domingo, 25 de septiembre del 2022 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La Vida? Algo que no sabemos explicar

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿La Vida? Algo que no sabemos explicar pero, lo intentamos. Como dice Kauffman: “la vida cristaliza a partir de un nivel crítico de diversidad molecular, debido a que la propia clausura catalítica cristaliza”.

Aquí surgió la Vida. El planeta y su entorno, tenían todos los ingredientes necesarios para que, tal maravilla, pudiera surgir a un Universo que, siendo tan inmensamente grande y estar lleno de asombrosos objetos y sucesos, ninguno de ellos, se podría comparar con este que llamamos vida y que, asciende desde la materia “inerte” hasta los pensamientos.

Sean cuales sean los orígenes de la vida, las teorías que incluyen redes, conexiones y criticalidad autoorganizada proporcionan unas ideas nuevas y poderosas sobre el modo en que funciona la vida una vez que ha surgido. Claro que, el origen de la vida ha hecho que muchas mentes despiertas y dotadas de un profundo entendimiento, emitan teorías que, aunque no todas puedan ser reflejo de lo que la vida es, hay que admitir que cada una de ellas, al menos nos indica un posible camino por el que la vida pudo surgir.

Dichas teorías o especulaciones en algunos casos, han ofrecido un ejemplo sorprendente de la medida en que la complejidad de los seres vivos (sin duda, lo más complejo que existe en el universo) podría estar basada en una profunda sencillez, cuyo secreto, está escondido en la materia.

Son muchos los misterios que a todos los niveles subyacen en lo que conocemos como vida, por ejemplo, en el funcionar de las células, al nivel de los genes que aportan las instrucciones que gobiernan lo que a veces se llama de una manera imprecisa la maquinaria de la célula. Estas instrucciones se encuentran en última instancia codificadas en el ADN, las grandes moléculas de las que están constituidos los genes; pero tanto la maquinaria como la estructura del cuerpo están hechas de proteínas. Elementos tales como el pelo y las uñas de los dedos, así como los músculos, son tipos de proteínas y también lo son sustancias como la hemoglobina, que transporta el oxígeno en la sangre, y las enzimas, que son los catalizadores biológicos esenciales que favorecen las reacciones químicas importantes para la vida.

http://apod.nasa.gov/apod/image/0707/trifid_spitzer_f.jpg

Las propias proteínas son grandes moléculas formadas por subunidades llamadas aminoácidos, y esta es la razón por la que resulta tan intrigante el descubrimiento de que los aminoácidos existen en el tipo de nubes interestelares a partir de las cuales se forman las estrellas como el Sol y los planetas como la Tierra y todos los que vemos en nuestro Sistema solar.

El código genético que está en el ADN contiene instrucciones para fabricar proteínas y, luego, estas proteínas realizan las tareas de que se compone la vida. Pero, en este proceso hay otro paso que resulta sorprendente. Cuando un gen se activa (cómo y por qué sucede esto va más allá de los objetivos de esta explicación), la información que interesa en ese momento se copia primero en una molécula muy similar llamada ARN. Posteriormente, la maquinaria de la célula lee el ARN y actúa según sus instrucciones para fabricar la proteína adecuada.

Este proceso de dos pasos probablemente nos esté diciendo algo sobre el modo en que se originó la vida, y existe alguna posibilidad de que el ARN se “inventara” antes que el ADN. En la situación que describe Kauffman,  la “cristalización” de la vida tiene lugar en el nivel de las proteínas, en una sopa química rica en aminoácidos, donde surgieron las primeras redes auto-catalíticas de la vida; en este modelo encaja fácilmente la posibilidad de que el ARN participara en una fase temprana y que, posteriormente, las presiones evolutivas asociadas con la competencia entre las distintas redes auto-catalíticas pudieran haber conducido al sistema a la situación que vemos en la actualidad.

