viernes, 26 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Física! y sus Maravillas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En grupo de amigos, todos pertenecientes a la Real Sociedad Española de Física, reunidos y en anima charla ante una taza de espumoso y aromático café, charlaban sobre distintos aspectos de la Física que, por lo general, eran sucesos maravillosos a los que podíamos tener acceso gracias a un largo recorrido de pensamientos, observaciones y experimentación.

Uno de ellos, decía: “Me maravilla el ingenio de algunos físicos que han podido alcanzar conocimientos de hechos que suceden en la Naturaleza en el mundo microscópico, por ejemplo, fijaros en el fenómeno que conocemos como Condensación de Bose-Einstein. Allí, un gran número de Bosones a temperatura suficientemente baja, en el que una fracción significativa de las partículas pueden ocupar un único estado cuántico de energía más baja (el estado fundamental). Sabemos que la Condensación de Bose-Einstein sólo puede ocurrir para Bosones cuyo número total es conservado en las colisiones.”

La UNAM a la vanguardia científica: primer Condensado de Bose-Einstein  mexicano - YouTube

Condensado de Bose Einstein

Sí, amigo J.P. (le contestó M.B.), es como dices, sin embargo, debido al Principio de exclusión de Pauli es imposible que dos o más Fermiones ocupen el mismo estado cuántico, por lo que no hay fenómeno análogo de condensación para estas partículas.

Condensado de Bose Einstein: características, aplicaciones, ejemplos

El condensado de Bose Einstein (CBE) es un estado de agregación de la materia, al igual que los estados habituales: gaseoso, líquido y sólido, pero que tiene lugar a temperaturas extremadamente bajas, muy cercanas al cero absoluto.

 

Fijaros (tercio N.J.) que, la Conexión de Bose-Einstein es de importancia fundamental para aplicar el fenómeno de la super-fluidez. A temperaturas muy bajas (del orden de 2 x 10 exponente -7 K) se puede formar un Condensado de Bose Einstein, en el que varios miles de átomos formen una única entidad (un super-átomo).

Hagamos un intermedio para introducir una nota de la NASA

condensado de bose-einstein - INFIMIKIMIA

 

Los condensados de Bose-Einstein (“BECs” no son como los sólidos, los líquidos y los gases sobre los que aprendimos en la escuela. No son vaporosos, ni duros, ni fluidos. En verdad, no hay palabras exactas para describirlos porque vienen de otro mundo — el mundo de la mecánica cuántica.–

 

La mecánica cuántica describe las extrañas reglas de la luz y la materia a escalas atómicas. En este mundo, la materia puede estar en dos lugares al mismo tiempo; los objetos se comportan a la vez como partículas y como ondas (una extraña dualidad descrita por la ecuación de onda de Schrödinger) y nada es seguro: el mundo cuántico funciona a base de probabilidades.

Abajo: Los BECs se forman cuando los átomos en un gas sufren la transición de comportarse como las “bolas de billar voladoras” de la física clásica, a comportarse como una onda gigante de materia. Imagen cortesía del MIT.

Mediante condensados de Bose-Einstein físicos del MIT miden los fenómenos  cuánticos a escala macrocósmica – UNIVERSITAMGenerado en el espacio el quinto estado de la materia: el condensado de Bose -Einstein

 

l.- Mediante condensados de Bose-Einstein físicos del MIT miden los fenómenos cuánticos a escala macro-cósmica. 2.- Generado en el espacio el quinto estado de la materia: el condensado de Bose -Einstein.

Aunque las reglas cuánticas parecen ir en contra de la intuición, son la base de la realidad macroscópica que experimentamos día a día. Los condensados de Bose-Einstein son objetos curiosos que unen la brecha entre ambos mundos. Obedecen la leyes de lo pequeño aun cuando se acercan a lo grande.

