lunes, 16 de junio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




A vueltas con las Teorías… ¡El Universo y sus contenidos!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entrevista a Edward Witten en Science sobre la física cuántica de los  agujeros negros | Francis (th)E mule Science's NewsEl estado actual de la teoría M - La Ciencia de la Mula Francis

La Teoría M es una hipótesis que busca unificar las 5 teorías de cuerdas en una sola. Cuando sus problemas matemáticos se resuelvan, haría empíricamente posible la existencia de un Multiverso.

Año 1968. Leonard Susskind, Holger Bech Nielsen y Yoichiro Nambu, tres físicos teóricos, marcan, quizás sin saberlo, un punto de inflexión en la historia no solo de la física, sino de la ciencia general. Establecen los principios de la famosa Teoría de Cuerdas.

 

1 - Curso de Relatividad General - YouTubeMECÁNICA CUANTICA

 

La Teoría de Cuerdas nace por la necesidad de unificar dos mundos, el de la relatividad general y el de la mecánica cuántica, que, hasta ese momento, parecían totalmente inconexos. La mecánica cuántica era capaz de explicar el origen cuántico de la gravedad. Y esta Teoría de Cuerdas era capaz de hacerlo.

Reducir la naturaleza elemental del Universo a cuerdas unidimensionales que vibran en un espacio-tiempo de 10 dimensiones era no solo elegante, sino que permitía asentar las bases de la tan ansiada unificación de las leyes del Cosmos: la Teoría del Todo.

 

Cerebro Digital - Actualmente, mediante la teoría de... | FacebookQué es la Teoría M? Definición y principios

 

El problema es que, cuando se avanzó en esta teoría, nos dimos cuenta de que lo que creíamos que era una sola teoría, eran en realidad cinco marcos teóricos diferentes. Y en este contexto, nació, en 1995, la teoría más asombrosa de la historia y, seguramente, la más complicada de entender. La Teoría M. Prepárate para que te estalle la cabeza, porque hoy te vamos a explicar los fundamentos de la hipótesis que quiere unificar las cinco teorías de cuerdas en una sola.

 

El estado actual de la teoría M - La Ciencia de la Mula Francis

 

En el ranking de los científicos más importantes del mundo, elaborado en función del impacto de los artículos publicados por cada cual en las revistas científicas, los trabajos realizados y los libros, etc, que es un buen indicador de la carrera de cada uno, no parece haber ninguna duda en que Ed Witten, el físico-matemático estadounidense, tiene el número uno de esa lista, y muy destacado sobre el segundo. Aunque es Físico Teórico, en 1.990, la Unión Internacional de Matemáticos le concedió la Medalla Field, algo así como el primeo Nobel en matemáticas que no concede la Academia Sueca. Es la figura más destacada en el campo de las supercuerdas, un complicado entramado teórico que supera el gran contrasentido de que las dos vertientes más avanzadas de la física, la teoría relativista de la gravitación y la mecánica cuántica, sean incompatibles pese a que cada una por separado estén más que demostradas.

Ningún físico se siente cómodo con este divorcio recalcitrante, aunque no todos tienen la misma confianza en esta concepción de las supercuerdas, en que las partículas elementales (electrones, quarks, etc) son modos de vibración de cuerdas de tamaño inimaginablemente pequeño (10-33 cm) que existen en universos con 11 dimensiones en lugar de las cuatro cotidianas, tres de espacio y una de tiempo de la teoría de A. Einstein. Las supercuerdas están en ebullición desde que hace unos veinte años Witten dio un fuerte tirón a toda la cuestión al sintetizar brillantemente ideas que estabas en el ambiente y que nadie había sido capaz de formular a plena satisfacción de todos, ya que, esta especialidad de supercuerdas y de las 11 dimensiones exige un nivel y una profundidad matemática que sólo está al alcance de unos pocos. Este trabajo de Witten desembocó en lo que hasta ahora todos denominan teoría M (Witten, como ya he comentado antes, se refería en su exposición de la nueva teoría – o mejor, nuevo planteamiento – a magia, misterio y matriz).

SUPERCOMPUTADORA SIMULA ORIGEN DEL UNIVERSO Y DESCIFRA 10-DIMENSIONAL  TEORÍA DE SUPERCUERDAS – UNIVERSITAM

La teoría de supercuerdas tiene tantas sorpresas fantásticas que cualquiera que investigue en el tema reconoce que está llena de magia. Es algo que funciona con tanta belleza… Cuando cosas que no encajan juntas e incluso se repelen, si se acerca la una a la otra alguien es capaz de formular un camino mediante el cual, no sólo no se rechazan, sino que encajan a la perfección dentro de ese sistema, como ocurre ahora con la teoría M que acoge con naturalidad la teoría de la relatividad general y la teoría mecánico-cuántica; ahí, cuando eso se produce, está presente la belleza.

Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad. La relatividad general de Einstein, que es el modelo de la gravedad, no funciona con la teoría cuántica. Sin embargo, las supercuerdas modifican la teoría cuántica estándar de tal manera que la gravedad no sólo se convierte en posible, sino que forma parte natural del sistema; es inevitable para que éste sea completo.

El modelo que tenemos de la física de partículas se llama Modelo Estándard y, nos habla de las interacciones entre partículas y las fuerzas o interacciones que están presentes, las leyes que rigen el Universo físico y que, no hemos podido completar al no poder incluir una de las fuerzas: La Gravedad. Claro que, no es esa la única carencia del Modelo, tiene algunas más y, a estas alturas, se va necesitando un nuevo Modelo, más completo y audaz, que incluya a todas las fuerzas y que no tenga parámetros aleatorios allí donde nuestros conocimientos no llegan.

Un sistema como el Modelo Estándar, que acoge todas las fuerzas de la naturaleza, dejando aparte la fuerza gravitatoria, no refleja la realidad de la naturaleza, está incompleto. Hace muchos años que la física persigue ese modelo, la llaman Teoría de Todo y debe explicar todas las fuerzas que interaccionan con las partículas subatómicas que conforman la materia y, en definitiva, el universo, su comienzo y su final, el hiperespacio y los universos paralelos. Esa es la teoría de supercuerdas.

Hace tiempo que los físicos tratan de mejorar el Modelo Estándar con otras teorías más avanzadas y modernas que puedan explicar la materia y el espacio-tiempo con mayor amplitud y, sobre todo, incluyendo la gravedad.

Gravedad Cuántica - Una revolución incompleta en la física - Monografias.comTeoría de cuerdas VS gravedad cuántica de bucles – Universo Cuántico

Como bien sabemos, las fuerzas fundamentales del Universo son cuatro: el electromagnetismo, la fuerza nuclear débil, la fuerza nuclear fuerte y la gravedad. La relatividad general de Einstein nos permite predecir a la perfección la naturaleza de dichas fuerzas a nivel macroscópico y hasta el atómico. Todas las fuerzas del Universo, siempre que no acudamos al nivel subatómico, se explican por las predicciones de la relatividad especial.

