleguen informaciones nuevas, conozcamos algo de aquel planeta.
Las huellas dejadas por el la presencia del agua están claras
Conforme nos dicen las huellas dejadas, pocas dudas nos pueden caber de que, en el pasado lejano, Marte tenía sus mares y lagos extensos, incluso algunos, apuestan por un gran océano, a pesar de su porosa superficie. En muchos cañones profundos existen trazas de antiguos sedimentos lacustres, estratificados y de gran espesor; la apariencia moteada de algunas llanuras bajas septentrionales sugiere la presencia de muchos estanques.
Marte tenía agua y atmósfera
La evidencia a favor de un mar grande ha sido controvertida, pero puede trazarse el límite de un posible océano alrededor de las llanuras septentrionales de tierra baja donde, en días más templados y agradables, grandes canales de desagüe procedentes de las tierras altas y llenas de cráteres descargaban su agua. La supuesta línea costera incluye acantilados erosionados, terrazas onduladas y cúspides. Bautizado como Oceanus Borealis, este mar marciano puede haber cubierto un tercio del planeta.
La Teoría del Océano Marciano
Como evidencia complementaria a favor de un océano, hay fuertes señales de que el hemisferio sur del planeta ha estado sometido a glaciación a gran escala. Marte tiene hoy un delgado casquete polar septentrional que contiene agua helada mezclada con hielo seco (dióxido de carbono congelado), y un casquete polar austral más espeso de hielo seco fundamentalmente. Los casquetes crecen u disminuyen con las estaciones; el casquete septentrional puede desaparecer por completo. Pero hace tiempo, una gruesa capa de agua helada se extendía desde el Polo Sur hasta los 33 grados de latitud. Quizá la fuente de todo éste hielo haya sido la evaporación del Oceanus Borealis.
En el curso de períodos geológicos, Marte se ha secado poco a poco a medida que el vapor de agua se perdía en el espacio debido a su baja gravedad. Una cantidad de agua equivalente a una profundidad global de 70 metros podría haberse perdido de esta forma. Más grave es el frío. Cuando la temperatura descendió bruscamente, las condiciones se hicieron inadecuadas para el agua líquida, y la mayor parte de los mares marcianos quedó incorporada en el permafrost. Es probable que antiguos lagos de descarga se hubieran congelados a altas latitudes, y sus remanentes quizá sigan allí, ocultos bajo capas de polvo y roca.
La Actividad hidrológica del planeta sucedió hace mucho tiempo. Si alguna vez hubo ríos tranquilos con meandros, o si hubo océanos agitados, probablemente se secaron al menos hace tres mil quinientos millones de años. Sin embargo, quizá la degeneración del clima no haya sido una vía de dirección única. La lenta desecación podría haberse visto interrumpida por cortos episodios más cálidos, en los que el agua volvía a fluir libremente. Hay alguna evidencia de ello en el hecho de que algunos valles marcianos se formaron mucho más tarde. Además parece claro que algunos de los canales de desagüe mayores han sido excavados varias veces, lo que indica toda una serie de inundaciones. Todo esto sugiere que, por alguna razón, Marte volvió ocasionalmente, y quizá sólo por breve período de tiempo, a condiciones calientes y húmedas. Puede haber habido entonces un intenso reciclaje del agua a través del suelo y la atmósfera. Pero con cada ciclo de inundación y glaciación desaparecía más agua. Aunque algunos ríos pueden haber estado corriendo en Marte hace tan sólo unos pocos cientos de millones de años, estas corrientes eran débiles en comparación con las antiguas inundaciones, y habrían tenido poco efecto en el clima marciano.
Los ríos marcianos ofrecen una clara evidencia de que el planea fue en algún momento más caliente y más húmedo. Pero, ¿cómo pudo ser esto? A primera vista hay una buena razón para creer que Marte debería haber estado aún más frío en el pasado que hoy. Esta tiene que ver con el denominado problema del Sol joven. A medida que el Sol envejece, se hace poco a poco más brillante debido a cambios en su constitución química. Hace cuatro mil millones de años, habría sido un 30 por 100 más tenue de lo que es hoy, reduciendo drásticamente su efecto calentador sobre el lejano Marte. Esto estaría contrarrestado en parte por el calentamiento geotérmico, producido por la radiactividad y el calor almacenado procedente de la formación del planeta, y ambos efectos fueron mucho más fuertes en el pasado. Sin embargo, el flujo de calor geotérmico por sí sólo no compensaría el efecto del Sol joven, tenue, y hay que encontrar otras razones para un clima más tibio.