Crean el quinto estado de la materia en el espacio

Un BEC es un grupo de unos cuantos millones de átomos que se unen para formar una sola onda de materia de aproximadamente un milímetro de diámetro. En 1995, con apoyo parcial de la NASA, Ketterle creó BECs en su laboratorio, enfriando un gas hecho de átomos de sodio hasta una temperatura de unas cuantas milmillonésimas de grado arriba del cero absoluto — ¡mil millones de veces más frío que el espacio interestelar! A tan bajas temperaturas los átomos se comportan más como ondas que como partículas. Unidos por rayos láser y trampas magnéticas, los átomos se superponen y forman una sola onda gigante (dentro de los estándares atómicos), de materia.

Científicos de la UNAM obtienen condensado de Bose-EinsteinCondensado de Bose-Einstein | Francis (th)E mule Science's News

 

Las imágenes de los BECs pueden interpretarse como fotografías de las funciones de onda, es decir, soluciones a la ecuación de Schrödinger.

Trabajando independientemente en 1995, Eric Cornell (Instituto Nacional de Estándares y Tecnología ó National Institute of Standards & Technology) y Carl Weiman (Universidad de Colorado) crearon también algunos BECs; los de ellos estaban compuestos por átomos de rubidio super-enfriado. Cornell y Weiman compartieron el Premio Nobel de Física 2001 con Ketterle “por lograr la condensación de Bose-Einstein en gases diluidos de átomos alcalinos, y por los primeros estudios fundamentales de las propiedades de los condensados.”

 Condensados bose einstein-fhgConfiguración electrónica del Rubidio

 

Los condensados de Bose-Einstein fueron pronosticados por el físico hindú Satyendra Nath Bose y por Albert Einstein en el año de 1920 cuando la mecánica cuántica aún era algo nuevo. Einstein se preguntaba si los BECs serían tan extraños como para ser reales incluso cuando él mismo ya había pensado en ellos. En aquellos días era imposible averiguarlo; la tecnología para enfriar la materia vaporosa a temperaturas suficientemente bajas aún no existía.

Condensado de Bose-Einstein: qué es y por qué es tan importante

                             Einstein y Bose

Los condensados de Bose-Einstein no son como los sólidos, los líquidos y los gases sobre los que aprendimos en la escuela. No son vaporosos, ni duros, ni fluidos. En verdad, no hay palabras exactas para describirlos porque vienen de otro mundo — el mundo de la mecánica cuántica.

La mecánica cuántica describe las extrañas reglas de la luz y la materia a escalas atómicas. En este mundo, la materia puede estar en dos lugares al mismo tiempo; los objetos se comportan a la vez como partículas y como ondas (una extraña dualidad descrita por la ecuación de onda de Schrödinger) y nada es seguro: el mundo cuántico funciona a base de probabilidades.

Función de onda cuántica | Física | Khan Academy en Español - YouTubeColapso semántico de la función de onda - YouTube

                                                 Ecuación y  Función de onda de Schrödinger

Es verdad, ese efecto ha sido observado en átomos de Rubidio y Litio.  En la actualidad, muchos trabajos punteros, sobre todo en computación, están manejando el Condensado de Bose-Einstein para obtener nuevos y más rápidos ordenadores que, en el futuro próximo podrán realizar operaciones complejas en fracciones de segundo.

Teoría cuántica de campos - Wikipedia, la enciclopedia libre

Estamos llegando a la descripción estadística de un sistema de partículas que obedece las reglas de la  Mecánica cuántica en lugar de las de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas (antes lo decía J.P.) pueden ocupar un estado cuántico dado. Y, dichas partículas se llaman Bosones que tienen momento angular nh/2π, donde n es cero o entero y h es la constante de Planck. Pasa Bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tendremos que aplicar la estadística de Fermi-Dirac y esas partículas no son otras que los Fermiones. Los Fermiones tienen momento angular  ( n + ½) h/2π y cualquier función de ondas de fermiones idénticos es siempre anti-simétrica.

Sí, es así, la relación entre el espín y la estadística de las partículas está demostrado por el teorema espín-estadística. Es decir, El teorema de la estadística del espínteorema de la correspondencia entre espínestadística de la mecánica cuántica establece la relación directa entre el espín de una especie de partícula con la estadística a la que obedece.