Los puntos relevantes que aconsejan estos pensamientos en la investigación desarrollada sobre el modo en que funcionan las células son, por un lado, el hecho de que los genes actúan para controlar la maquinaria celular y, por otro (siendo éste el aspecto crucial) que los genes pueden afectarse mutuamente, cuando un gen activa o desactiva a otro.

Cuando fueron desarrollados estos trabajos de investigación se pensaba que había unos cien mil genes diferentes en el ADN humano –es decir, en el genoma humano-. Desde entonces, el proyecto del genoma humano ha demostrado que tal estimación era excesiva, y que sólo hay alrededor de un tercio de dicho número de genes para especificar lo que debe ser una criatura humana.

A todo esto, no tenemos más remedio que admitir que la evolución es un hecho, al igual que lo es la forma elíptica de la órbita que describe un planeta alrededor del Sol. Tanto en el registro fósil como en los diversos estudios realizados sobre la vida actual en la Tierra, se puede encontrar un número considerable de pruebas relativas al modo en que actúa la evolución, transformando una especie en otra. La teoría de la selección natural, a la que llegaron de manera independiente Charles Darwin y Alfred Russell Wallace en la segunda mitad del siglo XIX, es un modelo que ofrece una explicación  de por qué se produce la evolución, del mismo modo que la teoría de la gravedad, desarrollada por Newton durante la segunda mitad del siglo XVII, es un modelo que explica porque los planetas describen órbitas elípticas. Ni la teoría, ni el modelo, constituyen la última palabra sobre la cuestión que abordan. De hecho, la teoría de Newton fue mejorada por la de Einstein a principios del siglo XX, que descubrió un modelo más completo para explicar cómo actúa la Gravedad –la teoría general de la relatividad- y, de la misma manera, en el ámbito de los estudios sobre la vida, vendrán otras nuevas maneras y formas de ver y enfocar los problemas que nos lleven a un entendimiento más amplia y fidedigno de cómo la vida se puedo abrir camino partiendo de la “materia inerte” hasta las pensamientos.

 

La hipotesis de la reina roja es una hipótesis de la teoría evolutiva que toma su nombre de un relato de Lewis Carroll, donde Alicia entra en un mundo donde por más que se mueva parece que no avance en absoluto debido a que el mundo a su alrededor -a su vez- también se mueve. Se trata en realidad de un libro escrito por Matt Ridley en 1993 donde el autor publica sus ideas respecto a ciertas cuestiones relacionadas con la co-evolucion de algunas especies y la influencia del sexo es la evolución.

Claro que, la Vida, tiene una regla esencial que, de no cumplirse, esa clase de vida está abocada a su desaparición, es decir, los individuos que sobreviven son aquellos que mejor se adaptan al medio-ambiente, es lo que se conoce como “la supervivencia del más apto”.

En alguna ocasión os he hablado aquí (en relación a la biología evolutiva) a eso que se conoce como “el efecto de la Reina Roja”, según el personaje que aparece en Alicia en el País de las maravillas, de Lewis Carroll, que debe correr tan rápido como pueda, con el fin de permanecer en el mismo lugar.

El final de toda la historia desemboca, aparentemente, en un proceso de coevolución, en el que todas las especies implicadas en una red sufren cambios cuando una de ellas cambia, impulsará de forma natural los ecosistemas complejos desde los extremos hacia la interesante zona de la criticalidad autoorganizada, en la transición de las fases que se producen al borde del caos. Si un grupo de organismos está bloqueado en una estrategia estable, es probable que una mutación que afecte a una de las especies desbloquee la red, permitiendo su evolución.

La evolución por selección natural garantizará que un cambio perjudicial para las especies implicadas vaya desapareciendo a lo largo de varias generaciones; pero todo cambio beneficioso se propagará, y al hacerlo, desbloqueará otras redes, impulsando el sistema hacia el borde del caos. En el otro lado de la transición de las fases, en el régimen caótico, sucederá lo mismo, pero a la inversa. Dado que las reglas del juego de la vida cambian con cada generación, cualquier grupo de individuos que consiga hasta cierto punto aislarse del caos, reduciendo el número de sus conexiones con el mundo exterior, tendrá una oportunidad de evolucionar por selección natural, hasta llegar a un estado que se beneficia de las oportunidades que hayan podido surgir.