La manera más fácil de hacer un planeta más caliente es utilizando el efecto invernadero. Los gases de invernadero tales como el dióxido de carbono actúan como un parasol, atrapando el calor del Sol cerca de la superficie del planeta. Hoy la atmósfera marciana es demasiado delgada como para producir mucho calentamiento por efecto invernadero, pero ciertamente habría sido mucho más espesa durante los primeros mil millones de años… Como sucede con la Tierra, Marte adquirió una densa atmósfera inicial tanto por la desgasificación del planeta como por el aporte de sustancias volátiles por parte de cometas, asteroides y planetesimales helados. Un CO2 abundante habría elevado la temperatura de modo espectacular.
Las evidencias de pasados mares en Marte son grandes
De todas las maneras, los sucesos que llevaron a Marte a perder su atmósfera, sus mares y océanos, son muy diversas y serán los expertos geólogos los que nos puedan explicar aquellos posibles sucesos.
Respecto a la posibilidad de vida, el hecho de que Marte estuviera caliente y húmedo hace unos 3.500 millones de años es altamente significativo, pues significa que Marte se parecía a la Tierra en una época en que la vida existía aquí. Eso, como es lógico pensar, debería haber llevado a nuestro planeta hermano a que, como la Tierra y en las mismas circunstancias que ella, también fuera un lugar apropiado para la vida. Por sí misma, sin embargo, la presencia de agua líquida es sólo una parte de la historia. Lo que hace que las perspectivas de vida en Marte parezcan tan buenas, es que aquel planeta, no sólo tiene agua líquida sino también volcanes.
La montaña marciana del Monte Olimpo se eleva a 27 kilómetros sobre el macizo Tharsis y tiene 550 kilómetros der diámetro. Medida por medida, es la montaña más grande de su tipo en todo el Sistema solar. La importancia del monte Olimpo no está en su tamaño, sin embargo, sino en el hecho de que es un volcán. Donde se dan juntos volcanes y agua, pueden aparecer fuentes calientes: sistemas hidrotermales como los de la Tierra que posiblemente fueron un hogar para los primeros organismos en aquel planeta.
¿Floreció también la vida microbiana en Marte hace 3.800 millones de años, quizá en alguna fuente burbujeante en las pendientes del monte Olimpo, o en las profundidades de rocas porosas por debajo de un mar marciano hace tiempo desaparecido?
Una de las misiones que se encomendó a la Curiosity era, tratar de averiguar si en Marte hubo vida alguna vez, y, si en efecto, la vida se puso en marcha en la superficie de Marte, hace ahora 3.800 millones de años, se habría enfrentado a una carrera desesperada contra el tiempo. Apenas había terminado el bombardeo esterilizante cuando el clima empezó a deteriorarse. A medida que la temperatura descendía y el agua se congelaba, los hábitats apropiados habrían sido cada vez más escasos. En tan sólo algunos cientos de millones de años cualquier organismo remanente se habría retirado, con toda probabilidad a refugios especiales, tales como lagos desolados protegidos por cubiertas de hielo, o lugares profundos en la sub-superficie que, con temperaturas más elevadas, el agua líquida corriera sin ningún problema para facilitar la vida de hongos, líquenes y, vaya usted a saber que colonias de bacterias.
Se estima que el rico pasado marciano en lo que se refiere a la erupción de volcanes, ha dejado en el planeta profundas y enormes galerías por las que corría la lava. Ahora, pasados muchos años de aquello, en esos lugares el agua líquida está presente, las temperaturas en aquellas profundidades es más alta y habrán proliferados formas de vida primigenias como hongos, líquenes, bacterias.
Veremos que nos dicen en los próximos proyectos, y, sobre todo, en la tan cacareada misión tripulada que, según creo… ¡Va para largo! No estamos en disposición de poner en marcha una misión tripulada que, de ninguna manera, podría asegurar la vida de los viajeros. Ya dejamos aquí un par de trabajos explicando por qué no se podía viajar al planeta Marte.