En el espacio de dos dimensiones es posible que haya partículas ( o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas, como sabéis,  se conocen con el nombre de aniones; para aniones idénticos la función de onda no es simétrica (un cambio de fase +1) o anti-simétrica (un cambio de fase -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

Relacionado con todo esto, no debemos olvidar el procedimiento utilizado en teoría cuántica de campos y en el problema de muchos cuerpos en mecánica cuántica en modelos en los que aparecen fermiones en el que se sustituyen los fermiones por una teoría de campos efectiva con bosones (Bosonización).

 

Fermiones y Bosones - De Verdad digitalBenemérita Universidad Autónoma de Puebla Facultad de Ciencias  F´ısico-Matemáticas

 

La transformación Jordan-Wigner es una herramienta poderosa, que mapea entre modelos con grados de libertad spin-1/2 y fermiones sin espín. La idea clave es que existe un mapeo simple entre el espacio de Hilbert de un sistema con un grado de libertad de spin-1/2 por sitio y el de los fermiones sin espinas que saltan entre sitios con orbitales individuales. Se puede asociar el estado de rotación con un orbital vacío en el sitio y un estado de rotación con un orbital ocupado.

La bosonización / fermionización también es una herramienta poderosa, que mapea entre la teoría del campo bosónico 1 + 1d y la teoría del campo fermiónico 1 + 1d . Hay una correspondencia no trivial entre operadores de dos lados en 1 + 1d.”

La tabla de los elementos de la física: campos bosónicos y campos  fermiónicos | El Replicador LiberalAgujeros negros o estrellas de bosones, los dos posibles orígenes de la  onda gravitacional más intrigante | Ciencia

En sistemas de una dimensión la transformación de campos fermiónicos a campos bosónicos es exacta. Para sistemas de mayor dimensión, la bosonización es un procedimiento que en general sólo se puede llevar a cabo aproximadamente; es, por ejemplo, sólo válida como una aproximación de baja energía.

Por otra parte, la derivación de una teoría de campos efectiva para mesones, partiendo de la cromo-dinámica cuántica, es un ejemplo de la bosonización aproximada aplicable a las bajas energías. La transformación de la descripción de un gas de electrones en términos de plasmones es otro ejemplo de bosonización aproximada.

Un gas de electrones bidimensional abre la puerta a una nueva electrónica -  EcoDiario.esLa Nanoelectrónica esta a punto de dar un gran salto con el uso de los  Plasmones | NANOVA

Es curioso (dice E.S.) como para partículas tan dispares como los Bosones y los Fermiones, la Física actual está dando pasos tan importantes hasta el punto de que, no debería extrañarnos que, en un futuro próximo, ambas partículas antagónicas sean utilizadas de manera indistinta en experimentos en los que, las unas se conviertan en las otras y viceversa.

Aunque las reglas cuánticas parecen ir en contra de la intuición, son la base de la realidad macroscópica que experimentamos día a día. Los condensados de Bose-Einstein son objetos curiosos que unen la brecha entre ambos mundos. Obedecen la leyes de lo pequeño aun cuando se acercan a lo grande.

¡La Física! ¿Qué no podrá conseguirse con Tiempo por delante? Creo que TODO.

emilio silvera

Coss del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El universo es la cosa más simple del universo": Neil Turok, el físico que  desafía la teoría del Big Bang - BBC News Mundo Recrean plasma existente en el universo tras el Big BangEl Big Bang podría haber generado dos futuros diferentes y no ser el origen  del tiempo, según la hipótesis de un físico | MarcaPlanck Surveyor Satellite: Big Bang camera goes dark | National Post

La teoría del Big Bang nos explica la expansión del Universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.

Si la teoría del Bing Bang es correcta (como parece que lo es -al menos de momento-), debe de existir alguna fuerza desconocida, o quizá la misma gravedad que no hemos llegado a entender totalmente y tenga alguna parte que se nos escapa, o (como dicen), una gran proporción de “materia oscura” en forma no bariónica, quizás axiones, fotinos o neutrinos masivos, supervivientes de las etapas tempranas del Big Bang y, ¿por qué no?, también podríamos suponer que la materia oscura que tanto nos preocupa pudiera estar encerrada dentro de las singularidades de tantos y tantos agujeros negros que se han debido formar a lo largo de los 13.750 millones de años que es la edad del universo.

