
Nov
16
Biología de las estrellas
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
¿Es viejo el Universo?
Nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí están presentes todas las cosas que existen y las que tienen que existir… El espacio-tiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!
Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y espacio como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.
Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales” la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.
Es fácil caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.
A lo menos una vez al día, el cielo en su parte alta, es iluminado por un gran destello producido por grandes explosiones de rayos gamma. A menudo, esos destellos alcanzan magnitudes superiores a las que pueden ser generadas por todo un conjunto de otros rayos cósmicos y desaparecen posteriormente sin dejar más rastro. Nadie puede predecir cuando volverá a ocurrir la próxima explosión o de que dirección del cielo procederá. Hasta ahora, no contamos con evidencias duras como para asegurar cuáles podrían ser las fuentes precisas de donde provienen esos rayos gamma que observamos en lo alto del cielo, las razones que ocasionan los grandes destellos y la distancia en la cual ocurre el fenómeno.
La edad actual del Universo visible ≈ 1060 tiempos de Planck
Tamaño actual del Universo visible ≈ 1060 longitudes de Planck
La masa actual del Universo visible ≈ 1060 masas de Planck
Vemos así que la bajísima densidad de materia en el Universo es un reflejo del hecho de que:
Densidad actual del Universo visible ≈10-120 de la densidad de Planck
Y la temperatura del espacio, a 3 grados sobre el cero absoluto, es, por tanto
Temperatura actual del Universo visible ≈ 10-30 de la Planck
Desde lo muy pequeño hasta lo muy grande
Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el Universo está estructurado en una escala sobre humana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.
Con respecto a sus propios patrones el Universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.
Pero, pese a la enorme edad del Universo en “tics” de Tiempos de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.
En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas super-masivas se pueden producir sucesos de inmensas energías y, en regiones de gas y polvo de muchos años-luz de diámetro, es donde surgen los Sistemas solares que contienen planetas aptos para la vida.
¿Por qué nuestro Universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el Universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el Universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.
Zeta Oph, una colosal estrella cuyo viento estelar deja una huella espectacular en el espacio circundante.
Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen series amenazas exteriores.
Credit: Emily Lakdawalla/Ted Stryk
La mayoría de asteroides, incluyendo Vesta, están en el cinturón de asteroides que se sitúa entre Marte y Júpiter. Otros asteroides giran en círculos mas cerca del Sol que de la Tierra, mientras que un gran número de ellos comparten orbitas planetaria. Dada esta gran variedad de asteroides, algunos particularmente extraños han sido descubiertos en los últimos dos siglos desde que el primer asteroide fuera descubierto (Ceres en 1801).
Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una serie y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.
La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución, o, por el contrario, evitar que siga cualquier clase de evolución produciendo la extinción total y dejando la Tierra como un planeta muerto.
emilio silvera
Nov
16
¿Viajes en el Tiempo? ¡Otro sueño de la Humanidad!
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
En cromodinámica cuántica, la propiedad de libertad asintótica hace que la interacción entre quarks sea más débil cuanto más cerca están unos de otros (confinación de quarks) y la fuerza crece cuando los quarks tratan de separarse, es la única fuerza que crece con la distancia. Los quarks y los gluones están confinados en una región cuyo valor se define por:
R » ћc /L » 10-13 cm
Poder contemplar Quarks libres sólo podría haber sido posible en aquellos primeros momentos, antes de la formación de los hadrónes. En realidad, la única manera de que pudiéramos observar quarks libres, sería en un ambiente con la temperatura del universo primitivo, es la temperatura de desconfinamiento.
Ahora se cree que el Big Crunch nunca se producirá y que la muerte del Universo será térmica, es decir, una temperatura del cero absoluto que lo paralizará todo, ni los átomos se moverán en ese frío de muerte que dejará un universo congelado donde ni brillaran las estrellas ni estará presente ninguna clase de vida.
En la parte anterior de este mismo trabajo, estaba hablando del Big Crunch y me pasé a otro (los quarks), así que cerremos este capítulo del Big Crunch que está referido a un estado final de un universo cerrado de Friedmann (es decir, uno en el que la densidad excede a la densidad crítica). Dicho universo se expande desde el Big Bang inicial, alcanza un radio máximo, y luego colapsa hacia un Big Crunch, donde la densidad de la materia se vuelve infinita después de que la gravedad haga parar la expansión de las galaxias que, lentamente al principio, y muy rápidamente después, comenzarán a desplazarse en sentido contrario, desandarán el camino para que toda la materia del universo se junte en un punto, formado una singularidad en la que dejaría de existir el espacio-tiempo. Después del Big Crunch debería haber otra fase de expansión y colapso, dando lugar a un universo oscilante. universo que se va y universo que viene.
Pero, ¿y nosotros?, ¿Qué pintamos aquí?
¡Mirado así no parece que seamos gran cosa!
Antes de pasar a otros temas, retomemos el de los viajes en el tiempo y las paradojas que pueden originar.