Emilio Silvera Vázquez
Abr
24
¿La complejidad del cerebro? ¡La esencia del Universo!
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
El cerebro humano es reconocido por su asombrosa complejidad, siendo considerado por muchos como la estructura más compleja en el universo. Contiene una gran cantidad de neuronas y conexiones, lo que le permite realizar funciones cognitivas, emocionales y motoras. La complejidad del cerebro se manifiesta en su estructura, funciones y en la forma en la que las neuronas se interconectan y comunican.
A primera vista el edificio de la ciencia aparenta estar erigido sobre suelo firme y profundos cimientos, como una unidad congruente, monolítica, dando fe de una sola realidad. Sin embargo, la ciencia es un constructo dinámico, cambiante. Según Thomas Kuhn: “Parece más bien una estructura destartalada con escasa coherencia. Es producto de la observación, del razonamiento y también de muchas pasiones, siempre de seres humanos.”
El estudio biológico del cerebro es un área multidisciplinar que abarca muchos niveles de estudio, desde el puramente molecular hasta el específicamente conductual y cognitivo, pasando por el nivel celular (neuronas individuales), los ensambles y redes pequeñas de neuronas (como las columnas corticales) y los ensambles grandes (como los propios de la percepción visual) incluyendo sistemas como la corteza cerebral o el cerebelo, e incluso, el nivel más alto del Sistema Nervioso.
Hemos podido llegar a saber que el cerebro, tanto si está despierto como si está dormido, tiene mucha actividad eléctrica, y no sólo por las señales individuales emitidas por una u otra neurona cuando se comunican entre sí. De hecho, el cerebro está envuelto por innumerables campos eléctricos superpuestos, generados por la actividad de los circuitos neuronales de las neuronas que se comunican. Una nueva investigación revela que estos campos son mucho más importantes de lo que se creía hasta ahora. Es posible que, de hecho, representen una forma adicional de comunicación neuronal. Se ha llegado a pensar que, con la evolución del cerebro, quizás algún día, los humanos, podamos transmitir telepáticamente. Sin embargo…
Aunque se han llevado a cabo muchos experimentos sobre la telepatía, su existencia no es aceptada por la gran mayoría de la comunidad científica, entre otras cosas, argumentando que las magnitudes de energía que el cerebro humano es capaz de producir resultan insuficientes para permitir la transmisión de información. No obstante, algunos investigadores señalan que, con la tecnología necesaria, en un futuro será posible interpretar las ondas cerebrales mediante algún dispositivo y enviar mensajes textuales a un receptor de manera inalámbrica, sin embargo descartan que este proceso pueda llevarse a cabo de cerebro a cerebro sin mediación tecnológica. Hasta la fecha, las únicas pruebas de la telepatía son las narraciones testimoniales, pues jamás se ha podido reproducir un fenómeno telepático en laboratorio.
La neurociencia es una de las teorías científicas con más éxito en las últimas décadas. Pero aún, en este apartado del edificio de la ciencia, al verlo de cerca nos encontramos con arenas movedizas. Los especialistas se enfrentan al gran reto de explicar cómo es que los procesos físicos en el cerebro pueden generar o incluso influenciar la experiencia subjetiva. Este es el llamado problema duro de la consciencia.
Pero… ¡Vayamos mucho más atrás!
Los ladrillos del cerebro: Es evidente que el estímulo para la expansión evolutiva del cerebro obedeció a diversas necesidades de adaptación como puede ser el incremento de la complejidad social de los grupos de homínidos y de sus relaciones interpersonales, así como la necesidad de pensar para buscar soluciones a problemas surgidos por la implantación de sociedades más modernas cada vez. Estas y otras muchas razones fueron las claves para que la selección natural incrementara ese prodigioso universo que es el cerebro humano.
Claro que, para levantar cualquier edificio, además de un estímulo para hacerlo se necesitan los ladrillos específicos con las que construirlo y la energía con la que mantenerlo funcionando.
