jueves, 18 de septiembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Universos paralelos? ¡Qué sabemos nosotros!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como seremos en el mañana?

 

Archivo:Titan-Complex 'Anti-greenhouse'.jpg

                  ¿Podría adquirir la Tierra una atmósfera como la de Titán en el futuro? o, ¿podría perder la que tiene ahora como le pasó a Marte? Algunos estudios dicen que, dentro de 1.700 M de años nuestro planeta saldrá de la zona habitable. Y, si pensamos en fechas más lejanas, se producirá la fusión de Andrómeda con la Vía Láctea, el Sol Agotará su combustible nuclear de fusión y se convertirá en gigante roja primero y en enana blanca después, Claro, y, a todo eso, si le añadimos el Azar…

Leer más

Organismos Heterótrofos y Autótrofos

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Algunos detalles de las formas de vida y de como son sus metabolismos para poder vivir

Sistemas de Vida, Complejidad, algunos ejemplos

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Heterótrofos; Qué organismos son, nutrición, clasificación, ejemplos

En este artículo vamos a aprender cuáles son los organismos heterótrofos y por qué son importantes. Desde la clasificación de los animales y tipos de microorganismos vivos; foto-heterótrofos y quimio-heterótrofos, sus características, el origen, el concepto de nutrición heterótrofa, el metabolismo, además de incluir diversos esquemas, imágenes y ejemplos para una mejor comprensión.

Organismos heterótrofos

Dentro del campo de la biología, entender cómo se nutren los diferentes organismos vivos es importante. Aquí entra el estudio del metabolismo, qué son los procesos y reacciones que producen la transformación de materia en los seres vivos.

Dentro del campo del metabolismo, cuando hacemos referencia a la forma de adquisición de nutrientes, podemos distinguir dos procesos principales que clasifican a las especies que tiene vida; los organismos heterótrofos y autótrofos, que en su conjunto, forman toda la vida existente de cualquier hábitat y ecosistema de la Tierra.

Recuerda que estamos estudiando los procesos metabólicos y las funciones vitales de nutrición de las formas de vida que podemos encontrar en los diferentes tipos de ecosistemas, que necesitan energía y carbono fijado para sintetizar y formar sus células.

Sabiendo que todas las criaturas vivas necesitan algún tipo de alimento, si desgranamos qué significa heterótrofo tenemos que; El significado de «Hetero», se define como «otros» y «Trofos», es «alimento», así que, el concepto de la palabra engloba a todos los seres vivos que no fabrican su propio alimento y tienen que alimentarse de otros, así que estamos ante el estudio de la alimentación heterótrofa y sus características.

Para un mejor entendimiento y centrarnos en ver dónde estamos, dejamos un pequeño esquema:

 

los organismos heterótrofos

 

Y para tener una visión general, queremos dejar un cuadro que clasifica a todas las especies vivas atendiendo a los cinco reinos y su relación con el tipo de nutrición:

 

clasificación de los seres vivos
Características de los 5 reinos

Menú contenido: [ver]

Qué son los organismo heterótrofos

En la biología, un heterótrofo es un organismo que no puede fabricar sus propios alimentos por fijación de carbono y por lo tanto, deriva su ingesta de nutrientes de otras fuentes de carbono orgánico, principalmente materia vegetal o animal.

El proceso de nutrición heterótrofa engloba y representa  a todos aquellos seres vivos que incorporan materia orgánica ya elaborada por otros organismos de la Tierra (Son incapaces de formarla a partir de sustancias inorgánicas sencillas).

Dado que ya conocemos que es heterótrofos, ahora toca ver cuáles son de forma general: En realidad podemos incluir todos los animales (Desde mamíferos, peces y aves) también estarían incluidos los  hongos, los protozoos  y la mayoría de bacterias.

los consumidores o heterótrofos
Ejemplos heterótrofos

Si miramos la cadena alimenticia, son los consumidores primarios, secundarios y terciarios (Recuerda que los organismos autótrofos son los productores). Al consumir compuestos de carbono reducidos, el heterótrofo es capaz de utilizar toda la energía que consumen para el crecimiento, la reproducción o otras funciones biológicas.