Una versión de la máquina del tiempo de Thorne consiste en dos cabinas, cada una de las cuales contiene dos placas de metal paralelas. Los intensos cambios eléctricos creados entre cada par de placas de metal paralelas (mayores que cualquier cosa posible con la tecnología actual) rizan el tejido del espacio-tiempo, creando un agujero en el espacio que une las dos cabinas. Una cabina se coloca entonces en una nave espacial y es acelerada a velocidades próximas a la de la luz, mientras que la otra cabina permanece en la Tierra. Puesto que un agujero de gusano puede conectar dos regiones des espacio con tiempos diferentes, un reloj en la cabina de la nave marcha más despacio que un reloj en la cabina de la Tierra. Debido a que el tiempo transcurriría a diferentes velocidades en los dos extremos del agujero de gusano, cualquiera que entrase en un extremo del agujero de gusano sería instantáneamente lanzado al pasado o al futuro.
Viajar al pasado y conocer a personajes famosos a los que contar las novedades científicas. Algunos dicen que el viaje en el Tiempo está prohibido, aunque es posible. Siempre hemos tenido una gran imaginación y, cuando se sabíamos contestar a una cuestión compleja… ¡Inventamos la respuesta!
Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.
Parece que la función de las placas metálicas paralelas consiste en generar la materia o energía exótica necesaria para que las bocas de entrada y salida del agujero de gusano permanezcan abiertas y, como la materia exótica genera energía negativa, los viajeros del tiempo no experimentarían fuerzas gravitatorias superiores a 1g, viajando así al otro extremo de la galaxia e incluso del universo o de otro universo paralelo de los que promulga Stephen Hawking. En apariencia, el razonamiento matemático de Thorne es impecable conforme a las ecuaciones de Einstein.
Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.
Muchas son las máquinas del tiempo que hemos desarrollado en nuestra imaginación
Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.
Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.
En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.
Nuestra línea de universo resume toda nuestra historia, que nacemos hasta que morimos. Cuanto más rápido nos movemos más se inclina la línea de universo. Sin embargo, la velocidad más rápida a la que podemos viajar es la velocidad de la luz. Por consiguiente, una de este diagrama espacio-temporal está “prohibida”; es decir, tendríamos que ir a mayor velocidad que la luz para entrar en esta zona prohibida por la relatividad especial de Einstein, que nos dice que nada en nuestro universo puede viajar a velocidades superiores a c.
Las plantas absorben la energía negativa, se crea masa negativa. Sí, ¿pero dónde está esa energía negativa para viajar en el Tiempo?
Este concepto más bien simple se conoce con un nombre que suena complicado: la condición de energía media débil (average weak energy condition, o AWEC). Como Thorne tiene cuidado en señalar, la AWEC debe ser violada; la energía debe hacerse temporalmente negativa para que el viaje en el tiempo tenga éxito. Sin embargo, la energía negativa ha sido históricamente anatema para los relativistas, que advierten que la energía negativa haría posible la anti-gravedad y un montón de otros fenómenos que nunca se han visto experimentalmente.
Pero Thorne señala al momento que existe una forma de obtener energía negativa, y esto es a través de la teoría cuántica.
En 1.948, el físico holandés Hendrik Casimir demostró que la teoría cuántica puede crear energía negativa: tomemos simplemente dos placas de metal paralelas y descargadas ordinariamente, el sentido común nos dice que estas dos placas, puesto que son eléctricamente neutras, no ejercen ninguna fuerza entre sí. Pero Casimir demostró que, debido al principio de incertidumbre de Werner Heisenberg, en el vacío que separa estas dos placas existe realmente una agitada actividad, con billones de partículas y antipartículas apareciendo y desapareciendo constantemente. Aparecen a partir de la “nada” y vuelven a desaparecer en el “vacío”. Puesto que son tan fugaces, son, en su mayoría, inobservables, y no violan ninguna de las leyes de la física. Estas “partículas virtuales” crean una fuerza neutra atractiva entre estas dos placas que Casimir predijo que era medible.
Cuando Casimir publicó el artículo, se encontró con un fuerte escepticismo. Después de todo, ¿cómo pueden atraerse dos objetos eléctricamente neutros, violando así las leyes normales de la electricidad clásica? Esto era inaudito. Sin embargo, en 1.985 el físico M. J. Sparnaay observó este efecto en el laboratorio, exactamente como había predicho Casimir. Desde entonces (después de un sin fin de comprobaciones), ha sido bautizado como el efecto Casimir.
Una manera de aprovechar el efecto Casimir mediante grandes placas metálicas paralelas descargadas, sería el descrito para la puerta de entrada y salida del agujero de gusano de Thorne para poder viajar en el tiempo.
Kip Thorne explica a un alumno los misterios y posibilidades de viajar en el Tiempo
Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como para contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.
Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.
En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.
Podríamos ver como se forman las nebulosas y nacen y mueren las estrellas
Antes comentaba algo sobre disfrutar de un viaje al pasado pero, pensándolo bien, no estaría yo tan seguro. Rápidamente acuden a mi mente múltiple paradojas que, de una u otra especie han sido narradas, principalmente por escritores de ciencia-ficción que, por lo general, son los precursores del futuro.
Si viajar en el tiempo finalmente pudiera ser posible, cosas parecidas a esta locura ¡”podrían ocurrir”! I. B. S. Haldane, nos decía:
“La naturaleza no sólo es más extraña de lo que suponemos; es más extraña de lo que podamos suponer”.
emilio silvera
Nov
15
A vueltas con las Teorías… ¡El Universo y sus contenidos!