La evolución rápida del cerebro no solo requirió alimentos de una elevada densidad energética y abundantes proteínas, vitaminas y minerales; el crecimiento del cerebro necesitó de otro elemento fundamental:
Un aporte adecuado de ácidos grasos poliinsaturados de larga cadena, que son componentes fundamentales de las membranas de las neuronas, las células que hacen funcionar nuestro cerebro. La sinapsis es la unión funcional intercelular especializada entre neuronas, en estos contactos se lleva a cabo la transmisión del impulso nervioso.
¿En que radica la facilidad de algunas personas para socializar mucho más fácilmente que otros? Más allá de una cuestión de carácter, existen rasgos biológicos que pueden ayudar a los científicos a entender en donde radica el secreto de la popularidad y, es el cerebro, en donde se encuentra la clave para descubrirlo.
De acuerdo con un estudio realizado por la Dra. en Neurociencias Mary Ann Noonan en de la Universidad de Oxford en Inglaterra, el cerebro de las personas que tienen numerosos amigos consta de seis partes más grandes y mejor conectadas entre sí que el de las personas con pocos amigos.
La Dra. Noonan, presentó el resultado de su investigación en la reunión de la Sociedad de Neurociencias, en donde comentó haber encontrado que los seres humanos en posesión de una gran red de amigos y buenas habilidades sociales tienen ciertas regiones del cerebro que son más grandes, mejor conectadas con otras regiones y, sobre todo, más desarrollados que aquellos que no tienen las mismas habilidades sociales. Los rasgos biológicos marcados pueden ayudar a los científicos a entender en donde radica el secreto de la popularidad.
Distintos pero iguales
De todas las maneras, estamos muy lejos de saber sobre una multitud de funciones y propiedades que están presentes en el cerebro y que, para los expertos, de momento, no tienen explicación. Por ejemplo, ¿por qué maduran antes las niñas que los niños? Las observaciones y los comportamientos de unos y otros nos han llevado a ese razonamiento final, y la verdad es que más allá de ser una opinión subjetiva, podría tener cierto fundamento.
Llega información y se generan ideas como explosiones luminosas
A medida que crecemos nuestros cerebros se reorganizan y eliminan gran parte de las conexiones neuronales, quedándose sólo con aquellas que realmente proporcionan información útil. Esta información es, entre otra, la proveniente de regiones cerebrales que aunque estén lejanas sirven para contextualizar y comprender mejor la nueva información percibida: por ejemplo, escuchar un determinado sonido puede evocar el recuerdo de ciertas emociones, percibir según qué expresiones faciales se asocia con diferentes sentimientos y comportamientos, y una melodía musical está ligado a otros recuerdos de distintos tipos.
De esta forma, aunque la cantidad general de conexiones será más reducida según vamos madurando, el cerebro conserva las conexiones de larga distancia, que son las más complejas de establecer y de mantener y las realmente importantes para la integración de la información. Con ellas se consigue un procesamiento más rápido y eficiente. Esto explica también por qué la función cerebral no solo no empeora, sino que, en lugar de eso, mejora con los años (por lo menos, hasta los aproximadamente 40 años).
Nuestro sistema nervioso está siempre cambiando, es probable que cuando termines de leer este texto tu cerebro no sea el mismo que al comienzo de la lectura. El sistema nervioso tiene la capacidad de reordenar y crear nuevas sinapsis (conexiones entre neuronas), y gracias a esta característica somos capaces de aprender.
Cada experiencia deja una huella que modifica las sinapsis neuronales y permite que nos adaptemos a los constantes cambios de nuestro entorno, esta es la llamada Plasticidad Neuronal, que permite generar nuevas conexiones entre las neuronas, producto del aprendizaje y su almacenamiento en la memoria. Es decir, ¡el cerebro se transforma con la experiencia!.
Claro que, cuando hablamos del cerebro lo estamos haciendo del objeto más complejo del universo. Tiene tanta complejidad en sí mismo, que sus más de cien mil millones de neuronas nos hablan por sí mismo de ella. Nada en nuestro Universo se puede comparar a un objeto que con sólo un 1,5 Kg de peso, tenga tantas facultades y desarrolle tánta actividad como lo hace el cerebro Humano (el más adelantado y evolucionado que hasta el momento conocemos).