Hemos podido ver cómo, las interacciones entre especies, lo pueden cambiar todo y, casi siempre, desemboca en la supremacía de una que, generalmente, produce la extinción de la otra. Siendo eso así (que lo es) –aunque no en todos los casos-), tendremos que tener sumo cuidado cuando llegado el momento, podamos contactar por primera vez con seres de otros mundos que, no sabemos de qué propiedades podrán estar dotados física y mentalmente y, si sus morfologías y organismos son compatibles con los nuestros y con nuestro propio entorno.

Cuando tratamos de cuestiones que afectan a la vida, todo se nos vuelve complejo e ininteligible, es una de las disciplinas que no hemos podido llegar a dominar bien, dado que, como decía por ahí arriba, estamos tratando con lo más complejo que en el universo habita ¡La Vida!.

Claro que, aunque nuestro entorno sea el ideal no podemos dejar que todo transcurra sin  que nosotros, estemos pendientes de los comportamientos y, de no vigilar nuestro propio cuidado, las cosas podrían terminar de manera muy desagradable. De hecho, más de uno se ve abocado a su desaparición precisamente por no prestar atención a su propia vida que, siendo tan valiosa, se la deja escapar por unos placeres mal entendidos. La moderación es la madre de la razón.

emilio silvera

 

 

 

 

 

Un viaje por las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                        http://upload.wikimedia.org/wikipedia/commons/0/07/Eclipsing_binary_star_animation_2.gif

Esquema de estrellas binarias eclipsantes mostrando la curva de luz observada.

Estrella binaria:

  Ejemplo de una estrella binaria, donde dos cuerpos con masa similar orbitan alrededor de un centro de masa en órbitas elípticas.

Par de estrellas unidas por su atracción gravitatoria mutua y orbitando en torno a su centro de masas común, en contraposición a una doble óptica, que no esta ligada gravitatoriamente. Una binaria visual es aquella que se puede resolver visual o fotográficamente, mientras que una binaria astronómica es detectable únicamente por las irregularidades en el movimiento propio de alguna de las estrellas visibles. En las binarias eclipsantes son los eclipses los que aportan evidencias directas de la existencia de un compañero, mientras que en las binarias espectroscópicas son los desplazamientos Doppler de las líneas espectrales.

Cómo distinguir estrellas de neutrones y estrellas de quarks con ondas  gravitatorias - La Ciencia de la Mula Francis

En otros artículos hablamos de la posible existencia de estrella de Quark, una rareza y, aquí podemos ver un Sistema de estrellas binarias múltiples Los períodos orbitales de las binarias varían entre minutos y cientos de años. Las binarias con componentes muy próximos entre sí se subdividen de acuerdo a cuánto llena cada componente su lóbulo de Roche, dando lugar a binarias separadas, semi-separadas y de contacto. Las últimas dos categorías incluyen a las binarias en interacción, en las que existe una transferencia de masa. Muchas binarias son también estrellas variables, siendo las más importantes las distintas formas de estrella binaria cataclísmica, las supernovas de tipo I y ciertas fuentes variables de rayos X.

Nombre Tipo espectral; de la estrella principal Período orbital; (días) M2/M1*
ε Coronae Australis F2V 0,5914 0,11
44 Bootis G2V 0,2678 0,56
V2388 Ophiuchi F3V 0,8023 0,29

En ocasiones, las binarias llegan a estar tan cerca que, finalmente, se produce el encuentro y se funden en una sola estrella muy difrente a lo que fueron sus originales.