 Wormhole | ESO SupernovaObservan por primera vez los campos magnéticos de un agujero negro

Agujeros negrosAgujero negro supermasivo - Wikipedia, la enciclopedia libre

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos super-masivos, con una singularidad que no podemos ver y el Horizonte de sucesos que cuando algo lo traspasa…¡Queda atrapado para siemre! no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Pues bien, si en el universo existen innumerables agujeros negros, por qué no creer que sean uno de los candidatos más firmes para que sea la buscada “materia oscura”,(dicen algunos).

  Las Muchas Maneras En Que Te Afecta la Quinta Dimensión | Mi Encuentro  ConmigoEL MANTRA DE LA QUINTA DIMENSION | Psychic reading, Akashic records,  Intuitive reading

                                                        Viaje hacia la Quinta Dimensión

Para mí particularmente, sin descartar absolutamente nada de lo anterior (cualquier teoría podría ser la cierta), la denominada materia oscura (si finalmente existe), ¿estará situada en la quinta dimensión, y nos llegan sus efectos a través de fluctuaciones del “vacío” donde residen inmensas energías que rasgan el espacio-tiempo y que, de alguna manera, deja pasar a los gravitones que transportan la fuerza gravitacional que emite dicha materia y sus efectos se dejan sentir en nuestro universo, haciendo que las galaxias se alejen las unas de las otras a mayor velocidad de la que tendrían si el universo estuviera poblado sólo de la materia bariónica que nos rodea?

Por primera vez investigadores logran medir fluctuaciones en el vacíoFluctuaciones de vacío cuántico - Resumen ilustración Fotografía de stock -  Alamy

                                                            ¿Fluctuaciones de vacío y materia oscura?

Claro que mi pensamiento es eso, una conjetura más de las muchas que circulan. A veces me sorprendo al escuchar como algunos astrofísicos de reconocido nombre, sin pudor alguno, dogmatizan hablando de estas cuestiones sobre las que no tienen la menor certeza. Podemos hablar de la energía y materia oscura pero, siempre, dejando claro que son teorías de lo que podría ser y que, más o menos probables, aún no han sido confirmadas.

De todas las maneras, incluso la denominación dada: “materia oscura”, delata nuestra ignorancia. ¿Cómo podemos poner nombre a algo que ni sabemos si existe en realidad. Se buscó esta solución para poder cuadrar las cuentas. Las observaciones astronómicas dejaron claro que, las galaxias, se alejaban a velocidades cada vez mayores y que, de seguir así, llegaría un día en el futuro en el que, las únicas galaxias cercanas serían las del Grupo Local. Que cada vez el espacio “vacío” entre galaxias será mayor. ¿Qué fuerza desconocida empujaba a las galaxias a expandirse hacia el exterior? La materia bariónica no era la causante. Así que, se inventó la “materia oscura” y, de esa manera, el problema quedó zanjado. Claro que, no solucionado.

 La mecánica cuántica rompe límites en la precisión del láser7 formas en las que puedes ver la Teoría de la Relatividad de Einstein en  tu vida diaria | Sophimania

Cómo está constituido el núcleo de los átomos? - Foro NuclearQué es el genoma?

Mecánica cuántica, relatividad, átomos, el genoma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada… Sabemos representar muchas otras cosas pero, la materia oscura, al sernos desconocida, no sabemos como puede ser y no podemos tener una imagen de lo que la materia oscura es (si es que es), así que hablamos y hablamos de ella sin cesar pero también sin, saber.

Mientras tanto, dejamos que el “tiempo” transcurra y como en todo lo demás, finalmente, alguien nos dará la respuesta, o, nos sacará del error, al demostrar que la dichosa materia oscura, nunca existió y que es, otra fuerza, la que produce los efectos observados en la expansión acelerada del Universo.

