miércoles, 24 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Las Fluctuaciones de vacío, las D-Branas y otros enigmas que deseamos...

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En realidad sabemos que las fluctuaciones de vacío son, para las ondas electromagnéticas y gravitatorias, lo que “los movimientos de degeneración claustrofóbicos” son para los electrones.

Qué es la Física Cuántica y cuál es su objeto de estudio?Qué es Cuántico? » Su Definición y Significado [2022]

Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a continuar moviéndose aleatoriamente, de forma impredecible.  Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de los neutrones, mantiene estable a la estrella de neutrones que, obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo a la estrella.

Señales de un universo cuántico": la investigación de un científico  uruguayo que puede ayudar a revelar el origen de las galaxias - BBC News  MundoCómo la física cuántica ha afectado nuestra experiencia en el mundo? |  Techcetera

De la misma forma, si tratamos de eliminar todas las oscilaciones electromagnéticas o gravitatorias de alguna región del espacio, nunca tendremos existo.  Las leyes de la mecánica cuántica insisten en que siempre quedarán algunas oscilaciones aleatorias impredecibles, es decir, algunas ondas electromagnéticas y gravitatorias aleatorias e impredecibles.

Estas fluctuaciones del vacío no pueden ser frenadas eliminando su energía (aunque algunos estiman que, en promedio, no contienen energía en absoluto).

Claro que, como antes decía, aún nadie ha podido medir de ninguna manera la cantidad real de energía que se escapa de ese supuesto “vacío”, como tampoco se ha medido la cantidad de fuerza gravitatoria que puede salir de ese mismo espacio “vacío”.

Si la energía es masa y si la masa produce gravedad, entonces ¿Qué es lo que hay en ese mal llamado “espacio vacío”?

Psicología de Alta Consciencia — Universo en física y Universo en metafísica

No puedo contestar de momento esa pregunta, sin embargo, parece que no sería un disparate pensar en la existencia allí, de alguna clase de materia que, desde luego, al igual que la bariónica que sí podemos ve, genera energía y ondas gravitacionales que, de alguna manera que aún se nos oculta, escapa a nuestra vista y solo podemos constatar sus efectos al medir las velocidades a que se alejan las galaxias unas de otras: velocidad de expansión del Universo que no se corresponde en absoluto, con la masa y la energía que podemos ver.

Estoy atando cabos sueltos, uniendo piezas y buscando algunas que están perdidas de tal manera que, por mucho que miremos, nunca podremos ver.  El lugar de dichas piezas pérdidas no está en nuestro horizonte y se esconde más allá de nuestra percepción sensorial.

Estamos en un momento crucial de la Física, las matemáticas y la cosmología, y debemos, para poder continuar avanzando, tomar conceptos nuevos que, a partir de los que ahora manejamos, nos permitan traspasar los muros que nos están cerrando el paso para llegar a las supercuerdas, a la materia oscura o a una teoría cuántica de la gravedad que, también está implícita en la teoría M.

Estamos anclados, necesitamos nuevas y audaces ideas que puedan romper las cadenas “virtuales” que atan nuestras mentes a ideas del pasado.

                          El profesor Bigotini: PARTÍCULAS VIRTUALES: LOS FANTASMAS CUÁNTICOSGAE UNAM: Gravitación y Altas Energías - ¿Qué es una partícula virtual?  Pues seguro que algo distinto a una partícula real. Pero vamos por partes.  Para tener un ejemplo concreto, consideremos un

En su momento, esas ideas eran perfectas y cumplieron su misión.  Sin embargo, ahora no nos dejan continuar y debemos preparar nuestras mentes para evolucionar hacia nuevos conceptos y ahondar en aquellos que, aún estando ahí presentes, no somos capaces de utilizar, como por ejemplo, el Hiperespacio de tan enorme importancia en el futuro de la Humanidad.