Las estrellas dobles ✨ Atlas de astronomíaCOSMOS: Materias cósmicas y estelares: Las estrellas - 4ª parte

Estrella “capullo”:

                                            La nebulosa del Capullo
En la Nebulosa del Capullo, no se observan proto estrellas, las existentes, jóvenes, ya formadas se encuentran en desarrollo, sería mas preciso decir en evolución, produciendo agua en abundancia y soplando con fortaleza como para expandirla.  Se puede observar transformada en nebulosa de reflexión rodeando la estrella azul en la parte superior de la imagen (deberá ser ampliada),y en la parte inferior derecha, filtra el color de las estrellas como un halo. Abajo la imagen centrada en el Capullo propiamente dicho, vemos la estrella masiva central que sopla generando la apertura de la nebulosa.

Estrella Capullo (arriba la podemos contemplar) aparece rodeada por una densa nube de gas y polvo que absorbe parte de la energía radiante de la estrella y la reemite en longitudes de onda infrarrojas. En casos extremos la estrella puede estar completamente oscurecida ópticamente, siendo sólo una fuente infrarroja. Las fuentes OH-IR son ejemplos de estrellas “capullo “.

Estrella con baja velocidad:

Estrella cuya velocidad relativa a las estrellas de la vecindad solar es pequeña, y que, por tanto, se haya en una órbita similar a la de estas alrededor del centro galáctico.

                                                  Estrellas Binarias de baja velocidad

Estrella con envoltura:

La Nebulosa Eta Carinae, NGC3372 | NOIRLabLa condenada estrella Eta Carinae | Imagen astronomía diaria - Observatorio

 Eta Carinae es una estrella con envoltura de muchas masas solares a punto de…dar un susto

IC 59 IC 63 gamma CassGamma Cassiopeiae - Viquipèdia, l'enciclopèdia lliure

Estrella cuyo espectro (normalmente de tipo B) contiene prominentes líneas de absorción que se originan en una capa de material que rodea a la estrella. Si es variable, la estrella se clasifica como una estrella Gamma Cassiopeiae , en la que la eyección de una envoltura está acompañada por una disminución del brillo temporal.

Las estrellas de densas masas, a veces producen extraños sucesos como el de formar burbujas mientras que ellas quedan presumidas y brillantes en su centro para lucir todo su poderío.

Estrella con exceso de ultravioleta:

Estrella que presenta un exceso de radiación ultravioleta en comparación con las estrellas normales. Un exceso de ultravioleta puede ser utilizado para identificar estrellas O y B calientes, enanas blancas y objetos rodeados por un disco de acreción, como estrellas de neutrones y agujeros negros.

Estrella de alta velocidad:

Estrella que se mueve a más de 65 km/s en relación al movimiento promedio de otras estrellas en la vecindad del sol (el estándar local de reposo). Las estrellas de alta velocidad son miembros del halo galáctico, moviéndose en órbitas altamente elípticas alrededor del centro galáctico.

Sus altas velocidades relativas tienen su origen en el hecho de que están atravesando el disco galáctico y no comparten la rotación del sol y de sus otras estrellas vecinas alrededor del centro galáctico. Dichas estrellas pudieron haberse formado en las etapas tempranas de la historia de la Galaxia, o pueden ser los restos de galaxias menores que se han fusionado a la nuestra.

Estrella de baja luminosidad:

Término vago que puede comprender a las enanas rojas, las subenanas, las enanas blancas y las enanas marrones. La dificultad en detectar estrellas de baja luminosidad hace que el número total de ellas sea incierto. No obstante, pueden constituir una fracción significativa de la masa total de la Galaxia.

Estrella de baja masa:

Término vago, que en algunas ocasiones incluye a las estrellas con masas ligeramente mayores que la del Sol, y en otras es utilizado sólo para las estrellas de menos de unas pocas décimas de masas solares, aunque todavía con suficiente masa como para quemar hidrógeno en sus núcleos (es decir, al menos 0,08 masas solares). La primera definición distingue a las estrellas con núcleos radiactivos de las estrellas de masas mayores con núcleos convectivos; la segunda restringe el término a las enanas rojas.