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
La Teoría M es una hipótesis que busca unificar las 5 teorías de cuerdas en una sola. Cuando sus problemas matemáticos se resuelvan, haría empíricamente posible la existencia de un Multiverso.
Año 1968. Leonard Susskind, Holger Bech Nielsen y Yoichiro Nambu, tres físicos teóricos, marcan, quizás sin saberlo, un punto de inflexión en la historia no solo de la física, sino de la ciencia general. Establecen los principios de la famosa Teoría de Cuerdas.
La Teoría de Cuerdas nace por la necesidad de unificar dos mundos, el de la relatividad general y el de la mecánica cuántica, que, hasta ese momento, parecían totalmente inconexos. La mecánica cuántica era capaz de explicar el origen cuántico de la gravedad. Y esta Teoría de Cuerdas era capaz de hacerlo.
Reducir la naturaleza elemental del Universo a cuerdas unidimensionales que vibran en un espacio-tiempo de 10 dimensiones era no solo elegante, sino que permitía asentar las bases de la tan ansiada unificación de las leyes del Cosmos: la Teoría del Todo.
El problema es que, cuando se avanzó en esta teoría, nos dimos cuenta de que lo que creíamos que era una sola teoría, eran en realidad cinco marcos teóricos diferentes. Y en este contexto, nació, en 1995, la teoría más asombrosa de la historia y, seguramente, la más complicada de entender. La Teoría M. Prepárate para que te estalle la cabeza, porque hoy te vamos a explicar los fundamentos de la hipótesis que quiere unificar las cinco teorías de cuerdas en una sola.
- Te recomendamos leer: “¿Qué es la Teoría de Cuerdas? Definición y principios”
En el ranking de los científicos más importantes del mundo, elaborado en función del impacto de los artículos publicados por cada cual en las revistas científicas, los trabajos realizados y los libros, etc, que es un buen indicador de la carrera de cada uno, no parece haber ninguna duda en que Ed Witten, el físico-matemático estadounidense, tiene el número uno de esa lista, y muy destacado sobre el segundo. Aunque es Físico Teórico, en 1.990, la Unión Internacional de Matemáticos le concedió la Medalla Field, algo así como el primeo Nobel en matemáticas que no concede la Academia Sueca. Es la figura más destacada en el campo de las supercuerdas, un complicado entramado teórico que supera el gran contrasentido de que las dos vertientes más avanzadas de la física, la teoría relativista de la gravitación y la mecánica cuántica, sean incompatibles pese a que cada una por separado estén más que demostradas.
Ningún físico se siente cómodo con este divorcio recalcitrante, aunque no todos tienen la misma confianza en esta concepción de las supercuerdas, en que las partículas elementales (electrones, quarks, etc) son modos de vibración de cuerdas de tamaño inimaginablemente pequeño (10-33 cm) que existen en universos con 11 dimensiones en lugar de las cuatro cotidianas, tres de espacio y una de tiempo de la teoría de A. Einstein. Las supercuerdas están en ebullición desde que hace unos veinte años Witten dio un fuerte tirón a toda la cuestión al sintetizar brillantemente ideas que estabas en el ambiente y que nadie había sido capaz de formular a plena satisfacción de todos, ya que, esta especialidad de supercuerdas y de las 11 dimensiones exige un nivel y una profundidad matemática que sólo está al alcance de unos pocos. Este trabajo de Witten desembocó en lo que hasta ahora todos denominan teoría M (Witten, como ya he comentado antes, se refería en su exposición de la nueva teoría – o mejor, nuevo planteamiento – a magia, misterio y matriz).
La teoría de supercuerdas tiene tantas sorpresas fantásticas que cualquiera que investigue en el tema reconoce que está llena de magia. Es algo que funciona con tanta belleza… Cuando cosas que no encajan juntas e incluso se repelen, si se acerca la una a la otra alguien es capaz de formular un camino mediante el cual, no sólo no se rechazan, sino que encajan a la perfección dentro de ese sistema, como ocurre ahora con la teoría M que acoge con naturalidad la teoría de la relatividad general y la teoría mecánico-cuántica; ahí, cuando eso se produce, está presente la belleza.
Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad. La relatividad general de Einstein, que es el modelo de la gravedad, no funciona con la teoría cuántica. Sin embargo, las supercuerdas modifican la teoría cuántica estándar de tal manera que la gravedad no sólo se convierte en posible, sino que forma parte natural del sistema; es inevitable para que éste sea completo.
El modelo que tenemos de la física de partículas se llama Modelo Estándard y, nos habla de las interacciones entre partículas y las fuerzas o interacciones que están presentes, las leyes que rigen el Universo físico y que, no hemos podido completar al no poder incluir una de las fuerzas: La Gravedad. Claro que, no es esa la única carencia del Modelo, tiene algunas más y, a estas alturas, se va necesitando un nuevo Modelo, más completo y audaz, que incluya a todas las fuerzas y que no tenga parámetros aleatorios allí donde nuestros conocimientos no llegan.