Clasificación seres heterótrofos

En esta clasificación por Internet hemos visto muchos errores así que cuidado. Se pueden categorizar de muchas formas, pero las más representativas son las que indicamos en el siguiente cuadro:

 

clasificación de los heterótrofos

1.- Por la estrategia alimenticia

Aquí se analiza la forma en que obtienen la energía y se dividen en tres grandes categorías: Saprobios, detritívoros y organismos o animales depredadores.

1.1- Organismo saprobios

Son los agentes principales de la descomposición y recirculación de toda materia orgánica del suelo, son aquellos que absorben los nutrientes de organismos muertos, sea por excrementos o alguna de sus partes. Los ejemplos representativos serían la mayoría de hongos y bacterias, insectos, lombrices…etc

1.2- Organismos detritívoros

Son aquellos que absorben los nutrientes de organismos muertos, sea por excrementos o alguna de sus partes, diferenciándose de los saprobios porque incorpora los nutrientes succionando, o por medio de roer o cortar el material nutritivo. Los ejemplos representativos serían los escarabajos, las lombrices, larvas de moscas, pepinos de mar…etc.

 

ejemplos de heterótrofos
Ejemplos de heterótrofos
1.3.- Organismos predadores

Son aquellos que se alimentan de todo un organismo o partes (Se alimentan de una presa como los leones, águilas, tiburones…etc). Y tienen diferentes divisiones atendiendo al alimento que pueden ser:

1.3.1.- Según la forma de alimentarse
  • Cazadores: Son los que matan y capturan sus presas. Ejemplos como los leones, tiburones, leopardos, águilas.
  • Carroñeros: Son los que comen seres vivos que murieron naturalmente o fueron matados por otros. Ejemplos como el buitre, el cuervo, el chacal…etc
  • Parásitos: Son los que absorben todos los nutrientes de sus hospedadores vivos. Ejemplos como los piojos o la tenia.

 

ejemplo animales cazadores

1.3.2.- Según el origen del alimento
  • Omnívoros: Son aquellos consumidores o seres vivos que se alimentan de todo, tanto de otros animales como de plantas. Es muy fácil para los omnívoros encontrar algo que comer porque comen casi cualquier cosa.
  • Carnívoros: Son aquellos organismos animales que se alimentan de carne. La energía que obtienen y utilizan los carnívoros proviene principalmente de los lípidos (grasas) que el herbívoro ha almacenado dentro de su cuerpo.
  • Hervívoros: Son aquellos que comen plantas y vegetación (Incluida flora, árboles…etc) para obtener su nutrición. Son los denominados consumidores primarios en la cadena alimenticia.

ejemplos madrófagos y micrófagos

1.3.3.- Según características físicas del alimento que ingieren
  • Macrófagos: Son los denominados capturadores porque de alguna manera tragan su presa. Este tipo de predadores pueden capturar a sus presas por medio de ventosas, trompas, tentáculos, pinzas, picos o cualquier estructura similar. Hay que tener en cuenta que la mayoría ingieren masas de alimento más grandes que su propio tamaño. Ejemplo como los reptiles, serpientes, aves…etc.
  • Micrófagos: La mayoría de ellos son de vida sedentaria y son todos acuáticos los cuales no tienen dispositivos de trituracion o de una digestión. Se alimenta de pequeños trozos de materia o de animales, mucho más pequeños que ellos. Ejemplos como las ballenas o las esponjas de mar.
  • Fluidófagos: Son denominados preparadores fluidófagos los que ingieren sus nutrientes en una solución acuosa. Por ejemplo, la mayoría de insectos o arañas, los mosquitos, las chinches y abejas.