Estrella de bario:

Estrella gigante roja de tipo espectral G o K en la que aparecen en el espectro elementos más pesados como el bario con una abundancia inusualmente alta; conocida también como estrella B ll o estrella de metales pesados. El helio que se quema en una capa alrededor del núcleo produce los elementos más pesados. Las estrellas de bario son similares a las *estrellas CH, si bien son más ricas en metales y no tienen suficiente carbono como para ser consideradas * estrellas de carbono.

Estrella de bariones:

Estrella compuesta principalmente por bariones. En la práctica el término es un sinónimo de estrella de neutrones, ya que la repulsión eléctrica de los protones rompería una estrella de protones pura.

Estrella de campo:

Estrella que es visible en el mismo campo de visión que un cúmulo de estrellas, aunque no pertenece al mismo, estando o bien más próxima a nosotros o más distante. Análogamente, una galaxia de campo se encuentra en la misma línea de visión que un grupo de galaxias aunque no es un miembro del mismo.

Estrella de carbono:

La Fascinación de algunas estrellas : Blog de Emilio Silvera V.

Estrella gigante roja fría en una etapa avanzada de su evolución, mostrando intensos rasgos característicos del carbono en forma de bandas de CN, CH y C2 en su espectro; también conocida como estrella de tipo espectral C. En las estrellas de carbono, la abundancia de carbono es mayor que la de oxígeno. La presencia adicional de litio indica que estos elementos han sido producidos mediante reacciones nucleares en el núcleo de la estrella y que están siendo ahora transportados por convección hacia su superficie.

http://bitacoradegalileo.files.wordpress.com/2011/03/hinds-crimson-star.jpg

R Leporis es una estrella variable, de Carbono. Descubierta en 1.845 por el astrónomo inglés John Russell Hind, va oscilando desde la magnitud 5.5 hasta 11.7, en periodos constantes de 427.07 días, o sea, unos 14 meses. Se trata de una estrella de carbono, tipo espectral C6II, de un marcado color rojo conocida como la estrella carmesí de Hind, en honor a su descubridor, quien al observarla desde elocular de su telescopio, la comparó a una gota de sangre.

Proceso triple-alfa

Dado que el carbono sólo puede ser producido por el proceso triple-alfa a temperaturas muy altas, estas estrellas deben de estar muy evolucionadas. Estos raros pero luminosos objetos incluyen a las antiguas tipos R (gigantes de tipo K con temperaturas de 4000-5000 K) y N (gigantes de tipo M aunque más frías, con unos 3000K), que fueron introducidos en la clasificación de Harvard. Las estrellas de carbono de tipo N pueden ser hasta 10 veces más luminosas que las de tipo R.

Estrella de circonio: V. estrella S.

 Las estrellas de tipo S presentan bandas intensas de cianógeno (CN) y contienen líneas espectrales de litio y tecnecio. Las estrellas S puras,

Proto estrella:

La evolución estelar y el diagrama Hertzsprung-Russell - Astronomía Online

Una proto-estrella (o sea, una estrella en fase bebé) que lanza grandes cantidades de hidrógeno y oxígeno desde sus polos fue descubierta por los astrónomos recientemente. La estrella está a unos 750 años luz de la Tierra, y cada lanzamiento de estos gases, que son los que componen el agua, equivale a 100 millones de veces la que hay en el río Amazonas.

Este tipo de expulsiones han sido observadas antes en otras estrellas en formación, lo que hace pensar a los astrónomos que todas las estrellas pasan por este proceso. Los lanzamientos de hidrógeno y oxígeno en la estrella provocan grandes ondas alrededor de la misma, y el fenómeno podría ser el responsable de la existencia de agua en el universo

Estrella de estroncio:

Estrellas ultra-rápidas

Forma de estrella Ap con líneas de estroncio más intensas de lo habitual en su espectro. Estrellas viejas con niveles extrañamente altos de elementos raros como el estroncio y el itrio.