Un sistema como el Modelo Estándar, que acoge todas las fuerzas de la naturaleza, dejando aparte la fuerza gravitatoria, no refleja la realidad de la naturaleza, está incompleto. Hace muchos años que la física persigue ese modelo, la llaman Teoría de Todo y debe explicar todas las fuerzas que interaccionan con las partículas subatómicas que conforman la materia y, en definitiva, el universo, su comienzo y su final, el hiperespacio y los universos paralelos. Esa es la teoría de supercuerdas.
Hace tiempo que los físicos tratan de mejorar el Modelo Estándar con otras teorías más avanzadas y modernas que puedan explicar la materia y el espacio-tiempo con mayor amplitud y, sobre todo, incluyendo la gravedad.
Como bien sabemos, las fuerzas fundamentales del Universo son cuatro: el electromagnetismo, la fuerza nuclear débil, la fuerza nuclear fuerte y la gravedad. La relatividad general de Einstein nos permite predecir a la perfección la naturaleza de dichas fuerzas a nivel macroscópico y hasta el atómico. Todas las fuerzas del Universo, siempre que no acudamos al nivel subatómico, se explican por las predicciones de la relatividad especial.
Pero, ¿Qué pasa cuando viajamos al nivel subatómico? Básicamente, que todo se desmorona. Al entrar al mundo cuántico, nos desplazamos a un nuevo mundo que no sigue las leyes físicas que conocemos. Un mundo que juega con sus propias reglas. Y entender estas reglas ha sido y es una de las mayores ambiciones de la Física.
Al entrar en el “mundo cuántico” las cosas familiares se disipan y desaparecen
En este contexto, la física cuántica teorizó la existencia de unas partículas subatómicas elementales que, en principio, explican la naturaleza cuántica de las fuerzas fundamentales del Universo. Y decimos “en principio” porque el modelo estándar de partículas subatómicas las explica casi todas. Pero hay una que falla: la gravedad.
¿Por qué es tan importante encajar la gravedad y la teoría cuántica? Porque no podemos admitir una teoría que explique las fuerzas de la naturaleza y deje fuera a una de esas fuerzas. Así ocurre con el Modelo Estándar que deja aparte y no incluye a la fuerza gravitatoria que está ahí, en la Naturaleza.
La teoría de supercuerdas se perfila como la teoría que tiene implicaciones si tratamos con las cosas muy pequeñas, en el microcosmos; toda la teoría de partículas elementales cambia con las supercuerdas que penetra mucho más; llega mucho más allá de lo que ahora es posible.
Hasta hoy, no se ha logrado, ni mucho menos, inventar una teoría de campo consistente totalmente unificadora que incluya la gravedad. Se han dado grandes pasos, pero las brechas «científico-unificantes» siguen siendo amplias. El punto de partida ha sido siempre la teoría de la relatividad general y conceptos con ella relacionados, por la excelencia que manifiesta esa teoría para explicar la física gravitatoria de los grandes objetos. El problema que se presenta surge de la necesidad de modificar esta teoría sin perder por ello las predicciones ya probadas de la gravedad a gran escala y resolver al mismo tiempo los problemas de la gravedad cuántica en distancias cortas y de la unificación de la gravedad con las otras fuerzas de la naturaleza.
Sí, hay que mantener una mente abierta… a lo que pueda llegar pero…
Más allá de lo que nos permiten captar nuestros sentidos físicos, hay que tener nuestra mente abierta a la posibilidad de que puedan existir otras realidades diferentes a lo que nos dicta nuestra experiencia, realidades capaces de ser descubiertas por la fuerza del intelecto cuando nos atrevemos a cuestionar aquello que creíamos como absoluto.
En cuanto a nuestra comprensión del universo a gran escala (galaxias, el Big Bang…), creo que afectará a nuestra idea presente, al esquema que hoy rige y, como la nueva teoría, el horizonte se ampliará enormemente; el cosmos se presentará ante nosotros como un todo, con un comienzo muy bien definido y un final muy bien determinado.
Para cuando eso llegue, sabremos lo que es, como se genera y dónde están situadas la esquiva materia oscura y energía invisible que sabemos que están ahí, pero no sabemos explicar ni el qué ni el por qué.
La Humanidad, aún en proceso de humanización, para su evolución necesita otro salto cuantitativo y cualitativo del conocimiento que les permita avanzar notablemente hacia el futuro. Ese avance está supeditado a que la teoría M, la versión más avanzada de supercuerdas, se haga realidad.
Todos los avances de la Humanidad han estado siempre cogidos de la mano de las matemáticas y de la física. Gracias a estas dos disciplinas del saber podemos vivir cómodamente en ciudades iluminadas en confortables viviendas. Sin Einstein, pongamos por ejemplo, no tendríamos láseres o máseres, pantallas de ordenadores y de TV, y estaríamos en la ignorancia sobre la curvatura del espacio-tiempo o sobre la posibilidad de ralentizar el tiempo si viajamos a gran velocidad; también estaríamos en la más completa ignorancia sobre el hecho cierto y demostrado de que masa y energía (E = mc2), son la misma cosa.
