sábado, 13 de diciembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Agujero Blanco, Agujero de Gusano…un simple apunte.

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Agujeros blancos: unos fenómenos "imposibles" cuya existencia no se puede demostrar n

           Se teoriza que el Agujero Blanco expulsa materia. Pensamiento teórico sin demostración. Y, se añade que es la contrapartida del Agujero negro situado al otto lado. UNo engulle materia y el otro expulsa al tener Graved negativa.

 

Mecánica Universal - La Singularidad - Wattpad

El Agujero Blanco seria la Inversión temporal del colapso de un objeto en un agujero negro. Las ecuaciones de la Relatividad General que describen dicho colapso son simétricas en el tiempo, de manera que no existe ninguna razón teórica por la que no podría invertirse.

 

Qué son los controversiales agujeros blancos espaciales de los que "puedes escapar pero a los que no puedes regresar" - BBC News Mundo

 

Un Agujero Blanco seria, por tanto, un lugar desde donde aparecería espontáneamente materia en nuestro Universo. No obstante, no se ha detectado ningún objeto con esas características.

También hablamos de Agujero de Gusano en relación a un agujero o túnel hipotético en el espacio-tiempo. Las teorías cosmológicas estándar se basan en la hipótesis de que el espacio-tiempo es suave y simplemente conexo.

 

El teorema de singularidad de Penrose de 1965 - La Ciencia de la Mula Francis

 No sabemos qué clase de materia se formará en la Singularidad a esas densidades

Para dar una analogía tridimensional, el espacio tiempo se asume que es como una esfera en vez de como un toro, una esfera se dice que es simplemente conexa, pero un toro no. En cosmología cuántica se piensa que, a escalas del orden de 10-35 m, el espacio-tiempo tiene una estructura muy complicada y múltiplemente conexa en la que “túneles” y “asas” constituyen atajos entre puntos aparentemente distantes.

 

Viajando a través del tiempo (y III) – Blog del Instituto de Matemáticas de la Universidad de SevillaEs posible crear un agujero de gusano? | UNAM Global

 ¿Será por soñar?

En principio, agujeros de gusano suficientemente grandes podrían permitir viajar a una parte distante del Universo mucho mas rápidamente que la luz y, en alguna circunstancias, viajar en el tiempo.

La existencia de los agujeros de gusano es, no obstante, muy especulativa.

Claro que decidir por su existencia o no existencia…resulta algo arriesgado.

emilio silvera

Esos extraños objetos

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Kip S. Thorne, es uno de los mayores especialistas que existen sobre el difícil tema de los agujeros negros, y, en su libro Agujeros negros y tiempo curvo, en el prefacio dice:

 

Agujeros negros y tiempo curvo - Kip S. ThorneKip Thorne | MercadoLibre 📦

“Durante más treinta años he participado en una gran búsqueda: una búsqueda para comprender un legado dejado por Albert Einstein a las generaciones futuras –su teoría de la Relatividad y sus predicciones acerca del Universo- y descubrir dónde y cómo falla la relatividad y que la reemplaza.”

 

Teoría de relatividad de Einstein tiene razón, incluso en el ambiente extremo de un agujero negroESA - Una enana blanca azota a una enana roja con un rayo misterioso [heic1616]Estrellas de neutrones: 'Pulsars' | El CorreoUna espectacular simulación de la NASA muestra cómo un agujero negro deforma el espacio

 

“Esta búsqueda me ha llevado por laberintos de objetos exóticos: agujeros negros, enanas blancas, estrellas de neutrones, singularidades, ondas gravitacionales, agujeros de gusano, distorsiones del tiempo y máquinas del tiempo. Me ha enseñado epistemología: ¡qué es lo que hace “buena” una teoría?, ¿Qué principios transcendentales controlan las leyes de la naturaleza?, ¿por qué piensan los físicos que sabemos las cosas que creemos saber, incluso si la tecnología es demasiado débil para verificar nuestras predicciones? La búsqueda me ha mostrado cómo trabajan las mentes de los físicos, y las enormes diferencias entre unas mentes y otras (por ejemplo, la de Stephen Hawking y la mía) y por qué se necesitan tantos tipos diferentes de científicos, trabajando cada uno a su manera, para desarrollar nuestra comprensión del Universo. Nuestra búsqueda, con cientos de participantes diseminados por todo el globo terrestre, me ha ayudado a apreciar el carácter internacional de la ciencia, las diferentes formas en que la empresa científica se organiza en las distintas sociedades, y la imbricación de la ciencia con la política…”