2.- Por el estado del alimento antes de ingerir

Aquí se analiza el estado del nutriente antes de ser ingerido por el ser vivo con relación a  si está vivo o muerto. Desde el esquema siguiente podemos comprender mejor su distribución:

 

estado del alimento heterótrofo
          Ejemplo animales heterótrofos con relación al estado del alimento
2.1.- Obtienen alimento de un organismo muerto
  • Por adsorción:  Son agentes principales de la recirculación del material orgánico del suelo y la descomposición. Por ejemplo las setas (Hongos) y la mayoría de bacterias (La mayoría de saprobios).
  • Por ingesta activa:  Su forma de aportar los nutrientes es activa, es decir, succionan, o cortan o roen el material nutritivo.
2.2.- Obtienen alimento de un organismo vivo
  • Por ingesta activa: Son los denominados carnívoros que obtienen los nutrientes a partir de ser vivos, y puede ser por:
    • Por caza: Aquellos animales que practican la caza de las presas. Como ejemplos; León, tigre, águila, tiburón…etc
    • Por filtración: Disponen de un sistema de filtrado, son los llamados filtradores. Por ejemplo las ballenas.
    • Por succión: Obtienen los nutrientes por medio de una succión, son denominados libadores o succionadores. Por ejemplo las abejas, los mosquitos, las mariposas.
    • Por absorción: Son los denominados endoparásitos, los que  viven dentro de un único organismo y se nutren de nutrientes en el interior de sus cuerpos. Por ejemplo la lombriz intestinal.

3.- Por el nivel trófico y hábitat

Recordemos que los niveles tróficos se basan en la clasificación de los organismos en función del origen de la materia que se alimentan en la naturaleza y el hábitat, es el ambiente donde viven.

La distribución principal es según los niveles tróficos teniendo en cuenta que los consumidores  en ecología, son los animales heterótrofos que se alimentan de un autótrofo o de otro consumidor:

  • Consumidores primarios.  Son animales herbívoros qué se alimenta de un autótrofo.
  • Consumidores secundarios. Son aquellos animales carnívoros que se alimenta de un consumidor primario, es decir, de animales herbívoros.
  • Degradadores. También denominado los descomponedores cromados por principalmente por hongos y bacterias, y engloba lo que son los saprófagos y saprófitos.

niveles de los tróficos heterótrofos

4. Si son microorganismos

Existen dos formas principales en función de la naturaleza de la energía que incorporan los microorganismos heterótrofos (Utilizan materia orgánica para sintetizar moléculas orgánicas), es decir, son clasificados según el tipo de nutrición. Los llamados:

 

esquema nutrición heterótrofa

4.1.- Fotoheterótrofos

Los que utilizan la luz como fuente de energía. Usa la luz como fuente de energía para generar ATP y obtiene compuestos orgánicos de otros seres como fuente de carbono. Un ejemplo es la Rhodo-bacteria (Bacteria púrpura no sulfurosa)

4.2.- Quimio-heterótrofos

Que obtienen su energía por la ingestión de fuentes de energía orgánicas preformadas como carbohidratos, lípidos y proteínas que han sido sintetizadas por otros individuos. Un ejemplo puede ser la bacteria Lactobacillus.

 

ejemplos microorganismos heterótrofos
      Derecha bacteria Lactobacillus e izquierda bacteria Rhodobacter

Por qué son importantes en el ecosistema

Son los que hacen que el planeta sea extremadamente variado, que exista una biodiversidad de especies importantes en los ecosistemas y en los hábitats.

Forman una parte importante dentro de las cadenas alimenticias en el intercambio de materia y energía. Podemos entender mejor los conceptos de cadena alimenticia o cadenas tróficas, niveles tróficos y pirámides desde:

 

Cómo podemos ver en el siguiente esquema, los organismos heterótrofos-consumidores se aprovechan de los productores-autótrofos para obtener alimento, así que son los reguladores de los ecosistemas para tenerlos en equilibrio.

 

ejemplo cadena trófica

Nutrición heterótrofa

En ecología, la alimentación heterótrofa se realiza cuando la célula va consumiendo materia orgánica ya formada (No hay transformación de materia inorgánica en materia orgánica). Sin embargo, permite la transformación de los alimentos en materia celular propia.

Recordamos que estamos hablando de los organismos que obtienen los alimentos a partir de la incorporación de otros seres vivos, de sus partes muertas o incluso de sus excrementos.