Estrella de helio:

Núcleo de una estrella que fue masiva (con más de 12 masas solares originalmente) y que ha evolucionado y perdido su envoltura rica en hidrógeno. La pérdida del hidrógeno puede ocurrir bien por medio de un intenso viento estelar, como en las estrellas Wolf-Rayet, o bien por transferencia de masa a un compañero, siempre que este se encuentre cerca de la primaria.

Se espera que las estrellas de helio evolucionen de la misma manera que los núcleos de las estrellas masivas, produciendo un núcleo de hierro que colapsa para generar una explosión de supernova de tipo Ib o Ic, dependiendo de la masa de la estrella.” Estrella de helio “es también un término obsoleto para referirse a una estrella d tipo B normal.

Estrella de la población I extrema:

Estrella que pertenece a la población estelar más joven. Como una estrella T Tauri, una estrella recién llegada a la secuencia principal de edad cero, o una estrella OB masiva con su región H II asociada. Dichas estrellas tienen altas abundancias de metales (similares a las del Sol o mayores).

Se encuentran en regiones localizadas del disco galáctico, notablemente en los brazos espirales, donde la formación de estrellas ha tenido lugar muy recientemente.

Estrella de la población intermedia:

Estrella con propiedades intermedias entre las viejas de la Población II del halo galáctico y las jóvenes de la Población I del disco galáctico. Su abundancia en metales pesados es intermedia entre la de las dos poblaciones, y se encuentran distribuidas en un grueso disco que se extiende por encima y por debajo de un fino disco en el que se encuentran las estrellas de la población del disco.

“Sería más correcto considerar que el límite teórico de 150 masas solares represente un punto en la evolución de una estrella masiva donde alcance un cierto equilibrio de fuerzas. Pero esto no quiere decir que no pueda haber estrellas más masivas que 150 masas solares, sino que, solamente, irán disminuyendo siempre su masa hasta alcanzar el valor de 150 masas solares. Y, para ello, expulsarán masa al Espacio Interestelar.”

Una estrella que tenga una masa cercana a las 100 masas solares está en peligro y le puede ocurrir como a la que, arriba en la imagen podemos ver, será destruida por su propia radiación y, ni la fuerza de Gravedad puede mantenerla estable.

     Gigante roja como será el Sol dentro de 4.000 M de años

Estrella de la rama gigante asintótica:

Estrella que ocupa una franja en el diagrama de Hertzsprung-Russell que es casi paralela a, o justo por encima de, la rama de las gigantes. Las estrellas evolucionan desde la rama horizontal a la rama gigante asintótica cuando han agotado el helio en su núcleo y lo están quemando en una capa alrededor de este.

.Diagrama de Hertzsprung-Russell: características e importancia |  Meteorología en Red                                                              DIAGRAMA DE HERTZSPRUNG RUSSELL - Leyes del Universo

 

Los investigadores han observado un centenar de esos cuerpos celestes ricos en rubidio, conocidos como estrellas de la rama asintótica  gigantes. La variedad de estrellas (en sus componentes)m existentes en el Universo es inmensa. Incluso las tenemos que son auténticas diamantes.

Estrella de litio:

Estrella gigante inusual de tipo espectral G, K o M que presenta litio en su espectro. Las reacciones nucleares en o cerca del núcleo de la estrella evolucionada producen berilio, que es transportado por convección a las capas superiores, donde captura un electrón para convertirse en litio.

El término es en ocasiones aplicado para referirse a las estrellas T Tauri (que son muy jóvenes y todavía en formación); en estos casos el litio es probable que se hallara en el gas del cual se formó la estrella, y será pronto destruido una vez que la estrella alcance la secuencia principal.

Estrella de manganeso:

Estrella químicamente peculiar con una proporción inusualmente alta de manganeso con respecto de hierro y una temperatura correspondiente al tipo espectral B tardío. Son estrellas de la secuencia principal, similares a las estrellas Ap, aunque sin evidencias de campos magnéticos intensos.