En realidad, en el CERN, se trabaja en algo más que en las partículas subatómicas y se buscan nuevas respuestas y remedios para paliar el dolor en el mundo. También, se ha contribuido de manera notable a las comunicaciones y, el mundo es tal como lo conocemos hoy gracias a Ingenios como el LHC que, por desconocimiento de muchos, en su momento, fue tan denostado, cuando gracias a ingenios de esa clase conocemos como funciona la Naturaleza y cómo es el mundo que nos rodea.
Es necesario continuar avanzando en el conocimiento de las cosas para hacer posible que, algún día, dominemos las energías de las estrellas, de los agujeros negros y de las galaxias. Ese dominio será el único camino para que la Humanidad que habita el planeta Tierra, pueda algún día, lejano en el futuro, escapar hacia las estrellas para instalarse en otros mundos lejanos. Ese es nuestro inevitable destino. Llegará ese irremediable suceso que convertirá nuestro Sol en una gigante roja, cuya órbita sobrepasará Mercurio, Venus y posiblemente el planeta Tierra. Pero antes, en el proceso, las temperaturas se incrementarán y los mares y océanos del planeta se reconvertirán en vapor. Toda la vida sobre el planeta será eliminada y para entonces, si queremos sobrevivir y preservar la especie, estaremos ya muy lejos, buscando nuevos mundos habitables en algunos casos, o instalados como colonizadores de otros planetas. Mientras tanto, el Sol habrá explotado en nova y se convertirá en una estrella enana blanca. Sus capas exteriores serán lanzadas al espacio estelar y el resto de la masa del Sol se contraerá sobre sí misma. La fuerza de gravedad reducirá más y más su diámetro, hasta dejarlo en unos pocos kilómetros, como una gran pelota de enorme densidad que poco a poco se enfriará. Un cadáver estelar.
Un día lejano dentro de unos miles de millones de años, el Sol será una solitaria estrella enana blanca perdida entre las brumas de gases de una Nebulosa Planetaria que brillará durante cien millones de años.
Ese es el destino del Sol que ahora hace posible la vida en nuestro planeta, enviándonos su luz y su calor, sin los cuales, no podríamos sobrevivir. Para cuando eso llegue (faltan 4.000 millones de años), la Humanidad tendrá que contar con medios tan avanzados que ahora sólo podríamos imaginar. Las dificultades que habrá que vencer son muchas y, sobre todo, increíblemente difíciles de superar.
Ya hemos dado los primeros pasos y, nuestros ingenios espaciales tecnológicos y robotizados, han realizado para nosotros las tareas que, de momento, nos están vedadas pero, démosle tiempo al tiempo y, sin duda alguna, en ese futuro soñado, estaremos en las estrellas y en esos otros mundos que presentimos hermanos de la Tierra y que podrán acoger a la Humanidad que, dentro de otros cincuenta años, llegará a la cifra de 10.000 millones de seres y, nuestro planeta, no puede con todos. Mientras tanto, estamos creando ciudades del futuro con tecnologías que hasta hace muy poco tiempo nadie podía imaginar.
Algunas Empresas Privadas están preparándose para no quedar atrás en la conquista del Espacio
Algunas Empresas multinacionales están trabajando en programas que van más allá de los avances actuales para revelar las tecnologías e inventos que nos permitirán ver a través de las paredes, viajar en el tiempo y en el espacio y colonizar planetas distantes. La tecnología inteligente que llevará ayudantes robóticos a los hogares, ciudades enteras inmersas en Internet, y sistemas de entretenimiento que harán los sueños realidad en virtual. Sí, virtual hoy pero… ¿Y mañana?
Los actuales ingenios quedarán antiguos y nuevos ingenios surcarán el Espacio Exterior en el futuro
Naves interestelares que, tan grandes como ciudades surcaran las espacios
¿Cómo podremos evitar las radiaciones gamma y ultravioletas?
¿En qué clase de naves podremos escapar a esos mundos lejanos?
¿Seremos capaces de Burlar la barrera de la velocidad de la luz?
Naves del futuro y estaciones espaciales asombrosas. Se habrán descubierto nuevos materiales, también la Gravedad artificial, la radiación no entrará en el interior de las naves que, dotadas de laboratorios y escuelas surcarán los Espacios Interestelares hacia mundos lejanos.
Nuestros ingenios espaciales, nuestra naves hoy (estamos en la edad primitiva de los viajes espaciales), pueden alcanzar una velocidad máxima de 40 ó 50 mil kilómetros por hora y, además, la mayor parte de su carga es el combustible necesario para moverla.
La estrella más cercana al Sol es Alfa Centauro; un sistema triple, consistente en una binaria brillante y una enana roja débil a 2º, llamada Próxima Centauro. La binaria consiste en una enana G2 de amplitud -0’01 y una enana K1 de magnitud 1’3. Vistas a simple vista, aparecen como una única estrella y se encuentran a 4’3 años luz del Sol.
“Gráfico comparativo del tamaño de varios objetos astronómicos dentro de la escala de un año luz. De izquierda a derecha, las nebulosas Ojo de Gato y Stingray y la nube molecular Barnard 68.” Estas son las distancias que nos impiden ese contacto y, si el Universo lo ha dispuesto así… ¡La Naturaleza es sabia! Por algo será.