 

El nuevo hipnotizador de visualización visual de la NASA explora la danza de flexión de la luz de los agujeros negros binarios

 

Está claro que Thorne, se ha devanado los sesos buscando las respuestas que le dijeran cosas tales como: ¿Qué es en realidad un agujero negro? ¿Qué ocurre allí dentro de eso que llamamos singularidad? ¿Cómo es posible que se pueda formar un objeto de tal densidad y energía? ¿Hacia dónde ha ido a parar tan ingente cantidad de masa? ¿Es posible que, cientos de miles de trillones de toneladas de materia se puedan comprimir hasta un punto infinitesimal?

 

Crítica de Contact

La máquina moviéndose a velocidad relativista creaba un agujero de gusano que lleva a la protagonista a una galaxia lejana

Thorne, como todos sabéis, asesoró al desaparecido Carl Sagan en su Obra Contac que, más tarde, fue llevada al cine. Toda la trama de la máquina que abrió el agujero de Gusano que hizo posible el viaje de la heroína hacia galaxias lejanas, la desarrolló Thorne y su equipo, y, todo lo que allí se cuenta salió de concienzudas ecuaciones a partir de la Relatividad General de Einstein que, teóricamente, no impide viajar en el tiempo. Pero, veamos algo mas sobre los exóticos agujeros negros.

Leer más

La música eleva la Mente y nos hace mejores

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nuestra especie tiene la suerte de que, de vez en cuando, surjan mentes privilegiadas que nos regalan maravillas como esta. En todas las áreas del saber humano existen personas así. 

Ahora, retirémosnos del “mundo”, y sintamos la música.

El “mundo” de lo muy pequeño… ¡Es tan extraño!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Muchas veces hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo. Simplemente con que su carga fuera distinta en una pequeña fracción… ¡El mundo que nos rodea sería muy diferente! Y, ni la vida estaría presente en el Universo.

El futuro del Gran Colisionador de Hadrones - Ciencia UNAM

   Experimentos con electrones y positrones nos enseñaron cómo funciona el universo

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

   Teoría cuántica | Radiación del cuerpo negro - YouTube

 

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

 

La CONSTANTE de PLANCK: definición sencilla - ¡¡RESUMEN FÁCIL!!

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Efecto Fotoeléctrico. Resumen - YouTube

 

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.

 

Dualidad onda particula - Louis De Broglie - YouTube

El príncipe francés Louis-Víctor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas  diferentes ondas oscilantes de campos de fuerza, pero esto lo veremos más adelante.

 

                                             

La primera es la imagen obtenida por los físicos en el laboratorio y, la segunda es la Imagen ilustrativa de la dualidad onda-partícula, con la cual se quiere significar cómo un mismo fenómeno puede tener dos percepciones distintas. Lo cierto es que, el mundo de lo muy pequeño es extraño y no siempre lo podemos comprender.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

 

Función de onda cuántica | Física | Khan Academy en Español - YouTube

                  La función de onda de Schrödinger nos acercó a ese mundo infinitesimal

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿Qué significan realmente estas ecuaciones?, ¿Qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero para los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

 

                         

 

El “universo de las partículas nunca ha sido fácil de comprender y su rica diversidad, nos habla de un vasto “mundo” que se rige por su propias reglas que hemos tenido que ir conociendo y seguimos tratando de saber, el por qué de esos comportamientos extraños y a veces misteriosos. Así, la pregunta anterior, de ¿Qué puede significar todo eso?…

La pudo contestar Niels Bohr, de forma tal que,  con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

 

El gato de Schrödinger - Zenda

 

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

 

                       

 

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

 

                        La música de las figuras de Lissajous – El último verso de Fermat

 

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”.