Cuándo sepamos “ver” dimensiones más altas, todo será mucho más sencillo y encontraremos las respuestas a los problemas que hoy, no sabemos resolver.

Al mencionar dimensiones más altas (ahora trabajamos con tres de espacio y una temporal), se me ocurre, como ejemplo cotidiano y sencillo, el referirme al general que, escondido con su ejercito en la profundidad de un enorme valle, no sabía que estrategia emplear para vencer a sus enemigos.

Batalla De Los Pirineos Fotos e Imágenes de stock - AlamyRuta Castillos y Batallas de Jaén. 20 Castillos y 3 Batallas

Pensando en como resolver el problema, ascendió con sus capitanes a lo alto de la montaña, y, con sorpresa vio, desde aquella “altura”, todas las posiciones enemigas.

Así, de aquel nuevo conocimiento, adquirido al subir más alto, pudo extraer consecuencias de lo que vió para preparar la estrategia adecuada y alcanzar la meta, en este caso, la victoria.

Pues, de la misma manera, nosotros también estamos obligados a subir a la montaña que nos permita ver más allá de las matemáticas topológicas, más allá de las fluctuaciones de vacío, más allá de los quarks, más allá de las singularidades y… ¿Por qué no decirlo? ¡Más allá de nuestro propio Universo!

No podemos olvidarnos de que dentro de varios eones, nuestro Universo podría morir.  Estamos obligados a buscar la manera (si existe), de escapar de ese destino fatal.

Lo último que dijo Stephen Hawking: qué pasó antes del Big BangSingularidad gravitacional - Wikipedia, la enciclopedia libre

Si el Universo, finalmente, se convierte en una singularidad que es una región donde (según las leyes de la relatividad general) la curvatura del espacio-tiempo se hace infinitamente grande, y el espacio-tiempo deja de existir, toda vez que, la singularidad es también una región de gravedad de marea infinita, es decir, una región donde la gravedad ejerce un tirón infinito sobre todos los objetos a lo largo de algunas direcciones y una compresión infinita a lo largo de otras.

Después de crear un horizonte de agujero negro a su alrededor, dicen las ecuaciones que describen este fenómeno, la materia toda que compone nuestro Universo, continuará implosionando, inexorablemente, hasta alcanzar densidad infinita y volumen cero, creándose así la singularidad que estará fundida con el espacio-tiempo.

Si eso ocurre (como es muy posible), seguramente, de esa “nada” que se ha formado, más pronto o más tarde surgirá, mediante una enorme explosión, un nuevo Universo que, no sabemos si será igual, con las mismas fuerzas y las mismas leyes que el que ahora tenemos.

Así que, si todo esto resulta ser así ¿No sería una irresponsabilidad, el no hacer nada? ¡Claro que sí!

Tenemos que continuar, cada uno en la medida de sus posibilidades, procurando avanzar hacía un futuro de profundos conocimientos que nos permitan, algún día lejano, muy lejano situado en eso que llamamos futuro, escapar de ese escenario de destrucción.

                  Teoría del Big Crunch - Wikipedia, la enciclopedia libreLa física en mí.: El Big Crunch

                                               Todo se junta para que todo comience de nuevo

Si por el contrario, el final del Universo, no es el Big Crunch, y resulta que estamos viviendo en un Universo plano con expansión eterna, tampoco parece que el panorama sea más alentador, sólo varía que, en lugar de terminar con una enorme bola de fuego a miles de millones de grados, el alejamiento paulatino de las galaxias por la expansión imparable del Universo, nos traerá el frío del cero absoluto, -273 grados, con lo cual, de la misma manera, el fina sería igual de triste para nosotros: ¡La desaparición de la Humanidad!

Como nos queda aún mucho tiempo para llegar a ese hipotético final, retomemos mejor, otras cuestiones futuras pero, más cercanas.