Claro que nos falta mucho…

Pin en AlvaritologanImagen 1: El momento que atraviesa América Latina, con recursos nat...

Para que tengamos todas las respuestas que necesitamos para viajar a las estrellas, tener energía infinita obtenida de agujeros negros, lograr el traslado instantáneo de materia viva a lugares distantes, dominar toda una galaxia…, tendrán que transcurrir algunos eones de tiempo para que, algunos de estos sueños se haga realidad y, si ocurren algunas de esas cosas en el futuro…¿La haremos nosotros? ¿O, quizá para entonces sean otros los que habrán cogido la antorcha de nuestros sueños?

El robot más parecido a un humano

       ¿Alguien me podría decir quién es robot y quién humano?

Cada vez se avanza más en menos tiempo. Y, llegará el momento, cuando dentro de algunos milenios, estemos preparados para viajar a las estrellas que, estarán aquí presentes con nosotros los inevitables Robots. Según una serie de cálculos y profundos pensamientos, no podremos seguir adelante llegados a un punto de no retorno, y, nos veremos obligados a fabricar robots muy sofisticados que harán trabajos espaciales y de colonización de Planetas para preparar la posterior llegada de los Humanos. Es inevitable pero, ¿será una buena idea?

Los robots aprenden a sudar como los humanos para evitar sobrecalentarse -  AS.comSophia, el robot diseñado para adaptarse y trabajar con los humanos

                             No creo que alguna vez puedan alcanzar la naturalidad del humano

Acordaos de que hace menos de un siglo no existían televisores, teléfonos móviles, faxes, ni aceleradores de partículas. En los últimos cien años hemos avanzado de una manera que sería el asombro de nuestros antepasados. De la misma manera pero mucho más acelerada, serán las décadas venideras y, para dentro de los próximos cien años (a finales del presente siglo), si lo pudiéramos ver, quedaríamos tan asombrados como lo estarían nuestros bisabuelos si pudieran abrir los ojos y ver el mundo actual.

¿Qué maravillas tendremos dentro de 200 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Sabremos más sobre el origen de la vida? ¿Qué estadio de saber habrá alcanzado la Física, y, si para entonces hemos verificado la Teoría de cuerdas, qué nuevas teorías estarán en boga? ¿Habremos convertido Marte en una segunda Tierra al proporcionarle una atmósfera y una atmósfera terrestre?

Sería posible cultivar alimentos en Marte? | Actualidad | Investigación y  Ciencia

        La verdad es que, científicamente hablando, no habría problema alguno

Dejando a un lado, a los primeros descubridores, como Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:

La primera revolución de la física se produjo en 1.905, cuando Albert Einstein con su relatividad especial nos ayudo en nuestra comprensión de las leyes que gobiernan el Universo. Esa primera revolución nos fue dada en dos pasos: 1905 la Teoría de la Relatividad Especial.

Teoría de la relatividad especial - Wikipedia, la enciclopedia libreRELATIVIDAD ESPECIAL Universidad Nacional de Colombia Fundamentos de física  moderna Nicolás Galindo Gutiérrez Código: 25472096 G1E09Nicolas. - ppt  descargar

y en 1.915, diez años después, la teoría de la relatividad general. Al final de su trabajo relativista, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y también la que hace posible la existencia de las galaxias. La Relatividad General de Einstein, nos dice cómo la materia determina la geometría del Universo.

 20 - Curso de Relatividad General [aceleración en Relatividad Especial] -  YouTubeAfirman que la extrañeza del mundo cuántico reside en la Teoría de la  Relatividad

Un universo que se curva sobre sí mismo en presencia de la materia

Einstein nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el universo y que crean esta distorsión en función de su masa.  Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann) sobre la distorsión del espacio-tiempo. Es decir, Einstein nos dijo que la materia, es la que determina la geometría del Universo.