 

ejemplo de nutrición heterótrofa

Tipos

Principalmente existen tres tipos de nutrición heterótrofa que abarca todo amplio espectro de especies que podemos reconocer en un ecosistema y que forman en conjunto las etapas de la nutrición:

1.- Nutrición holozoica

Enmarca a todos aquellos que se nutren por medio de la captura o ingestión directa de otras forma de vida en la naturaleza. Incluye todos los carnívoros, herbívoros y omnívoros. Por ejemplo; El ser humano, los leones, tigres, tiburones, águilas…etc.

2.- Nutrición saprófita

También conocida como saprofitismo y son aquellos que se  alimentan de materia orgánica en descomposición. La malloría de setas, bacterias, larvas…etc.

3.- Nutrición parásita

Conocida como parasitismo y son aquellos que obtienen su alimenta a expensas de otro seres vivos. Incluye como ejemplos las garrapatas, la tenia…etc.

tipos de nutrición heterótrofa

Proceso de nutrición

El proceso de nutrición heterótrofa de una célula (Transformación de alimentos en energía vital) puede dividir en siete etapas:

1.- Captura. La célula atrae las partículas alimenticias creando torbellinos mediante sus flagelos o cilios, o emitiendo seudópodos, que engloban el propio alimento.

2.- Ingestión. En este caso, la célula introduce el alimento en una fagosoma o vacuola alimenticia. Algunas células ciliadas (paramecios), tienen una especie de boca, llamada citostoma, por la que fagocitan el alimento.

 

ingestión de los heterótrofos

 

3.- Digestión. Los lisosomas vierten sus enzimas digestivas a la fagosoma, que así se transformará en el vacuola digestiva. Desde las enzimas, descomponen los alimentos en las pequeñas moléculas que las forman.

4. Paso de membrana. Las pequeñas moléculas liberadas en la zona de digestión atraviesan la membrana de la vacuola y se difunden a través del citoplasma.

5.- Defecación o egestión. Se expulsa al exterior las moléculas que no le son útiles y no sirven.

6. Metabolismo. Es el conjunto de reacciones que tienen lugar en lo que se llama citoplasma. Su fin es obtener energía y construir materia orgánica celular propia. Se divide en dos fases principales:

objetivos metabolismo
Objetivos del metabolismo

6.1.- Anabolismo o fase de construcción en la que, utilizando la energía bioquímica procedente del catabolismo y las pequeñas moléculas procedentes de la digestión, se sintetizan grandes moléculas orgánicas.

6.2.- Catabolismo o fase de destrucción, en la que la materia orgánica, mediante la respiración celular, es oxidada en el interior de las mitocondrias, obteniéndose energía bioquímica.

catabolismo y anabolismo

Recuerda que puedes aprender más del metamolismo desde este documento en PDF AQUI.

7.- Excreción. La excreción es la expulsión al exterior, a través de la membrana celular, de los productos de desecho del catabolismo. Estos productos son normalmente el dióxido de carbono CO2, el agua H2O y el amoniaco NH3. Fermentación: es un proceso anaeróbico de obtención de energía a partir de moléculas orgánicas. El aceptor final de electrones es una molécula orgánica (ácido láctico o el etanol). Fermentación homoláctica: algunas bacterias convierten el ácido pirúvico en ácido láctico.

Documentos de referenccia e información complementaria en PDF.

  • Clasificación reino animal… AQUI.
  • Nutrición animales… AQUI.
  • Nutrición y biodiversidad… AQUI.
  • Los seres vivos en acción… AQUI.

Si te ha gustado el artículo, puntúa y comparte!

Autor: OVACEN Página del escritor

BIO: Pau Seguí (Pablo) es fundador y director de OVACEN, un periódico digital. Lleva más de 18 años de experiencia en el campo de la arquitectura, construcción, urbanismo, eficiencia, renovables, sostenibilidad, medio ambiente y biodiversidad. Escribe en otras muchas publicaciones en blogs y portales especializados.