Pero, ¿Qué pasa cuando viajamos al nivel subatómico? Básicamente, que todo se desmorona. Al entrar al mundo cuántico, nos desplazamos a un nuevo mundo que no sigue las leyes físicas que conocemos. Un mundo que juega con sus propias reglas. Y entender estas reglas ha sido y es una de las mayores ambiciones de la Física.

VIAJE AL MUNDO CUÁNTICO - C. G. Jung y Cuarto Camino de G. I. Gurdjieff -  YouTubeQué es la "luz prohibida", el fascinante descubrimiento que puede  revolucionar la tecnología cuántica - BBC News Mundo

                  Al entrar en el “mundo cuántico” las cosas familiares se disipan y desaparecen

En este contexto, la física cuántica teorizó la existencia de unas partículas subatómicas elementales que, en principio, explican la naturaleza cuántica de las fuerzas fundamentales del Universo. Y decimos “en principio” porque el modelo estándar de partículas subatómicas las explica casi todas. Pero hay una que falla: la gravedad.

¿Por qué es tan importante encajar la gravedad y la teoría cuántica? Porque no podemos admitir una teoría que explique las fuerzas de la naturaleza y deje fuera a una de esas fuerzas. Así ocurre con el Modelo Estándar que deja aparte y no incluye a la fuerza gravitatoria que está ahí, en la Naturaleza.

La teoría de supercuerdas se perfila como la teoría que tiene implicaciones si tratamos con las cosas muy pequeñas, en el microcosmos; toda la teoría de partículas elementales cambia con las supercuerdas que penetra mucho más; llega mucho más allá de lo que ahora es posible.

Hasta hoy, no se ha logrado, ni mucho menos, inventar una teoría de campo consistente totalmente unificadora que incluya la gravedad. Se han dado grandes pasos, pero las brechas «científico-unificantes» siguen siendo amplias. El punto de partida ha sido siempre la teoría de la relatividad general y conceptos con ella relacionados, por la excelencia que manifiesta esa teoría para explicar la física gravitatoria de los grandes objetos. El problema que se presenta surge de la necesidad de modificar esta teoría sin perder por ello las predicciones ya probadas de la gravedad a gran escala y resolver al mismo tiempo los problemas de la gravedad cuántica en distancias cortas y de la unificación de la gravedad con las otras fuerzas de la naturaleza.

patoloki - Perfil - GameDesire

      Sí, hay que mantener una mente abierta… a lo que pueda llegar pero…

Más allá de lo que nos permiten captar nuestros sentidos físicos, hay que tener nuestra mente abierta a la posibilidad de que puedan existir otras realidades diferentes a lo que nos dicta nuestra experiencia, realidades capaces de ser descubiertas por la fuerza del intelecto cuando nos atrevemos a cuestionar aquello que creíamos como absoluto.

Épinglé sur Planetas e estrelas

En cuanto a nuestra comprensión del universo a gran escala (galaxias, el Big Bang…), creo que afectará a nuestra idea presente, al esquema que hoy rige y, como la nueva teoría, el horizonte se ampliará enormemente; el cosmos se presentará ante nosotros como un todo, con un comienzo muy bien definido y un final muy bien determinado.

Para cuando eso llegue, sabremos lo que es, como se genera y dónde están situadas la esquiva materia oscura y energía invisible que sabemos que están ahí, pero no sabemos explicar ni el qué ni el por qué.

La Humanidad, aún en proceso de humanización, para su evolución necesita otro salto cuantitativo y cualitativo del conocimiento que les permita avanzar notablemente hacia el futuro. Ese avance está supeditado a que la teoría M, la versión más avanzada de supercuerdas, se haga realidad.

Todos los avances de la Humanidad han estado siempre cogidos de la mano de las matemáticas y de la física. Gracias a estas dos disciplinas del saber podemos vivir cómodamente en ciudades iluminadas en confortables viviendas. Sin Einstein, pongamos por ejemplo, no tendríamos láseres o máseres, pantallas de ordenadores y de TV, y estaríamos en la ignorancia sobre la curvatura del espacio-tiempo o sobre la posibilidad de ralentizar el tiempo si viajamos a gran velocidad; también estaríamos en la más completa ignorancia sobre el hecho cierto y demostrado de que masa y energía (E = mc2), son la misma cosa.

 

Interrelación entre materia y energía

 

En realidad, en el CERN, se trabaja en algo más que en las partículas subatómicas y se buscan nuevas respuestas y remedios para paliar el dolor en el mundo. También, se ha contribuido de manera notable a las comunicaciones y, el mundo es tal como lo conocemos hoy gracias a Ingenios como el LHC que, por desconocimiento de muchos, en su momento, fue tan denostado, cuando gracias a ingenios de esa clase conocemos como funciona la Naturaleza y cómo es el mundo que nos rodea.

Es necesario continuar avanzando en el conocimiento de las cosas para hacer posible que, algún día, dominemos las energías de las estrellas, de los agujeros negros y de las galaxias. Ese dominio será el único camino para que la Humanidad que habita el planeta Tierra, pueda algún día, lejano en el futuro, escapar hacia las estrellas para instalarse en otros mundos lejanos. Ese es nuestro inevitable destino. Llegará ese irremediable suceso que convertirá nuestro Sol en una gigante roja, cuya órbita sobrepasará Mercurio, Venus y posiblemente el planeta Tierra. Pero antes, en el proceso, las temperaturas se incrementarán y los mares y océanos del planeta se reconvertirán en vapor. Toda la vida sobre el planeta será eliminada y para entonces, si queremos sobrevivir y preservar la especie, estaremos ya muy lejos, buscando nuevos mundos habitables en algunos casos, o instalados como colonizadores de otros planetas. Mientras tanto, el Sol habrá explotado en nova y se convertirá en una estrella enana blanca. Sus capas exteriores serán lanzadas al espacio estelar y el resto de la masa del Sol se contraerá sobre sí misma. La fuerza de gravedad reducirá más y más su diámetro, hasta dejarlo en unos pocos kilómetros, como una gran pelota de enorme densidad que poco a poco se enfriará.  Un cadáver estelar.

  Bipolaaristen planetaaristen sumujen galleria | ESO Suomi

Un día lejano dentro de unos miles de millones de años, el Sol será una solitaria estrella enana blanca perdida entre las brumas de gases de una Nebulosa Planetaria que brillará durante cien millones de años.

Ese es el destino del Sol que ahora hace posible la vida en nuestro planeta, enviándonos su luz y su calor, sin los cuales, no podríamos sobrevivir. Para cuando eso llegue (faltan 4.000 millones de años), la Humanidad tendrá que contar con medios tan avanzados que ahora sólo podríamos imaginar. Las dificultades que habrá que vencer son muchas y, sobre todo, increíblemente difíciles de superar.

Ya hemos dado los primeros pasos y, nuestros ingenios espaciales tecnológicos y robotizados, han realizado para nosotros las tareas que, de momento, nos están vedadas pero, démosle tiempo al tiempo y, sin duda alguna, en ese futuro soñado, estaremos en las estrellas y en esos otros mundos que presentimos hermanos de la Tierra y que podrán acoger a la Humanidad que, dentro de otros cincuenta años, llegará a la cifra de 10.000 millones de seres y, nuestro planeta, no puede con todos. Mientras tanto, estamos creando ciudades del futuro con tecnologías que hasta hace muy poco tiempo nadie podía imaginar.

 La conquista del espacio en manos privadas: SpaceX, Jeff Bezos y Virgin |  VENTURA

       Algunas Empresas Privadas están preparándose para no quedar atrás en la conquista del Espacio

Algunas Empresas multinacionales están trabajando en programas que van más allá de los avances actuales para revelar las tecnologías e inventos que nos permitirán ver a través de las paredes, viajar en el tiempo y en el espacio y colonizar planetas distantes. La tecnología inteligente que llevará ayudantes robóticos a los hogares, ciudades enteras inmersas en Internet, y sistemas de entretenimiento que harán los sueños realidad en virtual. Sí, virtual hoy pero… ¿Y mañana?

Imagen relacionada

Los actuales ingenios quedarán antiguos y nuevos ingenios surcarán el Espacio Exterior en el futuro

            Naves interestelares que, tan grandes como ciudades surcaran las espacios

¿Cómo podremos evitar las radiaciones gamma y ultravioletas?

¿En qué clase de naves podremos escapar a esos mundos lejanos?

¿Seremos capaces de Burlar la barrera de la velocidad de la luz?

Ocho naves espaciales con las que podremos abandonar el Sistema SolarNave espacial - Wikipedia, la enciclopedia libreSitios Increibles: Naves EspacialesLas nuevas estaciones espaciales que conquistarán el sistema solar

Naves del futuro y estaciones espaciales asombrosas. Se habrán descubierto nuevos materiales, también la Gravedad artificial, la radiación no entrará en el interior de las naves que, dotadas de laboratorios y escuelas surcarán los Espacios Interestelares hacia mundos lejanos.

Nuestros ingenios espaciales, nuestra naves hoy (estamos en la edad primitiva de los viajes espaciales), pueden alcanzar una velocidad máxima de 40 ó 50 mil kilómetros por hora y, además, la mayor parte de su carga es el combustible necesario para moverla.

La estrella más cercana al Sol es Alfa Centauro; un sistema triple, consistente en una binaria brillante y una enana roja débil a 2º, llamada Próxima Centauro. La binaria consiste en una enana G2 de amplitud -0’01 y una enana K1 de magnitud 1’3. Vistas a simple vista, aparecen como una única estrella y se encuentran a 4’3 años luz del Sol.

 ▷¿Cuanto es un año luz? ¡Descubre CUANTO ES!

 “Gráfico comparativo del tamaño de varios objetos astronómicos dentro de la escala de un año luz. De izquierda a derecha, las nebulosas Ojo de Gato y Stingray y la nube molecular Barnard 68.” Estas son las distancias que nos impiden ese contacto y, si el Universo lo ha dispuesto así… ¡La Naturaleza es sabia! Por algo será.

Sabemos que 1 año luz es la distancia recorrida por la luz en un año trópico a través del espacio vacío, y equivale a 9’4607×1012 km, ó 63.240 Unidades Astronómicas, ó 0’3066 parsecs.

La  Unidad Astronómica es la distancia que separa al planeta Tierra del Sol, y equivale a 150 millones de kilómetros; poco más de 8 minutos luz.

Ahora pensemos en la enormidad de la distancia que debemos recorrer para llegar a Alfa Centauri, nuestra estrella vecina más cercana.

 Biblioteca Pública de Gines: ¿QUÉ ES UNA UNIDAD ASTRONÓMICA?

63.240 Unidades Astronómicas a razón de 150 millones de km. Cada una nos dará 9.486.000.000.000 de kilómetros recorridos en un año y, hasta llegar a Alfa Centauro, lo multiplicamos por 4’3 y nos resultarían 40.789.800.000.000 de kilómetros hasta Alfa. La cantidad resultante son millones de kilómetros.

Ahora pensemos que con nuestras actuales naves que alcanzan velocidades de 50.000 km/h, tratáramos de llegar a Alfa Centauro. ¿Cuándo llegaríamos, en el supuesto caso de que no surgieran problemas durante el viaje?

Bueno, en estas condiciones, los viajeros que salieran de la Tierra junto con sus familias, tendrían que pasar el testigo a las siguientes generaciones que, con el paso del tiempo (muchos, muchos siglos), olvidarían su origen y, posiblemente, las condiciones de ingravidez del espacio mutarían el físico de estos seres en forma tal que, al llegar a su destino podrían ser cualquier cosa menos humanos. Precisamente para evitar este triste final, estamos investigando, haciendo pruebas en viajes espaciales, trabajando en nuevas tecnologías y probando con nuevos materiales, y buscando en nuevas teorías avanzadas, como la teoría M, las respuesta a preguntas que hacemos y de las que hoy no tenemos respuesta, y sin estas respuestas, no podemos continuar avanzando para que, cuando llegue ese lejano día, podamos con garantía salir hacia las estrellas, hacia esos otros mundos que acogerá a la Humanidad, cuyo destino, irremediablemente, está en las estrellas. De material de estrellas estamos hechos y en las estrellas está nuestro destino.

Si finalmente el destino del universo (supeditado a su densidad crítica), es el Big Crunch, entonces la Humanidad tendrá otro problema, este aún más gordo que el anterior, para resolver. Aunque parece que no habrá Big Crunch, según los últimos estudios nos dicen que el universo es plano y que estamos en el límite de la Densidad Crítica, con lo cual, el Universo tendrá una muerte térmica, es decir, el frío absoluto de los -273 ºC. Con esa temperatura, ni los átomos se mueven.

Nighttime Sky View of Future Galaxy Merger: 3.75 Billion Years | ESA/Hubble

Muchos son los peligros que en el futuro nos acechan: La galaxia Andrómeda se nos viene encima y en unos miles de millones de años se fusionará con la Vía Láctea. Nuestro Sol tiene un tiempo de vida limitado, en cuanto agote el combustible nuclear de fusión, se convertirá en gigante roja, más tarde, creará una Nebulosa planetaria para quedarse como enana blanca. Por otra parte, hay estudios muy serios que dicen que la Tierra saldrá de la zona habitable que actualmente ocupa y, si eso pasa… ¡Acordémonos de Marte! ¿Qué fue lo que pasó allí, un planeta con atmósfera y océanos en el pasado.

Habrá que buscar soluciones para escapar de nuestro sistema solar, lo que en un futuro lejano, y teniendo encuentra que el avance tecnológico, es exponencial, parece que dicho problema puede tener una solución dentro de los límites que la lógica nos puede imponer. El segundo parece más serio, ¡escapar de nuestro universo! Pero… ¿a dónde podríamos escapar? Stephen Hawking y otros científicos nos hablan de la posibilidad de universos paralelos o múltiples; en unos puede haber condiciones para albergar la vida y en otros no. ¿Pero cómo sabremos que esos universos existen y cuál es el adecuado para nosotros? ¿Cómo podremos escapar de este universo para ir a ese otro?

El sistema solar

No podemos ni escapar de nuestro propio sistema solar y ya pensamos en viajar a otro universo. ¡Como somos los Humanos!

Pensar en el futuro nos pone en un serio problema y hacemos preguntas que nadie puede contestar hoy. La Humanidad, para saber con certeza su futuro, tendrá que seguir trabajando y buscando nuevos conocimientos y, para dentro de unos milenios (si antes no se destruye a sí misma), seguramente, habrá obtenido algunas respuestas que contestarán esta difícil pregunta que, a comienzos del siglo XXI, nadie está capacitado para contestar.

Se puede sentir la fascinación causada por la observación de la belleza que encierra el universo, las muchas maravillas que contiene y que causa asombro cada día, aunque no se tenga preparación científica, pero el nivel de apreciación de la Naturaleza, la verdadera maravilla, vendrá de comprender mejor lo que estamos viendo, que es mucho más que grandes figuras luminosas y múltiples objetos brillantes, es… la evolución… la vida elevada al máximo nivel que se dará, cuando la mente se fusione con el universo mismo como un todo etéreo, cuando no necesitemos hacer preguntas y las respuestas esté en nosotros que, somos el universo.

emilio silvera

¿El Universo? ¡Es una maravilla!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

https://apod.nasa.gov/apod/image/1707/HybridSolarEclipse_Kamenew_1584.jpg

 

Sin tener que abandonar el planeta Tierra, podemos comprobar que el Universo es una maravilla. Aquí un eclipse parcial tomado desde Kenya, nos presenta el bello escenario que arriba podemos contemplar.

Fuente: Astronomía Pictures Of The Day

 

 

V838 Monocerotis

Esta imagen del Telescopio Espacial Hubble de la NASA tiene notables similitudes con una obra artística con espirales de polvo nunca antes vistas que se arremolinan a través de trillones de kilómetros de espacio interestelar.

“V838 Monocerotis, también llamada V838 Mon, es una estrella variable situada en la constelación de Monoceros, aproximadamente a 20.000 años luz (6 kpc) del Sol. La estrella exhibió una explosión muy importante a comienzos de 2002, lo cual inicialmente se creyó que era la típica creación de una nova; sin embargo, luego se supo que se trataba de algo completamente distinto. El motivo del estallido aún es incierto pero se han elaborado varias teorías al respecto, incluidas la erupción relacionada con los procesos de muerte estelar y la fusión de una estrella binaria o planetas.”

Esta nube reflectora de polvo y gas tiene dos lóbulos (o conos) casi simétricos de materia que están siendo expulsados de una estrella central. Durante los últimos 1.500 años, casi una vez y media la masa de nuestro Sol ha sido perdida por la estrella central de la Nebulosa Boomerang en un proceso de eyección conocido como flujo de salida bipolar. El nombre de la nebulosa se deriva de su estructura simétrica vista desde los telescopios terrestres. La aguda visión del Hubble es capaz de resolver patrones y ondulaciones en la nebulosa muy cerca de la estrella central que no son visibles desde el suelo.”

Abell 1689

Cúmulo de galaxias Abell 1689
Esta imagen muestra la región interior de Abell 1689, un inmenso grupo de galaxias situado a 2.200 millones de años luz de distancia. Los astrónomos usaron el Hubble para mapear la distribución de la materia oscura en el cúmulo de galaxias.

 

NGC 2207

NGC 2207 son un par de galaxias espirales en colisión. Sus brillantes núcleos centrales se asemejan a un llamativo conjunto de ojos. En la luz visible captada por Hubble, los rastros de estrellas y gas trazan brazos espirales, estirados por la atracción de las mareas entre las galaxias.

Los Pilares de la Creación

 

 

Estos enormes tentáculos de polvo y gas cósmico se encuentran en el corazón de M16, o la Nebulosa del Águila. Los acertadamente llamados Pilares de la Creación, presentados en esta asombrosa imagen del Hubble, son parte de una región activa de formación estelar dentro de la nebulosa y esconden estrellas recién nacidas en sus tenues columnas.

Aunque esta no es la primera imagen del Hubble de esta emblemática Nebulosa del Águila, es la más detallada. Los colores azules de la imagen representan el oxígeno, el rojo es el azufre, y el verde representa tanto el nitrógeno como el hidrógeno. Los pilares están bañados por la abrasadora luz ultravioleta de un cúmulo de jóvenes estrellas situado justo fuera del marco. Los vientos de estas estrellas están erosionando lentamente las torres de gas y polvo.

463 Fotos de Astronomía - Pagina 8

 

 

¿Qué le pasa a esta galaxia que se distorsiona en presencia de otra?

 

La nebulosa de la Tarántula

 

R136, cerca de la Nebulosa de la Tarántula en la Gran Nube de Magallanes,  es un cúmulo de estrellas jóvenes gigantes de edades en torno a uno o dos  millones de años |

Un cúmulo de estrellas jóvenes ilumina un hueco entre los remolinos de polvo de la nebulosa de la Tarántula. El dinamismo de la escena es irresistible. «Hay estrellas que nacen y estrellas que mueren. Una enorme cantidad de material en estado de gran agitación.

Podríamos continuar repasando maravillas que están presentes en el Espacio Interestelar y que nosotros, una especie tan frágil (y tan fuerte), hemos logrado conquistar para el conocimiento de un Universo inmenso del que tratamos de desvelar sus secretos que, profundamente escondidos, se resisten a dejarse ver.

emilio silvera

 

Captan el nacimiento de un Agujero Negro

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

CIENCIA-El Español
Observan desde el Teide el “parto” más nítido que nunca de un agujero negro

 

Recreación de una explosión de rayos gamma, fruto del colapso de una estrella masiva que dispara chorros de partículas y crea un agujero negro. NASA

 

 

 

Recreación de una explosión de rayos gamma, fruto del colapso de una estrella masiva que dispara chorros de partículas y crea un agujero negro. NASA

 

 

El Instituto de Astro-físca de Canarias (IAC) acaba de hacer público un hallazgo científico de carácter mundial logrado con un pequeño telescopio robótico de 40 centímetros de la Universidad de Moscú, instalado en el Observatorio del Teide, que revoluciona toda la información de la que se disponía hasta ahora sobre las circunstancias en las que se produce un agujero negro. Un satélite de la NASA lanzó la alerta de que una superestrella estaba colapsando el Universo, dando lugar a un agujero negro.

 

Resultado de imagen de Telescopios terrestres de Canarias

 

La investigación, encabezada por la Universidad de Maryland (EEUU), detectó esa emisión a través del uso de telescopios espaciales y terrestres y esos datos les permitió describir con gran precisión uno de los fenómenos astrofísicos más esquivos. El equipo de expertos, que ha bautizado esta emisión de rayos gamma como “GRB160625B”, obtuvo detalles clave sobre su fase inicial “rápida” de ráfagas, así como de la evolución de los grandes chorros de materia y energía que generan esas primeras explosiones.

“Las ráfagas de rayos gamma son eventos catastróficos, vinculados a las explosiones de estrellas enormes, cincuenta veces más grandes que nuestro sol”, explica en un comunicado Eleonora Troja, del departamento de astronomía de la UMD. Si se elaborase una lista de las explosiones más poderosas ocurridas en el Universo, indica la experta, las de rayos gamma se situarían “justo por detrás del Big Bang”.

Investigar el Universo con telescopios robóticos: nueva formación del  proyecto PETeR | Instituto de Astrofísica de Canarias • IACDESI abre sus 5.000 ojos para capturar los colores del Cosmos | Instituto  de Astrofísica de Canarias • IAC

 

El telescopio robótico del Teide MASTER-IAC fue el primero de mundo que captó la alerta y apuntó hacia el lugar del parto, teniendo la oportunidad providencial de vivir en el primer instancia, es decir, en los primeros segundos, qué ocurre cuando tal fenómeno se origina. Así pudo comprobar por primera vez que cuando la estrella colapsa y el agujero negro está en fase embrionaria se desata un fuerte chorro de material y energía, equivalente a toda la energía que libera el sol a lo largo de toda su existencia. Lo que es más importante del descubrimiento del telescopio del IAC es que pudo presenciar que en ese primer instante se origina un campo magnético, extremo desconocido hasta ahora, que condiciona la polarización de la luz. “El descubrimiento nos llena de orgullo, pero sobre todo es una gran aportación a la ciencia”, declaró a DIARIO DE AVISOS el director de IAC, Rafael Rebolo. “Nuestro pequeño telescopio robótico ha tenido el honor de captar la alerta y medir por primera vez en la historia la polarización de la energía, y averiguar cómo es el campo magnético en ese momento. Esto no es cualquier cosa, sino un gran avance, porque nos permitirá seleccionar los modelos para posteriores estudios de agujeros negros, pudiendo ir a partir de ahora con más precisión que nunca”.

Inauguran por control remoto dos telescopios robóticos en el Observatorio del Teide

 

El Rey inaugura los dos telescopios con que la ciencia española indagará el  origen del universoLos Reyes inauguran en Canarias el telescopio más avanzado del mundo

 

El hallazgo del telescopio robótico de la Universidad de Moscú instalado en el Observatorio del Teide en Tenerife constituye toda una sorpresa para los investigadores especializados en agujeros negros. El pequeño instrumento inaugurado hace dos años por el rey Felipe VI consiguió este éxito mundial en junio del año pasado, y ahora ha trascendido en vísperas de su publicación mañana en la prestigiosa revista científica ‘Nature’.

 

Resultado de imagen de El satélite de la NASA Fermi

 

Un satélite de la NASA, llamado Fermi (en honor de uno de los físicos italianos más relevantes del siglo XX) dio la alerta sobre el nacimiento d un agujero negro. El telescopio tinerfeño fue el primero en detectar esa señal y dirigir su ojo hacia el lugar de los hechos. Pudo observar el chorro de materia y radiación que se produce en ese primer instante. Fue testigo excepcional porque se había producido una primer micro estallido de la superestrella que de inmediato fue seguido por otro estallido que duró más tiempo (medido en apenas segundos).

El robot pudo medir la polarización de la luz (filtrado de las ondas) y determinó que se genera un campo magnético. El chorro de partículas de radiación está muy polarizada ya en ese momento inicial, algo inédito hasta ahora. “Es como un cañón de altísima energía, más propio de la ficción de la Guerra de las Galaxias, pero sí ocurre en la realidad”, bromeó Rafael Rebolo, director del IAC en declaraciones a DIARIO DE AVISOS. Según Rebolo, en otras observaciones hasta ahora se sabía que había una gran explosión de rayos gamma (un estallido super masivo que se dirigió hasta nuestro Sistema Solar), pero esta vez ha sido tan intenso que cabría afirmar que es la primera vez que se ha podido divisar de modo visible.

Resultado de imagen de Captada explosión gamma desde el telescopio de canarias

Se trata de una medición de radiación visible. En pocos segundos se desató una liberación de energía tal que equivaldría a la del Sol en toda su vida. “Hemos podido ser los primeros y afinar en la medición sobre uno de los fenómenos más importantes en el Universo actual”, declaró el director del telescopio, y siguió diciendo:

“Con telescopios pequeños se puede hacer también ciencia de primera línea”, sobre este aparato robótico de pequeñas dimensiones el MASTER-IAC de la Universidad de Moscú, instalado en el Teide y autor del hallazgo. Su especialidad es la búsqueda de fenómenos energéticos del Universo. Esta ha sido una especia de debut milagroso del telescopio según el máximo responsable del IAC. El hallazgo se produjo en junio de 2016 y se conoció por la publicación en la revista ‘Nature’.

 

Si los agujeros negros lo absorben todo, ¿qué hacen con ello? | Ciencia | EL  PAÍS

 

Todos lo concerniente a los agujeros negros genera una gran expectación en el mundo entero. El físico teórico Stephen Hawking mostró su interés y fascinación por los mismo durante su visita a la sede del IAC y departió sobre el fenómeno con uno de los directores de la investigación ahora dada a conocer. Hasta ahora se sabía que la energía estaba polarizada en etapas avanzadas de la generación de un agujero negro, “pero se desconocía que también se produjera tan temprana”.

 

Astrónomos captan el estallido de rayos gamma más grande del universo -  Primicias 24

 

Para el Director del centro uno de los aspectos más positivos de este descubrimiento es que la alerta de estallidos de rayos gamma la produjo un satélite de la NASA (Estados Unidos) y el primer telescopio en captarla fue este pequeño instrumento robótico de la Universidad de Moscú instalado en Tenerife. “Entre Estados Unidos y Rusia hemos estado nosotros, el IAC, lo que significa un tanto para Canarias y España y demuestra que en ciencia puede establecerse una colaboración noble sin fronteras. Solo el tiempo dirá”, señaló el alcance de este hallazgo en el historia del IAC, pero ya supone la primera investigación de este año para la ciencia mundial de los agujeros negros.

 Noticias de prensa

¿Limpieza? SÏ pero… ¡Sin pasarse!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  La peste negra: historia de la plaga medieval que azotó a Europa - La  TerceraHorrores higiénicos de la Edad Media: cómo vivía la gente sin bañarse -  Infobae

22 ideas de Edad media | edad media, arte, pinturas de salvador dalíLa gran epidemia medieval

Las mejoras en la higiene han producido muchos beneficios para la salud, pero es posible que también hayan tenido algunos efectos secundarios. Esto es lo que trató de explicar otro de los artículos seleccionados por Springer Nature. En un trabajo que lideró Christopher Lowry, de la Universidad de Colorado en Boulder, se cuenta cómo la falta de exposición a algunos microbios con los que convivimos desde hace miles de años ha podido dejarnos con un sistema inmune “desentrenado”.

La primera línea de defensa frente a la invasión por microorganismos  presente en todos los animales es la inmunidad innata, naLos misterios del sistema inmunitario: Como protege nuestro cuerpo (Libro  EFIS-SEI) by Sociedad Española de Inmunología (SEI) - Issuu

En el sistema de defensa del organismo frente a los patógenos, la inflamación es fundamental. Sin embargo, ese mecanismo también puede producir enfermedades. Se sabe que la inflamación puede provocar problemas psiquiátricos como la depresión. Esto se ha observado, por ejemplo, en personas a las que se aplican inyecciones de interferón alfa, un tratamiento para enfermedades como la hepatitis B o algún tipo de cáncer. Las proteínas que componen este medicamento producen un efecto inflamatorio y esto a su vez hace que algunos de los pacientes que lo reciben se depriman.

Microbioma Humano en la salud y enfermedad. Congreso Med. InternaNuestros microbios internos no son patógenos así que no se justifica usar  contra ellos antibióticos y vacunas — DSalud

 

El exceso de higiene ha podido eliminar los microbios que preparan nuestro sistema inmune

 

Las dolencias producidas por la inflamación no deseada como las alergias o el asma se han incrementado durante los últimos años. Sin embargo, aún no se conocen bien los mecanismos que provocan esos efectos. Una de las hipótesis que se plantean para explicar este fenómeno es la de los viejos amigos. Esta epidemia se debería, en parte, a una menor exposición a microorganismos con los que convivimos, preparan los circuitos que regulan el sistema inmune y suprimen la inflamación inapropiada. La falta de contacto con nuestros viejos amigos haría más vulnerables a los habitantes del mundo moderno a problemas del desarrollo neurológico como el autismo o la esquizofrenia o cuestiones relacionadas con el estrés o la ansiedad.

Cuáles son las tres líneas de defensa?Cómo funciona el sistema inmune del cuerpo humano? | CinfaSalud

Además de plantear que se estudie mejor la relación entre los microorganismos con los que convivimos y los fallos en el sistema inmune, proponen la posibilidad de tratar estas enfermedades con probióticos. En este sentido, recuerdan que ya se han empleado saprófitos, un tipo de microbios que se alimentan de material en descomposición, como inmunoterapia en un ensayo clínico con enfermos de cáncer. Aunque no sirvió para prolongar la vida de los pacientes, sí mejoró su capacidad cognitiva y su salud emocional.

Cuando la limpieza y el orden se convierte en obsesión - La Mente es  MaravillosaPor qué no debes usar cloro en exceso? | Cocina Fácil

                     La moderación es el mejor sistema, los excesos no son buenos para nada

Demasiada limpieza puede estar causando que desarrollemos alergias, asma, enfermedades inflamatorias del intestino y otros trastornos autoinmunes. La falta de exposición a bacterias, virus y alérgenos impide el desarrollo normal del sistema inmunológico

emilio silvera

La complejidad del Cerebro…Los caminos de la Mente

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  Los cinco sentidos, Hans Makart (1840-1884)

En su obra Materia y memoria, Henri Bergson decía:

La percepción, en su conjunto, tienen su verdadera razón de ser en la tendencia del cuerpo a moverse”

 

 Nosotros hablamos de los cinco sentidos de los que nos valemos para tener una percepción del mundo que nos rodea. Sabemos, que muchos de los animales que pueblan nuestro planeta tienen algunos de esos sentidos mucho más desarrollados que nosotros, y, sin embargo, es nuestra especie la que prevalece como superior de todas las demás. Nuestras mentes, han llegado a desarrollar un mayor y más completo conjunto de conexiones neuronales que han posibilitado una más amplia consciencia del mundo que nos rodea, de la Naturaleza.

Resultado de imagen de Los cinco sentidos

La percepción, los sentidos y los pensamientos… Para poder entender la conciencia como proceso es preciso que entendamos cómo funciona nuestro cerebro, su arquitectura y desarrollo con sus funciones dinámicas. Lo que no está claro es que la conciencia se encuentre causalmente asociada a ciertos procesos cerebrales pero no a otros.

El cerebro humano -hay que reconocerlo-,  es especial; su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo exterior, no se parece a nada que la Ciencia conozca. Tiene un carácter único y ofrecer una imagen fidedigna del cerebro no resulta nada fácil; es un reto tan extraordinario que no estamos preparados para cumplir en este momento. Estamos lejos de ofrecer esa imagen completa, y sólo podemos dar resultados parciales de esta increíble maravilla de la naturaleza.

Uncategorized | pensando para hablarEl cerebro humano crea estructuras de hasta 11 dimensiones - Elisa Aribau

Nuestro cerebro adulto, con poco más de 1,5 Kg de peso, contiene unos cien mil millones de células nerviosas o neuronas. La parte o capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de evolución más reciente, contiene alrededor de treinta millones de neuronas y un billón de conexiones o sinapsis. Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en acabar el recuento. Si consideramos el número posible de circuitos neuronales, tendremos que habérnoslas con cifras hiper-astronómicas. Un 10 seguido de, al menos, un millón de ceros (en comparación, el número de partículas del universo conocido asciende a 1079 “tan sólo” un 10 seguido de 79 ceros). ¡A que va a resultar que no somos tan insignificantes!

Con tan enorme cantidad de circuitos neuronales, ¿podremos algún día ser capaces de descifrar todos los secretos de nuestro universo? ¿De qué seremos capaces cuando podamos disponer de un cerebro totalmente evolucionado?

20 curiosidades sobre el cerebro humano que te sorprenderán - Procesa  imágenes a toda velocidadEl Covid-19 puede llegar a causar daños duraderos en el cerebro humano

¡Tan frágil y tan fuerte! En tan pequeño conjunto reside el secreto mejor guardado por la Naturaleza que hizo posible, ese asombroso viaje que va, desde la materia inerte hasta los pensamientos. Han sido necesarios dies mil millones de años para que, las estrellas, pudieran fabricar los elementos bioquímicos necesarios para hacer posible tal transición que, por mucho que la queremos comprender…

El límite de lo que podremos conseguir tiene un horizonte muy lejano. Desde hablar o comunicarnos sin palabras sonoras -no es ninguna broma- , a la auto-transportación. Ahora mismo, simplemente con el pensamiento, podemos dar instrucciones a máquinas que obedecen nuestras órdenes. Sí, somos pura energía pensante, el poder de la mente no está totalmente desarrollado y, simplemente es cuestión de tiempo.  Creo que no habrá límite alguno; el cuerpo que ahora nos lleva de un lugar a otro, ya no será necesario, y como los fotones que no tienen masa… ¿Podremos desplazarnos entre las estrellas  a velocidades superlumínicas? Mi imaginación se desboca y va mucho más allá de lo que la razón aconseja.

Creo que estoy corriendo demasiado en el tiempo, volvamos a la realidad. A veces mi mente se dispara. Lo mismo visito mundos extraordinarios con mares luminosos de neón líquido poblados por seres transparentes, que viajo a galaxias muy lejanas pobladas de estrellas de fusión fría circundadas por nubes doradas compuestas de antimateria en la que, los positrones medio congelados, se mueven lentamente formando un calidoscopio de figuras alucinantes de mil colores. ¡La mente, qué tesoro!

Sparkling MoonOtros mundos | La Térmica

                Es cierto que existen otros mundos y, todos, están dentro de nuestras mentes

Cuando seamos capaces de convertir en realidad todo aquello en lo que podamos pensar, entonces, habremos alcanzado la meta. Para que eso sea una realidad… aún falta y, debemos ser conscientes de que nunca, podremos alcanzarlo todo. Si la Naturaleza y el Universo nos dejo, jugamos con ventaja y con tiempo por delante… ¿Qué se nos puede resistir? Nuestra manera de generar entropía negativa es dejar descendencia, así luchamos contra la desaparición de nuestra especie y de los logros que, durante milenios pudo alcanzar.  Dejamos lo que logramos descubrir a los que nos siguen, ellos a los que vendrán después, y así hasta “el infinito”.

El mundo físico se representa gobernado de acuerdo a leyes matemáticas -fuerzas y constantes universales-. Desde este punto de vista, todo lo que hay en el universo físico está realmente gobernado en todos sus detalles por principios matemáticos, quizá por ecuaciones tales como las que describen nuestras mejores teorías.

Lo más seguro es que la descripción real del mundo físico esté pendiente de matemáticas futuras, aún por descubrir, fundamentalmente distintas de las que ahora tenemos. Llegarán nuevos Gauss, Riemann, Euler, Ramanujan, Cantor…, que con sus frescas y nuevas ideas, transformarán el pensamiento matemático y nuestra manera de ver el mundo.

Partículas

El primer parámetro es la materia normal (átomos) que dicen representa el 5% de la materia del Universo. El segundo parámetro podría ser la materia oscura, calculan el 25% de la materia, La constante cosmológica sería el tercer parámetro, Es decir, la misteriosa energía que expande el Universo y la calculan en el 70%. El cuarto parámetro es la profundidad óptica o cuan opaco era el Universo para los fotones al viajar en él. Los dos últimos parámetros describen los orígenes de las diminutas fluctuaciones que dieron lugar a toda la estructura que observamos hoy en el universo.

Las fluctuaciones cuánticas se probaron experimentalmente en 1947Cómo es que algo surgió de la nada? (las fluctuaciones cuánticas vs Dios) ~  El Rincón de la Ciencia y la TecnologíaObservan que fluctuaciones cuánticas pueden sacudir objetos a escala humana  - INVDES

Si tuviésemos un modelo completo del universo, uno que comenzara con pequeñas fluctuaciones cuánticas y predijera con éxito cuáles serían las fluctuaciones de la materia en esferas que miden 25 millones de años luz de diámetro, podríamos eliminar uno de estos dos parámetros.

Desafortunadamente, aunque tenemos un borrador muy exitoso para comprender cómo evolucionó el universo, aún no conocemos todas las conexiones, por lo que lo requerimos como parámetro.

Se llama espectro de potencias primordial y describe las fluctuaciones en la densidad del universo en el espacio tridimensional.

¿Es, entonces, la Naturaleza matemática? Bueno, yo no me atrevería a negarlo… del todo. Una gran parte sí que lo es. Con estos seis parámetros, podemos calcular las características no solo de la CMB, sino también de cualquier medida cosmológica que queramos hacer.

LOS CUADERNOS PERDIDOS DE " Srinava... - Si y Solo Si Math | FacebookEl misterio de Ramanujan persiste un siglo después de la muerte del  matemático | Matbus. Blog de la Biblioteca de Matemáticas de Sevilla

Para llegar a comprenderlo, antes, tendremos que haber descifrado las funciones modulares de los cuadernos perdidos de Ramanujan, o por ejemplo, el verdadero significado del número 137, ése número puro adimensional que encierra los misterios del electrón (e)  -electromagnetismo -, de la constante de Planck (h) – el cuanto de acción – y de la luz (c) -la relatividad-, además de otros muchos secretos que nos quedan por desvelar.

Los resultados son lentos, no se avanza con la rapidez que todos deseamos. Poincaré expuso su conjetura para que el mundo la pudiera desvelar y no ha sido posible en más de un siglo, hasta que llegó Perelman para resolverla. Riemann expuso su geometría del espacio curvo, y hasta 60 años más tarde no fue descubierta por Einstein para hacer posible su formulación de la relatividad general, donde describe cómo las grandes masas distorsionan el espacio y el tiempo por medio de la fuerza de gravedad que generan para dibujar la geometría del Universo.

Resultado de imagen de Rebote cuántico de la función de ondas del universo ψ para un espaciotiempo de Friedmann-Robertson-Walker

Rebote cuántico de la función de ondas del universo ψ para un espacio-tiempo de Friedmann-Robertson-Walker con campo escalar ϕ. v corresponde al volumen del universo en unidades de Planck.  Complejidades como éstas son posibles gracias a los conceptos matemáticos creados por nuestras mentes. Por ejemplo, pensar en las complejas matemáticas topológicas requeridas por la teoría de supercuerdas puede producir incomodidad en muchas personas que, aún siendo físicos, no están tan capacitados para entender tan profundas y complejas  ideas.

Imagen relacionada

Bernhard Riemann introdujo muchas nuevas ideas y fue uno de los más grandes matemáticos. En su corta vida (1.826 – 1.866) propuso innumerables propuestas matemáticas que cambiaron profundamente el curso del pensamiento de los números en el planeta Tierra, como el que subyace en la teoría relativista en su versión general de la gravedad, entre otras muchas (superficie de Riemann, etc.). Riemann les enseñó a todos a considerar las cosas de un modo diferente.

La superficie de Riemann asociada a la función holomorfa “tiene su propia opinión” y decide por sí misma cuál debería ser el, o mejor, su dominio, con independencia de la región del plano complejo que nosotros podamos haberle asignado inicialmente. Durante su corta carrera, Rieman hizo avanzar las matemáticas en muchos campos y, en especial:

El Análisis.

La Teoría de números,

La Geometría, y la

Topología

Ahora podemos comprender la complejidad y la belleza de las superficies de Riemann. Este bello concepto desempeña un papel importante en algunos de los intentos modernos de encontrar una nueva base para la física matemática (muy especialmente en la teoría de cuerdas), y al final, seguramente, podremos desvelar  el mensaje que encierra.

El caso de las superficies de Riemann es fascinante, aunque desgraciadamente sólo es para iniciados. Proporcionaron los primeros ejemplos de la noción general de variedad, que es un espacio que puede pensarse “curvado” de diversas maneras, pero que localmente (por ejemplo, en un entorno pequeño de cualquiera de sus puntos), parece un fragmento de espacio euclídeo ordinario.

Le prix Nobel de physique, Roger Penrose, pense avoir des preuves d'un  univers avant le Big Bang

La esfera de Riemann, superficie de Riemann compacta, el teorema de la aplicación de Riemann, las superficies de Riemann y aplicaciones complejas… He tratado de exponer en unas líneas la enorme importancia de este personaje para las matemáticas en general y la geometría en particular, y,  para la física.

Quién fue Riemann? : Blog de Emilio Silvera V.

Lo cierto es que, si miramos hacia atrás en el tiempo, nos encontramos con el hecho cierto de que, Einstein pudo formular su bella teoría de la relatividad general gracias a una conferencia que dio Riemann y que, habiendo pedido ayuda a su amigo Marcel Grosmman, éste le mandara una copia en la que, aparecía el Tensor Métrico de Riemann que le dio a Einstein las herramientas de las que carecía.

En escritos anteriores consideramos dos aspectos de la relatividad general de Einstein, a saber, el principio de la relatividad, que nos dice que las leyes de la física son ciegas a la distinción entre reposo y movimiento uniforme; y el principio de equivalencia, que nos dice de qué forma sutil deben modificarse estas ideas para englobar el campo gravitatorio.