Sabemos que 1 año luz es la distancia recorrida por la luz en un año trópico a través del espacio vacío, y equivale a 9’4607×1012 km, ó 63.240 Unidades Astronómicas, ó 0’3066 parsecs.
La Unidad Astronómica es la distancia que separa al planeta Tierra del Sol, y equivale a 150 millones de kilómetros; poco más de 8 minutos luz.
Ahora pensemos en la enormidad de la distancia que debemos recorrer para llegar a Alfa Centauri, nuestra estrella vecina más cercana.
63.240 Unidades Astronómicas a razón de 150 millones de km. Cada una nos dará 9.486.000.000.000 de kilómetros recorridos en un año y, hasta llegar a Alfa Centauro, lo multiplicamos por 4’3 y nos resultarían 40.789.800.000.000 de kilómetros hasta Alfa. La cantidad resultante son millones de kilómetros.
Ahora pensemos que con nuestras actuales naves que alcanzan velocidades de 50.000 km/h, tratáramos de llegar a Alfa Centauro. ¿Cuándo llegaríamos, en el supuesto caso de que no surgieran problemas durante el viaje?
Bueno, en estas condiciones, los viajeros que salieran de la Tierra junto con sus familias, tendrían que pasar el testigo a las siguientes generaciones que, con el paso del tiempo (muchos, muchos siglos), olvidarían su origen y, posiblemente, las condiciones de ingravidez del espacio mutarían el físico de estos seres en forma tal que, al llegar a su destino podrían ser cualquier cosa menos humanos. Precisamente para evitar este triste final, estamos investigando, haciendo pruebas en viajes espaciales, trabajando en nuevas tecnologías y probando con nuevos materiales, y buscando en nuevas teorías avanzadas, como la teoría M, las respuesta a preguntas que hacemos y de las que hoy no tenemos respuesta, y sin estas respuestas, no podemos continuar avanzando para que, cuando llegue ese lejano día, podamos con garantía salir hacia las estrellas, hacia esos otros mundos que acogerá a la Humanidad, cuyo destino, irremediablemente, está en las estrellas. De material de estrellas estamos hechos y en las estrellas está nuestro destino.
Si finalmente el destino del universo (supeditado a su densidad crítica), es el Big Crunch, entonces la Humanidad tendrá otro problema, este aún más gordo que el anterior, para resolver. Aunque parece que no habrá Big Crunch, según los últimos estudios nos dicen que el universo es plano y que estamos en el límite de la Densidad Crítica, con lo cual, el Universo tendrá una muerte térmica, es decir, el frío absoluto de los -273 ºC. Con esa temperatura, ni los átomos se mueven.
Muchos son los peligros que en el futuro nos acechan: La galaxia Andrómeda se nos viene encima y en unos miles de millones de años se fusionará con la Vía Láctea. Nuestro Sol tiene un tiempo de vida limitado, en cuanto agote el combustible nuclear de fusión, se convertirá en gigante roja, más tarde, creará una Nebulosa planetaria para quedarse como enana blanca. Por otra parte, hay estudios muy serios que dicen que la Tierra saldrá de la zona habitable que actualmente ocupa y, si eso pasa… ¡Acordémonos de Marte! ¿Qué fue lo que pasó allí, un planeta con atmósfera y océanos en el pasado.
Habrá que buscar soluciones para escapar de nuestro sistema solar, lo que en un futuro lejano, y teniendo encuentra que el avance tecnológico, es exponencial, parece que dicho problema puede tener una solución dentro de los límites que la lógica nos puede imponer. El segundo parece más serio, ¡escapar de nuestro universo! Pero… ¿a dónde podríamos escapar? Stephen Hawking y otros científicos nos hablan de la posibilidad de universos paralelos o múltiples; en unos puede haber condiciones para albergar la vida y en otros no. ¿Pero cómo sabremos que esos universos existen y cuál es el adecuado para nosotros? ¿Cómo podremos escapar de este universo para ir a ese otro?
No podemos ni escapar de nuestro propio sistema solar y ya pensamos en viajar a otro universo. ¡Como somos los Humanos!
Pensar en el futuro nos pone en un serio problema y hacemos preguntas que nadie puede contestar hoy. La Humanidad, para saber con certeza su futuro, tendrá que seguir trabajando y buscando nuevos conocimientos y, para dentro de unos milenios (si antes no se destruye a sí misma), seguramente, habrá obtenido algunas respuestas que contestarán esta difícil pregunta que, a comienzos del siglo XXI, nadie está capacitado para contestar.
Se puede sentir la fascinación causada por la observación de la belleza que encierra el universo, las muchas maravillas que contiene y que causa asombro cada día, aunque no se tenga preparación científica, pero el nivel de apreciación de la Naturaleza, la verdadera maravilla, vendrá de comprender mejor lo que estamos viendo, que es mucho más que grandes figuras luminosas y múltiples objetos brillantes, es… la evolución… la vida elevada al máximo nivel que se dará, cuando la mente se fusione con el universo mismo como un todo etéreo, cuando no necesitemos hacer preguntas y las respuestas esté en nosotros que, somos el universo.
emilio silvera
Nov
14
¿El Universo? ¡Es una maravilla!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Sin tener que abandonar el planeta Tierra, podemos comprobar que el Universo es una maravilla. Aquí un eclipse parcial tomado desde Kenya, nos presenta el bello escenario que arriba podemos contemplar.