Directrices Editoriales Director OVACEN | Linkedin

Nebulosa de la Tarántula y el James Webb

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                     El nuevo telescopio espacial continúa ofreciéndonos maravillas del Universo

Todo el Universo… ¡Es una maravilla!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

NGC 604, una región H II gigante en la galaxia del Triángulo

 NGC 604, una región H II gigante en la galaxia del Triángulo

 

REFLEXIONES HETERóCLITAS: ULISES ENTRE SIRENAS

Ulises se hizo amarrar al palo mayor para no ceder al canto de las sirenas

 

 

 

Fondos de pantalla : abstracto, cielo, Tierra, atmósfera, universo, oscuridad, 1600x1200 px, Papel pintado de la computadora, efectos especiales, espacio exterior, Fenómeno geológico, fenómeno 1600x1200 - CoolWallpapers - 847554 - Fondos de pantalla ...

En aquel momento en el que se liberaron los fotones, el Universo se llenó de Luz, y, de ser opaco se transformó en transparente como ahora lo podemos contemplar. Sin la luz, el universo sería otro universo.

 

                               

 

La remanente de supernova Cassiopeia A que se encuentra a 11.000 años luz de distancia. La luz de la supernova Cass A, que es la muerte explosiva de una estrella masiva, alcanzó la Tierra por primera vez hace sólo 330 años. de desechos en expansión ocupa ahora unos 15 años luz en esta composición de rayos X y luz visible, mientras que la brillante fuente cerca del centro es una estrella de neutrones, los restos colapsados increíblemente densos del núcleo estelar. Aunque está suficientemente caliente emitir rayos X, la estrella de neutrones de Cass A se está enfriando. De hecho, los 10 de observación del observatorio de rayos X Chandra averiguó que la estrella de neutrones se enfrió tan rápido que los investigadores sospechan que gran del núcleo de dicha estrella está formando un superfluido de neutrones sin fricción. Los resultados del Chandra representan la primera evidencia observacional para este extraño estado de la materia. ( : X-ray: NASA/CXC /UNAM / Ioffe /.

 

                                                         20110219005420-tempel1-stardust-900.jpg

                                                        El Cometa Tempel 1 desde la Sonda Stardust-NeXT

Ningún cometa se ha visitado antes dos veces. Por tanto, el paso sin precedente de la sonda Stardust-NeXT  cerca del Cometa Tempel 1 hace algún tiempo ya,  nos proporcionó a los humanos una oportunidad única de ver cómo cambia el núcleo de un cometa a lo largo del tiempo. Los cambios en el núcleo del Cometa Tempel 1 eran de particular interés porque el cometa fue golpeado por un objeto cuando pasaba la sonda Deep Impact  en 2005.  La fotografía superior es una imagen digitalmente ensalzada del Cometa Tempel 1 cerca de su máxima aproximación a la Stardust-NeXT.  Se pueden ver muchas características retratadas en 2005, como cráteres, grietas, y también áreas muy suaves. Sólo se pueden sacar unas pocas conclusiones,  pero en los próximos años los astrónomos especializados  en cometas y en el entendimiento del Sistema Solar se servirán de estas imágenes para buscar nuevas pistas de la composición del Cometa Tempel 1, como se encuentra el lugar del impacto del 2005, y como han evolucionado los principales accidentes del mismo.

Créditos: NASA, JPL-Caltech, Cornell

 

                                 

 

Se trata de estrellas contra montañas de gas en NGC 2174, y las estrellas van ganando. Más en concreto, la luz energética y los vientos las estrellas masivas de formación reciente están evaporando y dispersando las oscuras guarderías estelares en que se formaron. Las estructuras de NGC 2174  son en realidad mucho menos densas que el aire, y sólo aparecen como montañas debido a cantidades relativamente pequeñas de polvo opaco interestelar. NGC 2174 es una vista poco conocida en la constelación de Orión, que puede encontrarse con binoculares cerca de la cabeza del cazador celestial. Está a unos 6.400 años luz de distancia, y la brillante nube cósmica entera cubre una zona más grande que la de la Luna llena, además de rodear diversos cúmulos abiertos de estrellas jóvenes. La imagen superior tomada desde el Telescopio Espacial Hubble,  muestra una densa región interior que extiende apenas unos tres años luz adoptando una gasma de colores que muestra las emisiones de otra rojas del hidrógeno en tonos verdosos y resalta la emisión del azufre en rojo y el oxígeno en azul. En unos pocos millones de años, las estrellas probablemente ganarán de forma definitiva y toda la montaña de polvo será dispersada.