Estrellas múltiples:

                    Los sistemas estelares múltiples — AstrobitácoraEstrellas dobles
Estrella múltiple, grupo de más de dos estrellas unidas entre sí por gravitación mutua de modo que cada una se mueve en una órbita alrededor de la otra. Los sistemas de estrellas múltiples de tres o cuatro estrellas parecen ser tan comunes como los sistemas binarios de estrellas, que son los pares de estrellas forzados a girar uno alrededor del otro por gravitación. Los astrónomos estiman que más o menos la mitad de todas las estrellas del cielo pertenecen bien a un sistema binario, bien a uno múltiple.

Estrella de mercurio-manganeso:

Forma de estrella de manganeso que tiene una línea espectral a una longitud de onda de 398,4 nm, identificada como de hidrógeno ionizado; también conocida como estrella de manganeso-mercurio.

Estrella de metales pesados:

Lo que el descubrimiento de la estrella Eärendel nos enseña sobre los  primeros instantes del universoLas 10 estrellas más grandes del Universo

Gigante con cantidades inusuales de elementos pesados en su espectro, como las estrellas de bario o las estrellas S.

Estrella de neutrones:

Estrellas de neutrones: características, formación y curiosidades |  Meteorología en Red

Estrella masiva que al final de sus días se contrae en estrella de neutrones. Son objeto extremadamente pequeño y denso que se cree que se forma cuando una estrella masiva sufre una explosión de supernova de tipo II. Durante la explosión el núcleo de la estrella masiva se colapsa bajo su propia gravedad hasta que, a una densidad de unos 10 con exponente 17 k/m3, los electrones y los protones están tan juntos, que pueden combinarse para formar neutrones.

El objeto resultante, consistente sólo en neutrones, se soporta frente a un mayor colapso gravitacional por la presión de degeneración de los neutrones, siempre que su masa no sea mayor que unas dos masas solares (límite de Oppenheimer-Volkoff).

Si el objeto fuese más masivo colapsaría hasta formar un agujero negro. Una típica estrella de neutrones, con una masa poco mayor que la del Sol, tendría un diámetro de apenas 30 km, y una densidad mucho mayor que la que habría en un terrón de azúcar con una masa igual a la de toda la humanidad.

Cuanto mayor es la masa de una estrella de neutrones, menor es su diámetro. Se cree que las estrellas de neutrones tienen un interior de neutrones superfluitos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeados por una corteza sólida de más o menos un kilómetro de grosor compuesta de elementos como el hierro.

Los pulsares son estrellas de neutrones magnetizadas en rotación. Las binarias de rayos X masivas también se piensa que contienen estrellas de neutrones.

Estrella de quarks:

 Estrellas de Quarks - Física y cosmología - Espacio Profundo

Estrella hipotética con una densidad intermedia entre la de una estrella de neutrones y la de un agujero negro. Dichas estrellas estarían constituidas por quarks libres. Las fuerzas entre los quarks compensan las fuerzas gravitacionales. Es improbable que las estrellas de quarks existan en la naturaleza, pero algunos modelos de núcleos de estrellas de neutrones sugieren que los neutrones (y los protones) dejan de ser estados ligados para formar un caldo de quarks.

Estrella de referencia:

Estrella cuya posición y -o movimiento propio son conocidos, de manera que puede ser utilizada para definir un sistema de referencia local para las posiciones relativas o los movimientos propios de otras estrellas situadas en la misma área del cielo.

Estrella de silicio: Tipo de estrella Ap en la que hay una abundancia de silicio mayor de la normal.