Fuente: Astronomía Pictures Of The Day
V838 Monocerotis
Esta imagen del Telescopio Espacial Hubble de la NASA tiene notables similitudes con una obra artística con espirales de polvo nunca antes vistas que se arremolinan a través de trillones de kilómetros de espacio interestelar.
“V838 Monocerotis, también llamada V838 Mon, es una estrella variable situada en la constelación de Monoceros, aproximadamente a 20.000 años luz (6 kpc) del Sol. La estrella exhibió una explosión muy importante a comienzos de 2002, lo cual inicialmente se creyó que era la típica creación de una nova; sin embargo, luego se supo que se trataba de algo completamente distinto. El motivo del estallido aún es incierto pero se han elaborado varias teorías al respecto, incluidas la erupción relacionada con los procesos de muerte estelar y la fusión de una estrella binaria o planetas.”
“Esta nube reflectora de polvo y gas tiene dos lóbulos (o conos) casi simétricos de materia que están siendo expulsados de una estrella central. Durante los últimos 1.500 años, casi una vez y media la masa de nuestro Sol ha sido perdida por la estrella central de la Nebulosa Boomerang en un proceso de eyección conocido como flujo de salida bipolar. El nombre de la nebulosa se deriva de su estructura simétrica vista desde los telescopios terrestres. La aguda visión del Hubble es capaz de resolver patrones y ondulaciones en la nebulosa muy cerca de la estrella central que no son visibles desde el suelo.”
Abell 1689
Cúmulo de galaxias Abell 1689
Esta imagen muestra la región interior de Abell 1689, un inmenso grupo de galaxias situado a 2.200 millones de años luz de distancia. Los astrónomos usaron el Hubble para mapear la distribución de la materia oscura en el cúmulo de galaxias.
NGC 2207
NGC 2207 son un par de galaxias espirales en colisión. Sus brillantes núcleos centrales se asemejan a un llamativo conjunto de ojos. En la luz visible captada por Hubble, los rastros de estrellas y gas trazan brazos espirales, estirados por la atracción de las mareas entre las galaxias.
Estos enormes tentáculos de polvo y gas cósmico se encuentran en el corazón de M16, o la Nebulosa del Águila. Los acertadamente llamados Pilares de la Creación, presentados en esta asombrosa imagen del Hubble, son parte de una región activa de formación estelar dentro de la nebulosa y esconden estrellas recién nacidas en sus tenues columnas. Aunque esta no es la primera imagen del Hubble de esta emblemática Nebulosa del Águila, es la más detallada. Los colores azules de la imagen representan el oxígeno, el rojo es el azufre, y el verde representa tanto el nitrógeno como el hidrógeno. Los pilares están bañados por la abrasadora luz ultravioleta de un cúmulo de jóvenes estrellas situado justo fuera del marco. Los vientos de estas estrellas están erosionando lentamente las torres de gas y polvo.Los Pilares de la Creación
¿Qué le pasa a esta galaxia que se distorsiona en presencia de otra?
La nebulosa de la Tarántula
Un cúmulo de estrellas jóvenes ilumina un hueco entre los remolinos de polvo de la nebulosa de la Tarántula. El dinamismo de la escena es irresistible. «Hay estrellas que nacen y estrellas que mueren. Una enorme cantidad de material en estado de gran agitación.
Podríamos continuar repasando maravillas que están presentes en el Espacio Interestelar y que nosotros, una especie tan frágil (y tan fuerte), hemos logrado conquistar para el conocimiento de un Universo inmenso del que tratamos de desvelar sus secretos que, profundamente escondidos, se resisten a dejarse ver.
emilio silvera
Nov
14
Captan el nacimiento de un Agujero Negro
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Observan desde el Teide el “parto” más nítido que nunca de un agujero negro

Recreación de una explosión de rayos gamma, fruto del colapso de una estrella masiva que dispara chorros de partículas y crea un agujero negro. NASA
El Instituto de Astro-físca de Canarias (IAC) acaba de hacer público un hallazgo científico de carácter mundial logrado con un pequeño telescopio robótico de 40 centímetros de la Universidad de Moscú, instalado en el Observatorio del Teide, que revoluciona toda la información de la que se disponía hasta ahora sobre las circunstancias en las que se produce un agujero negro. Un satélite de la NASA lanzó la alerta de que una superestrella estaba colapsando el Universo, dando lugar a un agujero negro.
La investigación, encabezada por la Universidad de Maryland (EEUU), detectó esa emisión a través del uso de telescopios espaciales y terrestres y esos datos les permitió describir con gran precisión uno de los fenómenos astrofísicos más esquivos. El equipo de expertos, que ha bautizado esta emisión de rayos gamma como “GRB160625B”, obtuvo detalles clave sobre su fase inicial “rápida” de ráfagas, así como de la evolución de los grandes chorros de materia y energía que generan esas primeras explosiones.