¿Qué son las D-Granas? ¿Por qué las requiere la teoría de cuerdas? La respuesta básica a la segunda pregunta es que dan sentido a las cuerdas abiertas que intervienen en la teoría tipo I: cada uno de los dos extremos de una cuerda abierta debe residir en una D-brana.

D-Branas, ¿dimensiones extra? ¡Cómo somos! : Blog de Emilio Silvera V.LA MADRE DE LAS SUPERCUERDAS - ppt descargar

Supersimetría - George de la física

Los dos extremos de la cuerda abierta residen en un subespacio (q+l)- dimensional de género tiempo llamado una D-brana, o D-q-brana que es una entidad esencialmente clásica (aunque posee propiedades de súper-simetría, que representa una solución de la teoría de la super-gravedad 11 dimensional.

En respuesta a la primera pregunta, una D-Brana es una estructura de genero tiempo, como más arriba indico, 1+q dimensiones espaciotemporales. (Invocando una de las dualidades de la teoría M, alternativamente podemos considerar una D-Brana como una solución de las ecuaciones de alguna otra versión de la teoría M de cuerdas.)

Función de Green para el problema de Dirichlet de la ecuación de Laplace -  YouTubeSolución al problema de Dirichlet sobre la malla de la Fig.2 | Download  Scientific Diagram

Las D-branas aparecen en muchas discusiones modernas relacionadas con las cuerdas (por ejemplo, en la entropía de los agujeros negros).  Suelen tratarse como si fueran objetos clásicos que yacen dentro del espaciotiempo completo 1+9 (° 1+10) dimensiones.  La “D” viene de “Dirichlet”, por analogía con el tipo de problema de valor de frontera conocido como un problema de Dirichlet, en el que hay una frontera de género tiempo sobre la que se especifican datos (según Meter G. Lejeune Dirichlet, un eminente matemático francés que vivió entre 1805 y 1859.)

Con la introducción de tales “D-branas” varios teóricos han expresado una “filosofía de cuerdas” que parece representar un profundo cambio respecto a lo anterior.  En efecto, se afirma con cierta frecuencia que podríamos “vivir en” esta o esa D-brana, lo que significa que nuestro espaciotiempo percibido podría yacer realmente dentro de  una D-brana, de modo que la razón de que no se perciban ciertas “dimensiones extra” se explicaría por el hecho de que “nuestra” D-brana no se extiende a esas dimensiones extra.

Obstinados navegantes en océanos de incertidumbre: julio 2012Sobre las dimensiones extras espaciales

La última posibilidad sería la postura más económica, por supuesto, de modo que “nuestra” D-brana (una D-3 brana) sería de 1+3 dimensiones.  Esto no elimina los grados de libertad en las dimensiones extra, pero los reduce drásticamente.  ¿Por qué es así? Nuestra perspectiva ahora es que somos “conscientes” de los grados de libertad que están implicados en el interior profundo del espacio de mayores dimensiones entre los D-branas, y es en esto donde se está dejando sentir la excesiva libertad funcional.

Solo vamos a ser conscientes de dimensiones extra allí donde inciden directamente sobre las D-brana en la que “vivimos”.  Más que una imagen de tipo “espacio cociente” que evoca la analogía de Kaluza-Klein original.

Así, nuestro espacio-tiempo observado aparece ahora como un subespacio 4-dimensional del espacio real de dimensiones más altas. Con algo de imaginación, lo podemos visualizar en nuestra mente.