Relatividad general I: conceptos – Sólo es CienciaEl extraño destino que enfrentarías si cayeras en un agujero negro - BBC  News Mundo

Pero… ¿Cómo puede cambiar el perímetro de una circunferencia sin que lo haga su radio? Esto no ocurre de acuerdo con nuestras percepciones usuales del espacio, por lo que Einstein intuyó que la clave estaba en renunciar a tales nociones. La clave para permitir la ocurrencia de estos fenómenos es que el espacio esté curvado.

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.

El extraño destino que enfrentarías si cayeras en un agujero negro - BBC  News MundoEspacio-tiempo curvo y los secretos del Universo : Blog de Emilio Silvera V.

Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m / π = 3’14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿Cómo puede ser esto? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.

El Pentágono investiga un arma que puede modificar el espacio-tiempo | Marca

Como podemos imaginar un objeto pesado o masivo colocado en el centro de una superficie elástica, se ha hundido a consecuencia del peso y ha provocado una distorsión que cambia completamente la medida original del diámetro de esa circunferencia que, al ser hundida por el peso, se agranda en función de éste.

Al espacio le ocurre igual.

De la misma manera se puede considerar que el espacio tridimensional dentro y alrededor de un agujero negro está distorsionado dentro de un espacio plano de dimensión más alta (a menudo llamado hiperespacio), igual que la lámina bidimensional está distorsionada como describo en la imagen anterior.

Lo más intrigante de los agujeros negros es que, si caemos en uno, no tendremos manera alguna de salir o enviar señales a los que están fuera esperándonos. Pensemos que la masa de la Tierra que es de 5’974X1024 Kg  (densidad de 5’52 gramos por cm3), requiere una velocidad de escape de 11’18 Km/s, ¿cuál no será la masa y densidad de un agujero negro si pensamos que ni la luz que viaja a 299.792’458 Km/s puede escapar de su fuerza de gravedad?

Qué es la Gravedad? - EspacioCiencia.comQué es la gravedad? - VIX

                                        La Gravedad, presente en el Universo ¡de tantas maneras!

Científicos demuestran la existencia de singularidades de agujeros negros  en el espacio 3D curvo - Diario de Noticias de NavarraTeoría de la relatividad especial. | teoria de la relatividad especial

                        Algunos incluso hablan de la posibilidad de viajar en el Tiempo

Es tanta la densidad que no sólo distorsiona el espacio, sino que también distorsiona el tiempo según las ecuaciones de Einstein: el flujo del tiempo se frena cerca del agujero, y en un punto de no retorno (llamado el “horizonte” del agujero, o límite), el tiempo está tan fuertemente distorsionado que empieza a fluir en una dirección que normalmente sería espacial; el flujo de tiempo futuro está dirigido hacia el centro del agujero. Nada  puede moverse hacia atrás en el tiempo1, insisten las ecuaciones de Einstein; de modo que  una vez dentro del agujero, nos veremos arrastrados irremisiblemente hacia abajo con el flujo del tiempo, hacia una “singularidad” escondida en el corazón del agujero; en ese lugar de energía y densidad infinitas, el tiempo y el espacio dejan de existir.

Como he apuntado antes en alguna parte de este mismo trabajo, la descripción relativista del agujero negro procede de la obra de Kart Schwarzschil. En 1.916, apenas unos meses después de que Einstein formulara sus famosas ecuaciones, Kart fue capaz de resolver exactamente las ecuaciones de Einstein y calcular el campo gravitatorio de una estrella masiva estacionaria.

FacebookMonstruos fuera en el cosmos

Los agujeros negros, un imposible matemático

Así, Históricamente la primera solución importante fue obtenida por Schwarzschild en 1916, esta solución conocida posteriormente como métrica de Schwarzschild, representa el campo creado por un astro estático y con simetría esférica. Dicha solución constituye una muy buena aproximación al campo gravitatorio dentro del sistema solar, lo cual permitió someter a confirmación experimental la teoría general de la relatividad explicándose hechos previamente no explicados como el avance del perihelio de Mercurio y prediciendo nuevos hechos más tarde observados como la deflexión de los rayos de luz de un campo gravitatorio. Además las peculiaridades de esta solución condujeron al descubrimiento teórico de la posibilidad de los agujeros negros, y se abrió todo una nueva área de la cosmología relacionada con ellos. Lamentablemente el estudio del colapso gravitatorio y los agujeros negros condujo a la predicción de las singularidades espacio-temporales,  deficiencia que revela que la teoría de la relatividad general es incompleta. Quizá la teoría de cuerdas, en la que subyace ésta, nos complete el cuadro.