“Las ráfagas de rayos gamma son eventos catastróficos, vinculados a las explosiones de estrellas enormes, cincuenta veces más grandes que nuestro sol”, explica en un comunicado Eleonora Troja, del departamento de astronomía de la UMD. Si se elaborase una lista de las explosiones más poderosas ocurridas en el Universo, indica la experta, las de rayos gamma se situarían “justo por detrás del Big Bang”.
El telescopio robótico del Teide MASTER-IAC fue el primero de mundo que captó la alerta y apuntó hacia el lugar del parto, teniendo la oportunidad providencial de vivir en el primer instancia, es decir, en los primeros segundos, qué ocurre cuando tal fenómeno se origina. Así pudo comprobar por primera vez que cuando la estrella colapsa y el agujero negro está en fase embrionaria se desata un fuerte chorro de material y energía, equivalente a toda la energía que libera el sol a lo largo de toda su existencia. Lo que es más importante del descubrimiento del telescopio del IAC es que pudo presenciar que en ese primer instante se origina un campo magnético, extremo desconocido hasta ahora, que condiciona la polarización de la luz. “El descubrimiento nos llena de orgullo, pero sobre todo es una gran aportación a la ciencia”, declaró a DIARIO DE AVISOS el director de IAC, Rafael Rebolo. “Nuestro pequeño telescopio robótico ha tenido el honor de captar la alerta y medir por primera vez en la historia la polarización de la energía, y averiguar cómo es el campo magnético en ese momento. Esto no es cualquier cosa, sino un gran avance, porque nos permitirá seleccionar los modelos para posteriores estudios de agujeros negros, pudiendo ir a partir de ahora con más precisión que nunca”.
Inauguran por control remoto dos telescopios robóticos en el Observatorio del Teide
El hallazgo del telescopio robótico de la Universidad de Moscú instalado en el Observatorio del Teide en Tenerife constituye toda una sorpresa para los investigadores especializados en agujeros negros. El pequeño instrumento inaugurado hace dos años por el rey Felipe VI consiguió este éxito mundial en junio del año pasado, y ahora ha trascendido en vísperas de su publicación mañana en la prestigiosa revista científica ‘Nature’.
Un satélite de la NASA, llamado Fermi (en honor de uno de los físicos italianos más relevantes del siglo XX) dio la alerta sobre el nacimiento d un agujero negro. El telescopio tinerfeño fue el primero en detectar esa señal y dirigir su ojo hacia el lugar de los hechos. Pudo observar el chorro de materia y radiación que se produce en ese primer instante. Fue testigo excepcional porque se había producido una primer micro estallido de la superestrella que de inmediato fue seguido por otro estallido que duró más tiempo (medido en apenas segundos).
El robot pudo medir la polarización de la luz (filtrado de las ondas) y determinó que se genera un campo magnético. El chorro de partículas de radiación está muy polarizada ya en ese momento inicial, algo inédito hasta ahora. “Es como un cañón de altísima energía, más propio de la ficción de la Guerra de las Galaxias, pero sí ocurre en la realidad”, bromeó Rafael Rebolo, director del IAC en declaraciones a DIARIO DE AVISOS. Según Rebolo, en otras observaciones hasta ahora se sabía que había una gran explosión de rayos gamma (un estallido super masivo que se dirigió hasta nuestro Sistema Solar), pero esta vez ha sido tan intenso que cabría afirmar que es la primera vez que se ha podido divisar de modo visible.
Se trata de una medición de radiación visible. En pocos segundos se desató una liberación de energía tal que equivaldría a la del Sol en toda su vida. “Hemos podido ser los primeros y afinar en la medición sobre uno de los fenómenos más importantes en el Universo actual”, declaró el director del telescopio, y siguió diciendo:
“Con telescopios pequeños se puede hacer también ciencia de primera línea”, sobre este aparato robótico de pequeñas dimensiones el MASTER-IAC de la Universidad de Moscú, instalado en el Teide y autor del hallazgo. Su especialidad es la búsqueda de fenómenos energéticos del Universo. Esta ha sido una especia de debut milagroso del telescopio según el máximo responsable del IAC. El hallazgo se produjo en junio de 2016 y se conoció por la publicación en la revista ‘Nature’.
Todos lo concerniente a los agujeros negros genera una gran expectación en el mundo entero. El físico teórico Stephen Hawking mostró su interés y fascinación por los mismo durante su visita a la sede del IAC y departió sobre el fenómeno con uno de los directores de la investigación ahora dada a conocer. Hasta ahora se sabía que la energía estaba polarizada en etapas avanzadas de la generación de un agujero negro, “pero se desconocía que también se produjera tan temprana”.
Para el Director del centro uno de los aspectos más positivos de este descubrimiento es que la alerta de estallidos de rayos gamma la produjo un satélite de la NASA (Estados Unidos) y el primer telescopio en captarla fue este pequeño instrumento robótico de la Universidad de Moscú instalado en Tenerife. “Entre Estados Unidos y Rusia hemos estado nosotros, el IAC, lo que significa un tanto para Canarias y España y demuestra que en ciencia puede establecerse una colaboración noble sin fronteras. Solo el tiempo dirá”, señaló el alcance de este hallazgo en el historia del IAC, pero ya supone la primera investigación de este año para la ciencia mundial de los agujeros negros.
Noticias de prensa