Créditos: ESA, Hubble, NASA

 

                         

Como un barco surcando los mares cósmicos, la estrella fugitiva Zeta Ophiuchi produce el arco de onda o choque interestelar que se ve en este impresionante retrato infrarrojo la nave espacial WISE. En la vista en falso color, la azulada Zeta Oph, una estrella unas 20 veces más masiva que el sol, aparece cerca del centro de la imagen, moviéndose hacia la parte superior a 24 kilómetros por segundo. Su fuerte viento estelar la precede, comprimiendo y calentando el polvoriento material interestelar y formando el frente de choque curvado. Alrededor hay nubes de material relativamente no afectado. ¿Qué mantiene a esta estrella en movimiento? Seguramente, Zeta Oph fue una vez miembro de un sistema estelar y su estrella compañera sería más masiva y por tanto de vida más corta. Cuando la compañera explotó como supernova catastróficamente, perdiendo masa, Zeta Oph fue arrjada fuera del sistema. Situada a unos 460 años luz de distancia, Zeta Oph es unas 65.000 veces más luminosa que el sol y podría ser una de las estrellas más brillantes del cielo si no estuviese rodeada de polvo oscuro. La imagen de la WISE abarca sobre 1,5 grados o 12 años luz a la distancia estimada de Zeta Ophiuchi.

Créditos: NASA, JPL-Caltech,WISE Team

 

                             

                                                La “luna” Europa que tantos secretos esconde

Aunque la fase de esta luna podría parecernos familiar, la luna como tal no lo es. De hecho, esta fase gibosa muestra parte de la luna de Júpiter llamada Europa.  La sonda robótica Galileo capturó  esta Imagen en mosaico durante su misión orbital en Júpiter entre 1995 y 2003. Se pueden ver planicies de hielo brillante, grietas  que llegan hasta el horizonte, y oscuros boquetes que probablemente contentan tanto hielo como suciedad. El terreno elevado es casi un hecho cerca del terminador, donde empieza la sombra. Europa  es casi del mismo tamaño que nuestra luna,  pero mucho menos abrupta, mostrando muy pocas altiplanicies o cráteres de impacto. Pruebas e imágenes de la sonda Galileo indican que pueden existir océanos océanos líquidos debajo de su helada superficie. Para poder especular de que estos mares pudieran contener alguna de vida, la ESA ha empezado ya el desarrollo de la Jovian Europa Orbitert,  una sonda que orbitará Europa. Si la capa helada es suficientemente delgada, una misión en el futuro podría soltar hidro robots en los océanos para buscar vida.

Créditos: Galileo Project,JPL,NASA;reprocessed by Ted Stryk

 

                       

M78 no se está escondiendo realmente en el cielo nocturno del planeta Tierra. Situada a unos 1.600 años luz de distancia y ubicada en la rica en nebulosas constelación de Orión, la grande y brillante nebulosa de reflexión, es bien conocida para los observadores del cielo con telescopio. Pero esta espléndida imagen de M78 fue seleccionada como ganadora de la competición de astrofotografía Tesoros ocultos 2010.  Celebrada por el European Southern Observatory (ESO), la competición retó a astrónomos aficionados a procesar del archivo astronómico del ESO para buscar gemas cósmicas ocultas. La Imagen ganadora muestra increíbles detalles dentro de la azulada  M78 (centro) abrazada por nubes de polvo oscuras, junto con otra nebulosa de reflexión más pequeña de la región, NGC 2071 (arriba). La recientemente descubierta Nebulosa McNeil,  amarillenta e incluso más compacta, llama la atención en la parte inferior a la derecha del centro. Basada en datos de la cámara WFI del ESO y el telescopio de 2,2 metros de La Silla en  Chile, esta imagen se extiende alrededor de apenas 0,5 grados en el cielo. Eso se corresponde con 15 años luz a la distancia estimada de M78.

Créditos: ESO /Igor Chekalin

 

                             

¿Qué está causando las pintorescas ondas del remanente de supernova SNR 0509-67.5? Las ondas, así la más grande nebulosa, fueron captadas con un detalle sin precedentes por el Telescopio Espacial Hubble en 2006 y otra vez a finales del año pasado. El color rojo fue recodificado por un un filtro del Hubble que dejó solamente la luz emitida por hidrógeno energético. La razón específica de las ondas sigue siendo desconocida, con dos hipótesis consideradas para su origen que las relacionan con porciones relativamente densas de gas expulsado o impactado. La razón del anillo brillante rojo más ancho está más clara, su velocidad de expansión y ecos de luz lo relacionan con una clásica explosión de supernova del Ia que ha debido ocurrir hace unos 400 años. SNR 0509 se extiende actualmente unos 23  años luz y se encuentra a unos 160.000 años luz de distancia hacia la constelación del Dorado-delfin (Dorado) en la Gran Nube de Magallanes.  Sin embargo, el anillo en expansión tiene también otro gran misterio: ¿Por qué su supernova no fue vista hace 400 años, cuando la luz del estallido inicial debió alcanzar la Tierra?

Créditos: NASA,ESA, y theHubble Heritage Team(STScI/AURA); Acknowledgment: J. Hughes(Rutgers U.

 

                               

 

Alnitak, Alnilam y Mintaka son las brillantes estrellas azuladas desde el este al oeste (izquierda a derecha) a lo largo de la diagonal de esta maravillosa vista cósmica. Conocidas también como el Cinturón de Orión,  estas tres estrellas supergigantes azules son más calientes y mucho más masivas que el Sol. Se encuentran a alrededor de 1.500 años luz de distancia, nacidas de las bien estudiadas nubles interestelares de Orión. De hecho, las nubes de gas y polvo a la deriva en esta región tienen curiosas y algo sorprendentemente familiares apariencias, como la oscura nebulosa Cabeza de Caballoy la nebulosa de la Llama,  cerca de Alnitak en la parte inferior izquierda. La propia famosa nebulosa de Orión se sitúa fuera de la parte inferior de este colorido campo estelar. Grabado el pasado Diciembre con una cámara digital SLR modificada y un pequeño telescopio, el bien planeado mosaico de dos fotogramas  se extiende alrededor de 4 en el cielo.
Créditos.

 

Constelaciones reales – la constelación de Orion | Frontier Forums

                                                                                   La Constelación de Orión

Alrededor de estas estrellas siempre surgieron muchas historias: “Todo comienza en la constelación de Orión que posee entre sus más importantes estrellas a Betelgeuse, Rigel, Bellatriz, Almitak, Almilan, Mintaka, Saiph, Meissa, Tabit, Atiza y Eta Orionis; siendo Betelgeuse el lugar de partida de la historia. Betelgeuse esta situada en lo que llamaríamos el hombro derecho de Orión. Posee un diámetro aproximado de 450 millones de kilómetros. Si la colocáramos en el centro de nuestro sol, su radio abarcaría a Mercurio, Venus y la Tierra. Se encuentra a 310 años luz de nuestro sistema y está en  vía de extinción  convirtiéndose poco a poco en una estrella súper-gigante roja.  Ella posee 33 planetas de alta vibración y ellos se manejan muchos designios que ocurren en el orden de los pléyades. Sus habitantes son amorosos, bondadosos, pero igualmente guerreros y en uno de esos planetas habita el señor EO disfrutando de todo el amor de la creación compuesto por la luz, la energía, y la fuerza.