Confirmado: una estrella puede 'arrastrar' el espacio-tiempo a su alrededorViaje en el tiempo – ZONA LIBRE RADIO 1

¿Cuánta libertad funcional esperamos ahora? La situación es ahora algo parecida a la imagen geométrica que hemos adoptado en el gráfico para obtener una perspectiva más convencional con respecto a la “super-geometría”.  Puesto que ahora estamos interesados solo en el comportamiento en la D-brana (que suponemos que es geométricamente una (1+3)-superficie ordinaria), podemos imaginar que nuestra libertad funcional se ha convertido en una aceptable ¥M¥3, aunque para un M bastante grande.  Sin embargo, incluso esto supone que la restricción de la dinámica en el 10-espacio (u 11-espacio) completo nos proporciona ecuaciones dinámicas dentro de “nuestra” D-brana 4-dimensional que son del tipo convencional, de modo que bastará los datos iniciales en una 3-superficie para determinar el comportamiento en todo el 4-espacio.  Esto es difícilmente probable, en general, de modo que aún cabe esperar un excesivo ¥M¥3.

¡El problema no ha desaparecido todavía!

La estrella Cervantes y su Quijote (por @CuentosCuanticos) – Estrella  Cervantes

En concreto, esta es la cuestión de por qué las interacciones gravitatorias son tan minúsculas comparadas con las demás fuerzas importantes de la naturaleza o, de manera equivalente, por qué es la masa de Planck tan enormemente mayor que las masas de las partículas elementales de la naturaleza (en un factor de aproximadamente 1020).  La aproximación de la D-brana a este problema parece requerir la existencia de más de una D-brana, una de las cuales es “grande” y la otra “pequeña”.  Hay un factor exponencial involucrado en cómo se estira la geometría desde una D-brana hasta la otra, y esto es considera una ayuda para abordar la discrepancia en 1040, más o menos, entre las intensidades de la fuerza gravitatoria y las otras fuerzas.

Se puede decir que este tipo de imagen de espacio-tiempo de dimensiones más altas, que se estira desde la frontera de una D-brana hasta la otra, es uno de los tipos de geometría sugeridos por las teorías 11 dimensionales, tales como la teoría M, donde la undécima dimensión tiene la forma de un segmento abierto, y la geometría de cada frontera tiene la forma topológica (por ejemplo, MxV) de los 10 espacios considerados antes.  En otros modelos, la undécima dimensión es topológicamente S1.

¿Qué harán de todo esto los físicos con respecto al estatus de la teoría de cuerdas como una teoría física para el futuro?

Teoría de supercuerdas - Wikipedia, la enciclopedia libreMichio Kaku: Teoría de las cuerdas y la mente de Dios | GRAZNIDOS Weblog

La situación tiene aspectos muy enigmáticos y notables, y otros aspectos, parecen inconsistentes y sería un error, en este momento, que lo demos por buenos.  Mejor esperemos a que maduren.  Pese a todo, muchas de las afirmaciones de los teóricos de cuerdas se hacen con gran seguridad y aparente confianza.  Es indudable que estas afirmaciones deben ser suavizadas hasta que se adquiera más certeza en el conocimiento de los múltiples aspectos de la teoría que deben ser tomadas con cierta reserva antes de ser lanzadas alegremente al mundo.

Roger Penrose afirma que, algunas de las afirmaciones de más peso, pueden ser descartadas (tal es el caso de la teoría de cuerdas ha proporcionado una teoría completa y consistente de la gravedad cuántica).  En mi modestia, estoy totalmente de acuerdo con él, y, según lo poco que sé al respecto me hace pensar que, la teoría de cuerdas, es una firme candidata para llegar a esa teoría cuántica de la gravedad, aunque de momento, le queda inalcanzable.

No obstante, sería injusto no admitir que parece habar algo de auténtica trascendencia “entre bastidores” en algunos aspectos de la teoría M de cuerdas.

La tercera revolución de la teoría de cuerdas para celebrar las bodas de  plata (25 años) de la primera | Francis (th)E mule Science's NewsLa Teoría de Cuerdas: Una breve descripción | Cosmo Noticias

Claro que, podría resultar que ese “algo” sea de interés puramente matemático, sin que haya ninguna razón real para creer que nos acerca más a los secretos de la naturaleza.