 

El todo es mas que la suma de sus partes. Dr Orozco y Dra Weber - YouTube

 

Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo,  la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

Mucho ha sido el camino andado hasta nuestros tratando de conocer los secretos de la naturaleza que, poco a poco, nos van siendo familiares. Sin embargo, es más el camino que nos queda por recorrer. Es mucho lo que no sabemos y, tanto el micro-mundo como en el vasto mundo de muy grande, hay que cosas que aún, no hemos llegado a comprender.

 

                     

                         El detector ATLAS funcionó, y rastrearon las partículas subatómicas

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los “trucos” ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a esta interpretación. Quizá funcione bien, pero ¿Dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿Dónde está en realidad?, y ¿Cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

           http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

     Es cierto que, localizar y saber en qué punto exacto están esas pequeñas partículas… no es fácil

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos ahora se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.

Experimento EPR ¿qué es EPR? – HONDURAS GEOMÁTICA

Albert Einstein, Nathan Rosen y Boris Podolski idearon un “Gedankenexperiment”, un experimento hipotético, realizado sobre el papel, para el cual la mecánica cuántica predecía como resultado algo que es imposible de reproducir en ninguna teoría razonable de variables ocultas. Más tarde, el físico irlandés John Stewar Bell consiguió convertir este resultado en un teorema matemático; el teorema de imposibilidad.

(“El teorema de Bell o desigualdades de Bell se aplica en mecánica cuántica para cuantificar matemáticamente las implicaciones planteadas teóricamente en la paradoja de Einstein-Podolsky-Rosen y permitir así su demostración experimental. Debe su nombre al científico norirlandés John S. Bell, que la presentó en 1964.

 

El teorema de BellTeorema de Bell - Wikipedia, la enciclopedia libre

El teorema de Bell es un meta-teorema que muestra que las predicciones de la mecánica cuántica (MC) no son intuitivas, y afecta a temas filosóficos fundamentales de la física moderna. Es el legado más famoso del físico John S. Bell. El teorema de Bell es un teorema de imposibilidad, que afirma que:

Ninguna teoría física de variables ocultas locales puede reproducir todas las predicciones de la mecánica cuántica.”)

                                  ¿Cómo saber el número que saldrá cuando lanzamos los dados?

¡¡La mecánica cuántica!!, o, la perplejidad de nuestros sentidos ante lo que ese “universo cuántico” nos ofrece que, generalmente, se sale de lo que entendemos por sentido común. Ahí, en el “mundo” de los objetos infinitesimales, suceden cosas que no siempre podemos comprender. Y, como todo tiene una razón, no dejamos de buscarla en cada uno de aquellos sorprendentes sucesos que en ese lugar se producen. Podríamos llegar a la conclusión de que, la razón está en todo y solo la encontramos una vez que llegamos a comprender, mientras tanto, todo nos resulta extraño, irrazonable, extra-mundano y, algunas veces…imposible. Sin embargo, ahí está. Dos elementos actúan de común acuerdo para garantizar que no podamos descorrer el velo del futuro, de lo que será después (podemos predecir aproximaciones, nunca certezas), el principal de esos elementos es la ignorancia nunca podremos saber el resultado final de éste o aquél suceso sin tener la certeza de las condiciones iniciales. En la mayoría de los sistemas físicos son, en mayor o menor medida dada su complejidad, del tipo caótico es tal que, el resultado de las interacciones entre elementos son sumamente sensibles a pequeñísimas variaciones de los estados iniciales que, al ser perturbados mínimamente, hacen que el suceso final sea y esté muy alejado del que se creía al comienzo.

emilio silvera

¿Qué habrá en el interior de un Agujero Negro

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Aunque nunca hemos podido estar allí, los físicos hacen sus cábalas y teorizan sobre lo que pasa dentro del Agujero Negro, ese lugar misterioso en el que, la materia estará comprimida hasta límites inimaginables.

Oigamos el Video y algo más sabremos sobre el tema