 

                     

                                                              La nebulosa polvorienta NGC 2170

En esta hermosa naturaleza “muerta” celeste compuesta con un pincel cósmico, la nebulosa polvorienta NGC 2170 brilla en la parte superior izquierda. Reflejando la luz de las cercanas estrellas calientes, NGC 2170 está unida  a otras nebulosas de reflexión azuladas, una región compacta de emisión roja y serpentinas de polvo oscuro contra un telón de fondo de estrellas. Al igual que los pintores de naturalezas muertashabituales en el hogar a menudo escogen sus temas, las nubes de gas, el polvo y las estrellas calientes fotografiadas aquí son también comúnmente encontradas en este escenario; una masiva nubes moleculares de formación estelar en la constelación Monoceros. molecular gigante gigante, Mon R2, está impresionantemente cercana, estimándose  en solo 2 400 años luz de distancia más o menos. A esa distancia, este lienzo tendría 15 años luz de diámetro.

En lo único que difiero de la traducción que han hecho es, en la calificación de “naturaleza muerta”, ya que, nunca podríamos contemplar nada más “vivo” que lo que arriba se nos muestra. Siempre cambiante y en actividad lograr los elementos complejos de la vida.

 

                             

                                            ¿Cuántos mundos con presencia de vida podrían estar ahí presentes?

Una de las galaxias más brillantes en el cielo del planeta Tierra y de un tamaño semejante a la Vía Láctea,  la espiral M81,  grande y hermosa, se encuentra a 11,8 millones de años luz de distancia en la constelación meridional de Ursa Major (Osa Mayor). Esta imagen intensa  de la zona revela detalles del brillante núcleo amarillo, pero al mismo tiempo sigue características más tenues a lo largo de los espléndidos brazos espirales azules y los corredores que barren el polvo. También sigue el detalle en arco, de gran extensión, denominado bucle de Arp, que parece elevarse el disco galáctico, a la derecha. Estudiado en los 60 del siglo pasado, se ha pensado que el bucle de Arp era una cola de marea material retirado de M81 por la interacción gravitacional con su gran galaxia vecina M82.

 

La galaxia espiral M 81 y el bucle de Arp | Imagen astronomía diaria - Observatorio

 

Pero una investigación reciente demuestra que gran parte del bucle de Arp posiblemente se encuentra en nuestra propia galaxia. Los colores del bucle en luz visible e infrarroja coinciden con los colores de las nubes de polvo dominantes,  cirros galácticos relativamente inexplorados  solo unos pocos centenares de años luz por encima del plano de la Vía Láctea. Junto con las estrellas de la Vía Láctea, las nubes de polvo se localizan en el primer plano de esta destacada imagen. La galaxia enana compañera de M81, Holmberg IX,  puede ser vista justo por encima y a la izquierda de la gran espiral.

Objetos el que arriba podemos contemplar, galaxias espirales, son como entes vivos y generan entropía negativa que hace posible la regeneración del Universo a través de los sistemas dinámicos de destrucción-construcción, es decir, algo muere que algo surja a la vida. Esa es la Ley que impera en todo nuestro Universo.

 

                             

 

¿Qué veríamos si fuésemos directo un Agujero Negro? Lo cierto es que, como nadie estuvo nunca en tal situación, lo único que podemos hacer es especular y hacer una y otra vez las ecuaciones de los distintos momentos que se podrían producir en un viaje de tal calibre en el que, a medida que nos acercamos al agujero y pasamos esa línea prohibida del horizonte de sucesos, en algún momento tendríamos la sensación de que el tiempo se detendría, y, también sentiríamos que nuestros cuerpos sufrirían el efecto spaghetti, es decir, a medida que vamos hacia la singularidad, la masa de nuestros cuerpos se verán estiradas hacia ese lugar del que no se vuelve. Algunos ilusos, hablan de que, si la nave atraviesa el agujero por el mismo centro, se saldría por otro “universo”, es decir, sería un viaje alucinante hacia lo desconocido.

La preguntita para finalizar el reportaje, tiene su guasa, y, desde luego, considerando que el agujero negro contiene el más denso estado de la materia que en el Universo pueda existir, la respuesta no resulta nada fácil, toda vez que, aunque nadie estuvo allí nunca para poder regresar y contarnos sus impresiones, lo cierto es que, según todos los indicios, la irresistible fuerza de Gravedad que emana del Agujero Negro, tiraría de nosotros con tal fuerza que nos espaguetizaría primero y pulverizaría después.

Mejor no pasarse por allí, por si acaso.

emilio silvera