La teoría M de cuerdas es una teoría muy adelantada a su tiempo, incluso las matemáticas necesarias para desarrollarla al completo, nos son desconocidas.  Por otra parte, como me he cansado de escribir en otros trabajos anteriores, la energía necesaria para verificarla, no está a nuestro alcance.

La fuerza del argumento a favor de la teoría de cuerdas parece residir en varias relaciones matemáticas notables entre “situaciones físicas” en apariencia diferentes (normalmente, algo alejadas de la física el mundo real de la naturaleza).

¿Son una “coincidencia” estas relaciones, o hay alguna razón más profunda tras ellas? Si hablamos de matemáticas, las coincidencias sin una razón determinada, suelen ser más bien escasas.  Me inclino y apuesto por el hecho de que, para muchas de estas “coincidencias” hay realmente una razón, todavía no descubierta.

Algunos (no se si calificarlos de envidiosos o de tener carencia de ilusiones), han llegado a decir que, las teorías de cuerdas, no es seguro que estén haciendo física.  O, si la hacen, ¿Qué área de la física están explorando realmente?

Se me ocurre pensar que, el mismo escepticismo encontró A. Einstein, en su tiempo, al formular sus famosas teorías relativistas y, sin embargo, nos trajo hasta aquí.

                                    Albert Einstein publica la teoría de la relatividad - Tour Historia

                                                                  No todos lo creyeron

No parece que se pueda hacer una valoración adecuada de estas cuestiones sin mencionar el papel concreto de Edgard Witten.  Él es aceptado generalmente como la figura con más responsabilidad en la dirección de la investigación en la teoría de cuerdas (y la teoría M) desde finales de la década de los 80.  Ha tenido un papel primordial en el lanzamiento de la “segunda revolución en supercuerdas” en 1.995, pero ya entonces había establecido su preeminencia al iniciar varios desarrollos importantes en la teoría de cuerdas, y en muchas otras áreas que tienen cierta relación (no siempre obvia) con la teoría de cuerdas.  Sin duda Witten, ha sido, hasta el momento, el mejor conductor de la teoría de cuerdas. 

                                     Twists del destino | Investigación y Ciencia | Investigación y CienciaTwistor Theory (Roger Penrose)

Es interesante que en un nuevo trabajo que parece bastante importante Witten haya vuelto a consideraciones dentro de un espacio-tiempo 4-dimensional estándar (aunque sigue habiendo súper-simetría).  Combinando ideas de la teoría de twistores y la teoría de cuerdas, Witten es capaz de obtener algunos resultados fascinantes concernientes a las interacciones de Yang-Mills de varios gluones.  Este trabajo es particularmente importante desde una perspectiva orientada a los twistores, y muy bien podría llevar a nuevos desarrollos.

La calidad de los logros intelectuales de Witten es extraordinaria.  Se puede comentar, por ejemplo, sobre los seminarios de matemáticas de Oxford (en la serie de geometría y análisis), en los que se ha anunciado algún enfoque nuevo y muy original de algún problema, y ha resultado que la idea seminal procedía en realidad de Witten.  A menudo, tales enfoques han abierto un nuevo campo, donde estas ideas imprevistas y nuevas han arrojado un potente fogonazo de luz original sobre problemas matemáticos difíciles (a veces problemas que previamente parecían intratables).  Sin duda,

Lo que todo físico debe saber sobre la teoría de cuerdas - La Ciencia de la  Mula Francis

Witten posee una extraordinaria intuición y unos conocimientos matemáticos que sobrepasan a los de primer orden, su medalla Field, de 1.990, es más que justificada.  Sin embargo, sus capacidades, según las ideas que expone, están mas cerca de la observación profunda de la Naturaleza.  Si él tiene razón, entonces quizá este sea uno de los argumentos más contundentes para aceptar sus opiniones de que la súpersimetría y la teoría de cuerdas encuentran un profundo favor en la Naturaleza.  Por otra parte, ¡quizá sea un matemático más notable de lo que él mismo admite!

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting