viernes, 03 de diciembre del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Estructuras grandes y pequeñas: todas primordiales.

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Estructuras Fundamentales de la Naturaleza

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza.

Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.

  • Molécula de dinitrógeno, el gas que es el componente mayoritario del aire

  • Molécula de fullereno, tercera forma estable del carbono tras el diamante y el grafito

  • Molécula de agua, “disolvente universal”, de importancia fundamental en innumerables procesos bioquímicos e industriales

Representación poliédrica del anión de Keggin, un polianión molecular

La cosmología  sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del Big Bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que nos es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.


Comparativa de tamaño entre neutrófilos, células sanguíneas eucariotas (de mayor tamaño), y bacterias Bacillus anthrascis , procariotas (de menor tamaño, con forma de bastón).
Las enzimas, un tipo de proteínas implicadas en el metabolismos.
Archivo:Average prokaryote cell- es.svg
((Imagen SVG, nominalmente 494 × 402 pixels, tamaño de archivo: 117 KB))

Ya ahí tenemos pruebas de historia.  Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados de átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones.

Fulereno C60.
(El Carbono es el elemento químico de número atómico 6 y símbolo C. Es sólido a temperatura ambiente. Dependiendo de las condiciones de formación, puede encontrarse en la naturaleza en distintas formas alotrópicas, carbono amorfo y cristalino en forma de grafito o diamante. Es el pilar básico de la química orgánica; se conocen cerca de 16 millones de compuestos de carbono, aumentando este número en unos 500.000 compuestos por año, y forma parte de todos los seres vivos conocidos. Forma el 0,2 % de la corteza terrestre.)
Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Estructura interna del átomo.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del Big Bang.

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

Según la teoría del Big Bang, el Universo se originó en una singularidad espaciotemporal de densidad infinita matemáticamente paradójica. El espacio se ha expandido desde entonces, por lo que los objetos astrofísicos se han alejado unos respecto de los otros.

Hemos llegado a dominar técnicas asombrosas que nos facilitan ver aquello que, prohibido para nuestro físico, sólo lo podemos alcanzar mediante sofisticados aparatos que bien nos introduce en el universo microscópico de los átomos, o, por el contrario nos llevan al Universo profundo y nos enseña galaxias situadas a cientos y miles de millones de años-luz de la Tierra.

Cuando vemos esos objetos cosmológicos lejanos, cuando estudiamos una galaxia situada a 100.000 mil años-luz de nosotros, sabemos que nuestros telescopios la pueden captar gracias a que, la luz de esa galaxia, viajando a 300.000 Km/s llegó a nosotros después de ese tiempo, y, muchas veces, no es extraño que el objeto que estamos viendo ya no exista o si existe, que su conformación sea diferente habiéndose transformado en diferentes transiciones de fase que la evolución en el tiempo ha producido.

El Hubble Fotografía la Galaxia Espiral de Gran Diseño M81

Resultado de imagen de La Glaxia espiral M81

En el ámbito de lo muy pequeño, vemos lo que está ahí en ese momento pero, como se explica más arriba, en realidad, también nos lleva al pasado, a los inicios de cómo todo aquello se formó y con qué componentes que, en definitiva, son los mismos de los que están formadas las galaxias, las estrellas y los planetas, una montaña y un árbol y, cualquiera de nosotros que, algo más evolucionado que todo lo demás, podemos contarlo aquí.

Estas y otras muchas maravillas son las que nos permitirán, en un futuro más o menos cercano, que podamos hacer realidad muchos sueños largamente dormidos en nuestras mentes: Viajar a las estrellas, nuestro origen y destino.

emilio silvera

Pero… ¿Sabemos hacia dónde vamos?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Las supercuerdas

La teoría de supercuerdas es un esquema teórico para explicar todas las partículas y fuerzas fundamentales de la naturaleza en una sola teoría, que modela las partículas y campos físicos como vibraciones de delgadas cuerdas super-simétricas, las cuales se mueven en un espacio-tiempo de más de cuatro dimensiones, más exactamente 10 dimensiones y una temporal.

Resultado de imagen de Las supercuerdas

Si las supercuerdas nos conducen a las respuestas últimas, entonces ¿en qué dirección debemos continuar nuestras investigaciones?, ¿es que nos hemos introducido tanto en el mundo de lo desconocido y lo ininteligible que estamos a punto de ahogarnos en un océano del absurdo?, ¿nos hemos enterrado tánto bajo una montaña de tantas preguntas imposibles que deberíamos considerarnos perdidos para la ciencia? y, como decía el otro día, ¿tiene algún sentido seguir especulando acerca de la teoría de todo en este mundo extraño de los números de Planck? que, por otra parte, quedan tan lejos de nuestras posiblidades que difícilmente podremos alcanzar ni en varias generaciones. La Humanidad no dispone de la energía de Planck para llegar hasta las cuerdas vibrantes que, de existir, necesitan de esa energía para que las podamos visitar.

Ahí, situados en ese puntito diminuto señalado con el circulo rojo que enmarca nuestro Sistema solar, unos seres también diminutos, conscientes y pensantes, pretenden desde su pequeño reino galáctico, dilucidar todos los mistrios de la Naturaleza, del Universo inmenso.

Acordaos de los muchos enigmas que a lo largo del tiempo hemos tenido que ir resolviendo. Recuerso la pasión de John Archival Wheeler cuando en sus magistrales clases, explicaba a sus alumnos la Implosión de una estrella masiva y cuyos resultados no eran otros que el nacimiento de un agujero negro. El agujero negro se produce cuando la materia durante la implosión alcanza en un cierto punto  la velocidad de la luz. Entonces se pasa un borde matemático, un punto de no retorno. Un viajero espacial (desafortunado) que entre en el agujero negro junto con la materia durante la implosión no podría escapar ni siquiera  si pudiése darse la vuelta a la velocidad de la luz. Con él, todas las señales que intentara emitir serian también atrapadas y, junto a él, desaparecerían para siempre en eso que llamamos singularidad. Un lugar misterioso de energías y densidades infinitas del que nada puede escapar.

Otras de nuestras firmes creencias que se llama Modelo Estándar, tan poco es tan perfecto y tiene goteras por muchas partes de su frágil techo. Todos hemos sabido de los nuevos datos del experimento BaBar que, nos hablan de las inexactitudes del Modelo en el que se han hallado diferencias que demandan uno nuevo que, sea más acorde a lo que la Naturaleza es, ya que, no encajan algunos parámetros y eso nos lleva a tener que exigir nuevas formas, nuevos caminos que nos lleven hacia el reflejo real de una Naturaleza que no acabamos de entender y que, en nuestros modelos actuales se resquebraja cuando tratamos, por medio de complejos experimentos, de comprobar la exactitud de las teorías.

Fergus Wilson, uno de los analistas, y científico del Laboratorio Rutherford Appleton (del STFC) en Oxfordshire, Reino Unido, lo explica de manera bastante contundente: “Nuestra teoría actual acerca de las fuerzas fundamentales del universo, formulada hace cerca de 40 años, está empezando a mostrar señales de fracaso. Pero resulta igual de impactante el hecho de que las nuevas mediciones sugieren que cualquier teoría que vaya a reemplazarla tendrá que ser más exótica y compleja de lo que podíamos esperar o imaginar. Aunque no debemos saltar precipitadamente a conclusiones basadas en un solo experimento, este nuevo resultado es uno de lo más convincentes que hemos visto. Y está en la línea de indicios previos que ya hicimos públicos recientemente, todo lo cual apunta en la misma dirección”.

Así pues, parece que faltan algunos detalles técnicos, la física teo´rica necesita de un buen empujón y, como diría nuestro amigo Tom Wood, es preciso acudir a nuevos paradigmas que nos indiquen otros caminos que, alejados de los clásicos y enquilosados modelos actuales, nos lleven hacia el futuro. Así que tenemnos que convenir en que, el Modelo estándar actual, ha sido una magnifica herramienta que nos ha servido bien pero, no es perfecto. En promer lugar, podríamos empezar a quejarnos de las casi veinte constantes que no se pueden calcular. Pero si esta fueese la única queja, habría poco que hacer. Desde luego, se han sugerido numerosas ideas para explicar el origen de esos números y se han propuesto varias teorías para “predecir sus valores”. El problema de esas teorías es que los argumentos que dan nunca son convincentes.

¿Por qué se iba a preocupar a la Naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es un principio fundamental nuevo, tal como el principio de la relatividad, pero claro, no queremos abandonar los demás principios que ya conocemos; ¡esos, después de todo, han sido enormemente útiles en el descubrimiento del modelo estándar!

Así las cosas,  creo que el mejor lugar para buscar un nuevo principio es precisamente donde se encuentran los puntos débiles de la presente teoría y, una de las cuestiones viejas a debatir es: ¿Por qué el Modelo estándar no admite la cuarta fuerza?

Resultado de imagen de Colisión de haces de protones en el LHC

Haces de protones colisionan a la velocisas de la luz y nos enseñan sus entrañas

Una regla universal en la Física de partículas es que cuando las partículas chocan con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez más pequeñas en el espacio y en el tiempo. Supongamos que tenemos un acelerador de partículas tan potente que pudiera actuar con la potencia mil veces superior a la del LHC. Las colisiones que tendrían lugar nos dirían algo acerca de los detalles estructurales de esas partículas que que ahora sí, nos hablarían de otro “universo” más pequeño y exótico que el que ahora conocemos y…¡quién sabe qué podríamos hallar ahí? ¿Quizá cuerdas?

Resultado de imagen de El vacío super-conductor

Por otra parte, sin rubor alguno, hablamos del “vacío superconductor” cuando, en realidad, no conocemos bien ese “vacío” ni lo que realmente pueda contener, sólo tenemos algunas ideas e indicios que, nuestra imaginación aumenta hasta el infinito haciéndolo más grande que una galaxia.

De todas las maneras,  estaría bien saber, a ciencia cierta, cómo es el campo de Higgs (si es que existe) del que toman la masa todas las partículas (si es que la toman), y conocer, mediante que sistema se transfieren la masa, o, si cuando las partículas entran en el campo de Higgs e interracionan con él, y es el efecto frenado el que les otorga la masa en lugar del famoso Bosón.

Claro que esa, como otras conjeturas sobre los Océanos de Higgs y su dichosa Partícula “repartidora de masa”, no son más que conjeturas que, más adelante, debemos ir comprobando para poder escribirlas con letras de oro en el Libro de la Física, o, por el contrario, desecharlas como se ha hecho con tántas otras ideas y teorías frustradas que nunca llegaron a ninguna parte.

¡Los fotones de Yang-Mills adquieren su masa y el principio gauge se sigue cumpliendo! Al principio esta visión no mereció la atención que merecía. Por una parte, la gente penso que el modelo era feo. El principio gauge estaba ahí, pero ya no era el tema central. El “Campo de Higgs había sido puesto ahí “a propósito” y la “partícula de Higgs, en sí misma, no era una “partícula gauge”. Si se admitía esto, ¿por qué no introducir más partículas y campos arbitrarios? Estas ideas se consideraron como simples modelos con los que jugar, sin mucho significado fundamental al que ahora se quiere llegar con el LHC pretendiendo hacer bueno todo aquello y, al menos los físicos, insisten en que, el campo y la partícula están ahí…¡ya veremos en qué queda todo esto! Son muchos los cabos sueltos y las cosas sin explicar.

                    Ruptura espontánea de simetría y simetría rota

En segundo lugar estaba lo que se llamó “teorema de Goldstone”. Ya se habían producido antes modelos de partículas con “rotura espontánea de simetría”, pero para la mayoría de esos modelos, Jeoffrey Goldstone habia probado que siempre contenían partículas sin masa y sin espín. Muchos investigadores, por lo tanto, pensaron que la teoría de Higgs también debía contener esa partícula de Goldstone, sin masa y que esto era un inconveniente porque entre las partículas conocidas no había ninguna partícula de Goldstone. Incluso el propio Goldstone había advertido que el Modelo de Higgs no satisfaccía las condiciones para su demostración, así que no tenía que ser válido para este caso, pero todo el mundo estaba tan impresionado con las matemáticas del teorema que el Modelo de Higgs-Kibble no tuvo éxito durante mucho tiempo.

AccComplex0700829

El bosón de Higgs pretende ser una parte integral de nuestra comprensión de la Naturaleza. Se trata de una partícula que es una excitación de lo que se llama el campo de Higgs. El campo de Higgs impregna todo el espacio y cuando algunas de las partículas fundamentales que viajan a través de este campo adquieren masa (al interaccionar con el Campo dónde, probablemente, ve frenada su marcha y su desplazamiento es más lento debido al medio por el que discurre su viaje). La cantidad de masa que adquieren depende de la fuerza en que interactúan con el campo de Higgs. Algunas particulas, como el electrón adquieren una pequeña masa, mientras que otras adquieren una masa mucho mayor.

Y así, el teorema de Goldstone se utilizó como un “teorema de imposibilidad”: si el espacio vacío no es simétrico, entonces no se puede evitar la presencia de partículas sin masa y sin espín. Ahora sabemos que, en nuestro caso, la letra pequeña invalida el teorema; las partículas de Goldstone se hacen invisibles debido a la invariancia gauge y no son más que las “partículas fantasmas” que encontró Feynman en sus cáculos. Además, debemos recordar que el Mecanismo Higgs no es una auténtica rotura de simetría.

Un aspecto peculiar de esto es que este campo de Higgs que impregna en todo el espacio es parte de lo que llamamos espacio vacío o el vacío. Es sólo su impacto sobre las partículas que viajan a través de él y el bosón de Higgs que podemos observar en el laboratorio. El bosón de Higgs vive por un lapso muy corto de tiempo, así que no lo observan directamente, sino que más bien se observa que las partículas se descompone en y tienen que inferir su existencia a partir de eso. En la teoría actual que tenemos para comprender la naturaleza podemos hacer afirmaciones precisas acerca de qué fracción del tiempo que se desintegra en dos fotones en comparación con dos quarks abajo.

Claro que, algunos, me piden más profundidad en las explicaciones y, no se conforman con pasar por encima de las cuestiones, hay que entrar más en materia y dejar sentados algunos de los parámetros maemáticos que en todo esto están presente, y, para ellos…

“Los físicos han buscado al bosón de Higgs por cerca de 50 años porque su descubrimiento completaría el Modelo Estándar de la física de partículas. El bosón de Higgs y su campo asociado explican cómo la simetría electrodébil se rompió justo después del Big Bang, lo que le dio a ciertas partículas elementales la propiedad de la masa. Sin embargo del Modelo Estándar no predice la masa de Higgs, y varios programas experimentales en el LEP del CERN, en el Tevatron de Fermilab y ahora el LHC del CERN habían intentado medir la masa de la partícula.”

En el seminario llevado a cabo en el CERN como preludio a la mayor conferencia de física de partículas de este año, el ICHEP2012 en Melbourne, los experimentos ATLAS y CMS presentaron sus resultados preliminares en la búsqueda del Bosón de Higgs. Ambos experimentos observaron una nueva partícula en la región de masa entre 125-126 GeV.

“Observamos en nuestros datos claras señales de una nueva partícula, al nivel de 5 sigma, en la región de masa alrededor de 126 GeV. El impresionante rendimiento del LHC y ATLAS y el gran esfuerzo de mucha gente nos trajo a esta excitante etapa”, dijo la presentadora del experimento ATLAS Fabiola Gianotti, “pero se necesita más tiempo para preparar estos resultados para su publicación”

“Los resultados son preliminares pero la señal 5 sigma alrededor de 125 Gev que estamos viendo es dramática. Ésta es de hecho una nueva partícula. Sabemos que tiene que ser un bosón y es el bosón más pesado que hemos encontrado hasta ahora,” dijo el presentador del experimento CMS Joe Incandela. “Las implicaciones son muy significantes y es precisamente por esta razón que debemos ser extremadamente diligentes en todos nuestros estudios.”

 

Dos prestigiosos investigadores habían sugerido de forma independiente que se podían construir modelos realistas de partículas en los cuales, el sistema de Yang-Mills fuera responsable de la interacción débil y el mecanismo de Higgs-Kibble la causa de su corto alcance. Uno de ellos era el paquistaní Abdus Salam que estaba buscando modelos estéticos de partículas y pensó que la belleza de la idea de Yan-Mills era razón suficiente para intentar construir con ella un modelo de interacción débil. La partícula mediadora de la interacción débil tenía que ser un fotón de Yang-Mills y el mecanismo de Higgs-Kibble la única explicación aceptable para que esta partícula tuviera una cierta cantidad de masa en reposo..y, de esa manera anda y recorre sus caminos la física.

Nos dice Ton Wood:

“Introducir masa desde afuera; masa impropia como digo yo, no es nada nuevo y cada época lo ha hecho con los conocimientos físicos que poseía. Y lo desecho al entrar en contradicciones insalvables, con los nuevos conocimientos que vinieron. Primero para explicar la masa inercial de un cuerpo ordinario, los que tropezamos a diario, los que se usan para las demostraciones escolares. Después para explicar la masa y la interacción de los cuerpos del sistema solar. Posteriormente cuando ya no había discusión sobre la existencia del sistema solar y su mecánica de movimiento y se generalizaron los conocimientos físicos a todo el universo; tampoco en hombre se pudo explicar racionalmente, desde la física, físicamente, que era la masa, que es la inercia, que relaciona en lo profundo la masa y la gravedad.

El problema es el desespero, la enorme frustración científica que esto provoca en la sicología de un físico. Por eso tanta euforia, tanto fanatismo, por nada; es el deseo acumulado por años. Por la normal aparición de un animal más en el zoológico. Que los científicos dicen que es el traficante de masa y los periodistas informaron todo los que les vino en gana. Se vendieron como pan caliente, casi un complot científico-mediático.”

¡Cuánta razón lleva!

Introducir masa desde afuera; masa impropia como digo yo, no es nada nuevo y cada época lo ha hecho con los conocimientos físicos que poseía. Y lo desecho al entrar en contradicciones insalvables, con los nuevos conocimientos que vinieron. Primero para explicar la masa inercial de un cuerpo ordinario, los que tropezamos a diario, los que se usan para las demostraciones escolares. Después para explicar la masa y la interacción de los cuerpos del sistema solar. Posteriormente cuando ya no había discusión sobre la existencia del sistema solar y su mecánica de movimiento y se generalizaron los conocimientos físicos a todo el universo; tampoco en hombre se pudo explicar racionalmente, desde la física, físicamente, que era la masa, que es la inercia, que relaciona en lo profundo la masa y la gravedad.
El problema es el desespero, la enorme frustración científica que esto provoca en la sicología de un físico. Por eso tanta euforia, tanto fanatismo, por nada; es el deseo acumulado por anos. Por la normal aparición de un animal mas en el zoológico. Que los científicos dicen que es el traficante de masa y los periodistas informaron todo los que les vino en gana. Se vendieron como pan caliente, casi un complot científico-mediático.

Introducir masa desde afuera; masa impropia como digo yo, no es nada nuevo y cada época lo ha hecho con los conocimientos físicos que poseía. Y lo desecho al entrar en contradicciones insalvables, con los nuevos conocimientos que vinieron. Primero para explicar la masa inercial de un cuerpo ordinario, los que tropezamos a diario, los que se usan para las demostraciones escolares. Después para explicar la masa y la interacción de los cuerpos del sistema solar. Posteriormente cuando ya no había discusión sobre la existencia del sistema solar y su mecánica de movimiento y se generalizaron los conocimientos físicos a todo el universo; tampoco en hombre se pudo explicar racionalmente, desde la física, físicamente, que era la masa, que es la inercia, que relaciona en lo profundo la masa y la gravedad.
El problema es el desespero, la enorme frustración científica que esto provoca en la sicología de un físico. Por eso tanta euforia, tanto fanatismo, por nada; es el deseo acumulado por anos. Por la normal aparición de un animal mas en el zoológico. Que los científicos dicen que es el traficante de masa y los periodistas informaron todo los que les vino en gana. Se vendieron como pan caliente, casi un complot científico-mediático.

Incluso se ha llegado a hablar de crear en el LHC Monopolos magnéticos. Acordaos: “¿Desaparecerá la Tierra, engullida por un agujero negro fabricado por la mano del hombre? ¿Se desintegrarán sus protones a causa de monopolos magnéticos imprudentemente creados en el LHC (Gran Colisionador de Hadrones? ¿Los haces de protones del CERN harán que el vacío entre en ebullición y destruirán el Universo tal como lo conocemos? A estas preguntas legítimas del gran público, un grupo de expertos del CERN responde de nuevo: NO.

Ese es el copmplot cintífico-mediatico al que antes se refiería Tom. Y la prensa seguía: “La creación de mini agujeros negros, y eventualmente de mini agujeros de gusano en el LHC, es muy especulativa. Normalmente, las propias leyes físicas que permiten la creación de tales objetos imponen que un mini agujero negro debe evaporarse con rapidez antes de poder absorber materia. Se trata de una predicción basada en los trabajos de Stephen Hawking. No obstante, nada parece demostrarnos con seguridad que los cálculos realizados no contengan errores y que, una vez fabricado, tal mini agujero negro no resulte ser capaz de engullir toda la Tierra.”

Claro que, no debemos sorprendernos de nada, todo lo que podamos imaginar es susceptible de convertirse en realidad. Encima de la Imagen de arriba, en una prestigiosa página científica, hemos podido leer: Monopolos magnéticos nanométricos observados en cristales de hielo de espines.

Imagen de Santiago Grigera recibiendo la distinción en la UNLP. Crédito: UNLP

Sí, sabemos que no dejamos de avanzar (no como podríamos, estamos atados a los viejos conceptos de los que no queremos soltar amarras). Sin embargo, deberíamos tener la mente abierta a nuevos postulados, buscar como nos dice Tom nuevos paradigmas y tratar, en fin, de hacer una nueva física que nos lleve por caminos diferentes en los que, ahora sí, encontraremos nuevos conceptos que sobrepasarán a esos otros, ya viejos que, aunque sirvieron en su momento, creo llegada la hora de dejar atrás y caminar con esa nueva física que estará más en consonancia con el futuro.

No tengamos miedo de lo nuevo, conservemos lo viejo, y aprovechándonos de algunas partes de aquellas teorías, construyamos otras más modernas que sobrepasen las actuales ideas y, sobre todo, dejémonos de “ficciones” que no nos dejan andar, paralizan nuestro caminar y no adelantamos nada.

¡Soltemos amarras! ¡Hagámonos mayores!

emilio silvera