Estrella Supermasiva:

Qué hay en el centro de la Vía Láctea? Ya sabemosHallazgo histórico: captan la primera imagen del agujero negro Sagitario A*  - AS.com

                            Un peculiar Horizonte de Sucesos en el Centro de una Galaxia

La estrella supermasiva cuando se convierte en un agujero negro se contrae tanto que, realmente desaparece de la vista, de ahí su nombre de “agujeros negros”.  Su enorme densidad genera una fuerza gravitatoria tan descomunal que la velocidad de escape supera a la de la luz, por tal motivo, ni la luz puede escapar de él.  En la singularidad, dejan de existir el tiempo y el espacio, podríamos decir que el agujero negro está fuera, apartado de nuestro Universo, pero en realidad, deja sentir sus efectos, ya que, como antes dije, se pueden detectar las radiaciones de rayos X que emite cuando engulle materia de cualquier objeto estelar que se le aproxime más allá del punto límite que se conoce como Horizonte de Sucesos.

Estrella de tecnecio:

Estrella M o estrella de carbono que contiene isótopos de tecnecio. Dado que el isótopo de tecnecio de más larga vivaque puede ser creado por la nucleosíntesis estelar tiene una vida media de 210.000 años, este material debió de haberse creado recientemente en el interior de la estrella y más tarde llevado hacia su superficie.

Estrella de tipo intermedio:

Término empleado en ocasiones para referirse a las estrellas con tipos espectrales F o G.

Estrella de tipo tardío:

Estrella con una temperatura superficial más fría que la del Sol, con un tipo espectral K, M, C o S; a menudo, también se incluyen las estrellas G en esta categoría. Las estrellas de tipo tardío pueden ser o bien de baja masa, si son de la secuencia principal, o más masivas que el Sol, si son gigantes o supergigantes. La designación “tardío “proviene de la época en la que se pensaba incorrectamente que las estrellas con espectros K o M eran viejas y evolucionadas.

Estrella de tipo temprano:

Cualquier estrella masiva y caliente de tipo espectral O, B o A. La designación “temprano” deriva de una antigua idea errónea de que las estrellas evolucionaban desde un estado caliente y joven a un estado frío y viejo. El término también se utiliza para referirse al tipo más caliente de cada clase espectral; por ejemplo, una estrella K1 es más temprana que una estrella K5.

Estrella del polo:

Historia y leyenda de Polaris, la Estrella Polar o estrella del NorteEstrella Polar ¿cómo encontrarla? ¿qué indica? - UniversoAbierto.com

Siempre fue la guía de los marineros aventureros

La estrella visible a simple vista más próxima a los polos celestes Norte y Sur. La estrella del polo norte es en la actualidad Polaris, y la estrella del polo Sur es Sigma Octantis. No obstante, la posición del polo celeste (y, por tanto, a estrella del polo) cambia con el tiempo debido al efecto de la precesión.

Estrella doble:

Dos estrellas que aparecen próximas entre sí en el cielo. Dichos pares pueden dividirse en dos clases:

Dobles ópticas, donde las componentes no están gravitacionalmente ligadas, y dobles físicas, en las que las estrellas se hayan orbitando en torno a un baricentro común. El término “estrella doble” está restringido frecuentemente al primer grupo, mientras que el término estrella binaria es empleado para el segundo. De hecho, las dobles ópticas son relativamente poco comunes, y la mayoría de las dobles son realmente auténticos sistemas binarios

 Playas de vidrio, estrellas y huevos de dragón . El Correo

Las estrellas se reflejan en las olas que mueren en la playa y brillan como lucérnagas

Me gustaría haber hecho este viaje más completo y con más imágenes de estrellas que representaran a cada una de las clases que en las galaxias existen, sin embargo, diversas circunstancias me impiden llevarlo a la práctica. De todas las maneras y, como una muestra de la riqueza que existe en la familia estelar, creo que está bien para comprender que, el inmenso Universo, siempre nos sorprenderá con su contenido y las maravillas que en él están presentes.

 Eso sí, las estrellas son mucho más que simples puntos brillantes en el cielo

emilio silvera.

La Formación dela Tierra II

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Capítulo 2
La Tierra en el Universo


La Tierra es un pequeño cuerpo celeste, opaco, perteneciente a un grupo de planetas que giran alrededor de la estrella denominada Sol.

Galaxia irregular en la constelación de la Osa Mayor.

Leer más