Ahora hay que hablar del tercer ingrediente fundamental de la teoría de Einstein, que está relacionada con la finitud de la velocidad de la luz. Es un hecho notable que estos tres ingredientes básicos puedan remontarse a Galileo; en efecto, parece que fue también Galileo el primero que tuvo una expectativa clara de que la luz debería viajar con velocidad finita, hasta el punto de que intentó medir dicha velocidad. El método que propuso (1.638), que implica la sincronización de destellos de linternas entre colinas distantes, era, como sabemos hoy, demasiado tosco. Él no tenía forma alguna de anticipar la extraordinaria velocidad de la luz.

Esta teoría del electromagnetismo de Maxwell tenía la particularidad de que requería que la velocidad de la luz tuviera un valor fijo y definido, que normalmente se conoce como c, y que un unidades ordinarias es aproximadamente 3 × 108 metros por segundo. Parece que tanto Galileo como Newton tenían poderosas sospechas respecto a un profundo papel que conecta la naturaleza de la luz con las fuerzas que mantienen la materia unida.

Pero la comprensión adecuada de estas ideas tuvo que esperar hasta el siglo XX, cuando se reveló la verdadera naturaleza de las fuerzas químicas y de las fuerzas que mantienen unidos los átomos individuales. Ahora sabemos que tales fuerzas tienen un origen fundamentalmente electromagnético (que vincula y concierne a la implicación del campo electromagnético con partículas cargadas) y que la teoría del electromagnetismo es también la teoría de la luz.

Para entender los átomos y la química se necesitan otros ingredientes procedentes de la teoría cuántica, pero las ecuaciones básicas que describen el electromagnetismo y la luz fueron propuestas en 1.865 por el físico escocés James Clark Maxwell, que había sido inspirado por los magníficos descubrimientos experimentales de Michael Faraday unos treinta años antes y que él plasmó en una maravillosa teoría.

 Resultado de imagen de Gracias a la luz, a la radiación electromagnética, podemos saber del universo lejano

             Gracias a la luz, a la radiación electromagnética, podemos saber del universo lejano

Como he dicho antes, la teoría del electromagnetismo de Maxwell tenía la particularidad de que requería que la velocidad de la luz tuviera un valor fijo y definido, que normalmente se conoce como c, y que un unidades ordinarias es aproximadamente 3 × 108 metros por segundo.

Sin embargo, esto nos presenta un enigma si queremos conservar el principio de relatividad. El sentido común nos diría que si se mide que la velocidad de la luz toma el valor concreto c en el sistema de referencia del observador, entonces un segundo observador que se mueva a una velocidad muy alta con respecto al primero medirá que la luz viaja a una velocidad diferente, aumentada o disminuida, según sea el movimiento del segundo observador.

Pero el principio de relatividad exigiría que las leyes físicas del segundo observador (que definen en particular la velocidad de la luz que percibe el segundo observador) deberían ser idénticas a las del primer observador. Esta aparente contradicción entre la constancia de la velocidad de la luz y el principio de relatividad condujo a Einstein (como de hecho, había llevado previamente al físico holandés Hendrick Antón Lorentz y muy en especial al matemático francés Henri Poincaré) a un punto de vista notable por el que el principio de relatividad del movimiento puede hacerse compatible con la constancia de una velocidad finita de la luz.

Baste saber que, como quedó demostrado por Einstein, la luz, independientemente de su fuente y de la velocidad con que ésta se pueda mover, tendrá siempre la misma velocidad en el vacío, c, o 299.792.458 metros por segundo. Cuando la luz atraviesa un medio material, su velocidad se reduce. Precisamente, es la velocidad c el límite alcanzable de la velocidad más alta del universo. Es una constante universal y, como hemos dicho, es independiente de la velocidad del observador y de la fuente emisora.

¿Cómo funciona esto? Sería normal que cualquier persona creyera en la existencia de un conflicto irresoluble entre los requisitos de una teoría como la de Maxwell, en la que existe una velocidad absoluta de la luz, y un principio de relatividad según el cual las leyes físicas parecen las mismas con independencia de la velocidad del sistema de referencia utilizado para su descripción.

¿No podría hacerse que el sistema de referencia se moviera con una velocidad que se acercara o incluso superara a la de la luz? Y según este sistema, ¿no es cierto que la velocidad aparente de la luz no podría seguir siendo la misma que era antes? Esta indudable paradoja no aparece en una teoría, tal como la originalmente preferida por Newton (y parece que también por Galileo), en la que la luz se comporta como partículas cuya velocidad depende de la velocidad de la fuente. En consecuencia, Galileo y Newton podían seguir viviendo cómodamente con un principio de relatividad.

Pero semejante imagen de la naturaleza de la luz había entrado en conflicto con la observación a lo largo de los años, como era el caso de observaciones de estrellas dobles lejanas que mostraban que la velocidad de la luz era independiente de la de su fuente. Por el contrario, la teoría de Maxwell había ganado fuerza, no sólo por el poderoso apoyo que obtuvo de la observación (muy especialmente en los experimentos de Heinrich Hertz en 1.888), sino también por la naturaleza convincente y unificadora de la propia teoría, por la que las leyes que gobiernan los campos eléctricos, los campos magnéticos y la luz están todos subsumidos en un esquema matemático de notable elegancia y simplicidad.

En la teoría de Maxwell, la luz toma forma de ondas, no de partículas, y debemos enfrentarnos al hecho de que en esta teoría hay realmente una velocidad fija a la que deben viajar las ondas luminosas. El punto de vista geométrico-espaciotemporal nos proporciona una ruta particularmente clara hacia la solución de la paradoja que presenta el conflicto entre la teoría de Maxwell y el principio de relatividad.

       El día que podamos comprender lo que es la luz, habremos logrado secar todas las fuentes de nuestra inmensa ignorancia

Este punto de vista espaciotemporal no fue el que Einstein adoptó originalmente (ni fue el punto de vista de Lorentz, ni siquiera, al parecer, de Poincaré), pero, mirando en retrospectiva, podemos ver la potencia de este enfoque. Por el momento, ignoremos la gravedad y las sutilezas y complicaciones asociadas que proporciona el principio de equivalencia y otras complejas cuestiones, que estimo aburrirían al lector no especialista, hablando de que en el espacio-tiempo se pueden concebir familias de todos los diferentes rayos de luz que pasan a ser familias de líneas de universo, etc.

Baste saber que, como quedó demostrado por Einstein, la luz, independientemente de su fuente y de la velocidad con que ésta se pueda mover, tendrá siempre la misma velocidad en el vacío, c, o 299.792.458 metros por segundo. Cuando la luz atraviesa un medio material, su velocidad se reduce. Precisamente, es la velocidad c el límite alcanzable de la velocidad más alta del universo. Es una constante universal y, como hemos dicho, es independiente de la velocidad del observador y de la fuente emisora.

Aquí, en este mismo trabajo, tenemos un ejemplo de lo que la mente es. Comencé hablando de una cosa y, sin que me diera cuenta, he recorrido caminos que, ni pensaba recorrer cuando comencé a escribir.

¡Qué misterios!

emilio silvera