Explicar cualquiera de las “cosas” que están presentes en el cerebro, es, en sí mismo, un complejo ejercicio que supone “todo un mundo”, aunque estemos hablando de un sólo elementos de los muchos que allí están presentes. Por ejemplo…
La imagen tomada de nuestro cerebro no se podría distinguir de otra tomada del Universo
Dentro de nuestras mentes, en una maraña de neuronas y conexiones de sinopsis que, de alguna manera, están conectadas con el Universo al que pertenecemos. Ahí reside la Conciencia de Ser y del mundo que nos rodea. Tras complicados procesos químicos de los elementos que conforman la materia compleja de nuestros cerebros, se ha desarrollado una estructura muy compleja de la que, al evolucionar durante miles de años, se ha podido llegar a generar pensamientos, profundas ideas y sentimientos.
No creo que seamos un único caso en el Universo. ¡Son tantos los mundos y las estrellas! Si en el Cosmos, la Conciencia estuviera representada sólo por nosotros… ¡Qué desperdicio de mundos, qué ilógica razón tendría el Universo para haber accedido a traer aquí, a una sola especie de observadores que, como bien sabemos, estamos expuestos, por mil motivos, a la extinción, y, sería una verdadera desgracia universal que los pensamientos y los sentimientos desaparecieran para siempre. ¿Qué clase de Universo sería ese? Sin estar presente ese ingrediente de los pensamientos y la consciencia… ¡Sería un Universo inútil!
Aunque es mucho lo que hemos conseguido conocer de nuestro cerebro y su funcionamiento, mucho más es lo que nos queda por conocer. Ahí, en todo ese conglomerado de complejas estructuras que juntas, forman un todo, es de donde surge la Conciencia y, para poder entender como ocurre tal maravilla, debemos antes y es preciso que entendamos primero como funciona el cerebro: su arquitectura, su desarrollo y sus funciones dinámicas, su organización anatómica y la increíble dinámica que llega a generar. Todo ella nos llevará a tener una odea del por qué puede, a partir de está increíble “maquina de la naturaleza” surgir la conciencia.
Si nos paramos a pensar en el hecho cierto de que, el cerebro humano adulto, con poco más de un kilo de peso, contiene unos cien mil millones de células nerviosas o neuronas, La capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de evolución más reciente, contiene alrededor de 30 mil millones de neuronas y más de un billón de conexiones o sinapsis. Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en completar el recuento. Si consideramos el número posible de circuitos neuronales, tenemos que habérnosla con cifras hiper-astronómicas: 10 seguido de un millón de ceros. No existe en el Universo ninguna otra cosa de la que pueda resultar una cantidad igual. Incluso el número de partículas del universo conocido es de 10 seguido de tan sólo 79 ceros (El número de Eddington). En comparación con el número de circuitos neuronales…¡No es nada!
Todo este entramado tiene mucho que ver con los pensamientos. Aquí se fraguan los procesos del pensamiento. Al aprender, tener una idea, recordar algo, sentirse activado sexualmente, comunicar, etc. las neuronas están recibiendo y transmitiendo información a través del cerebro. Las células del cerebro se comunican entre sí a través de un proceso electroquímico. Cada vez que pensamos, aprendemos y nos comunicamos, una neurona envía un impulso nervioso por su axón. El axón de una célula cerebral hace varios miles de conexiones con muchos miles de otras células cerebrales. El punto donde una neurona se conecta a otra se llama sinapsis. Cuando un impulso nervioso (mensaje bioquímico electro-magnético) surge por el axón, es disparado a través del espacio sináptico a través de un mensajero químico, llamado neurotransmisor, hacia la dendrita de la neurona receptora.
Cuando hemos avanzado hasta llegar a saber que toda esa complejidad del cerebro que llevamos con nosotros los seres inteligentes, han requerido de un Ajuste Fino extremadamente complejo para que la confluencia de todos los parámetros, finalicen en un conjunto increíble de diversas dinámicas que finalmente lleve a la comprensión, a poder formar ideas y pensamientos, a sentir, a tener consciencia de SER… ¿Acaso existe una Conciencia Cósmica?
Y me pregunto Yo: ¿Podría alguna vez en el futuro, unas máquinas artificiales igualar todo esto?
En gran parte dependerá de que nosotros mismos no nos empeñemos en conseguir que los Robots lleguen a tener conciencia de Ser, Si eso ocurre…. ¡Mal irán las cosas!
Emilio Silvera Vázquez