La solución de Schwarzschild tiene varias características interesantes:

Mecánica celesteExótica, una lista para encontrar signos de vida inteligente en el Universo  | Internacional | Noticias | El Universo

La solución de Schwarzschild permitió aplicar los postulados de la relatividad general a disciplinas como la mecánica celeste y la astrofísica, lo cual supuso una verdadera revolución en el estudio de la cosmología: Apenas seis años después de la publicación de los trabajos de Einstein, el físico ruso Aleksander Fridman introdujo el concepto de singularidad espacio-temporal, definido como un punto del espacio-tiempo en el que confluyen todas las geodésicas de las partículas que habían atravesado el horizonte de sucesos de un agujero negro. En condiciones normales, la curvatura producida por la masa de los cuerpos y las partículas es compensada por la temperatura o la presión del fluido y por fuerzas de tipo electromagnético, cuyo estudio es objeto de la física de fluidos y del estado sólido. Sin embargo, cuando la materia alcanza cierta densidad, la presión de las moléculas no es capaz de compensar la intensa atracción gravitatoria. La curvatura del espacio-tiempo y la contracción del fluido aumentan cada vez a mayor velocidad: el final lógico de este proceso es el surgimiento de una singularidad, un punto del espacio-tiempo donde la curvatura y la densidad son infinitas.

Todo sobre los agujeros negros | portalastronomico.com

  • En primer lugar, una línea de no retorno rodea al agujero negro: cualquier objeto que se acerque a una distancia menor que este radio será absorbido inevitablemente en el agujero.
  • En segundo lugar, cualquiera que cayera dentro del radio de Schwarzschild será consciente de un “universo especular”  al “otro lado” del espacio-tiempo.

 

Incluso surgieron agujeros de gusano que nos podían trasladar a puntos distantes tanto en el tiempo como en el espacio.

Einstein no se preocupaba por la existencia de este extraño universo especular porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya dije antes, ni la luz podría escapar a dicha fuerza, e igualmente, las ondas de radio electromagnéticas también estarían prisioneras en el interior de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. Además, para penetrar en el universo alternativo, la sonda debería ir más rápida que la velocidad de la luz, lo que no es posible; c es la velocidad límite del universo.

Puente Einstein-Rosen. – Progresion21 – La mente es como un paracaídas,  funciona cuando está abiertaAgujeros de Gusano y Viajes en el Tiempo - ppt video online descargar

Así pues, aunque este universo especular es matemáticamente necesario para dar sentido a la solución de Schwarzschild, nunca podría ser observado físicamente (al menos por el momento). En consecuencia, el famoso puente de Einstein-Rosen que conecta estos dos universos fue considerado un artificio matemático.

Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

Apartes de la Charla: Agujeros Negros, Conceptos de Relatividad y Fí…

Las cosas comenzaron a cambiar con la solución que el trabajo matemático presentado por el neozelandés Roy Kerr, presentado en 1.963, encontró otra solución exacta de las ecuaciones de Einstein. Kerr supuso que cualquier estrella colapsante estaría en rotación. Así pues, la solución estacionaria de Schwarzschild para un agujero negro no era la solución físicamente más relevante de las ecuaciones de Einstein.

La solución de Kerr causó sensación en el campo de la relatividad cuando fue propuesta. El astrofísico Subrahmanyan Chandrasekhar llegó a decir:

100cia Química - Biografía de científicos - KnowlesLa Teoría de la Relatividad: 28C: Los agujeros negros dinámicos

La  experiencia que ha dejado más huella en mi vida científica, de más de cuarenta años, fue cuando comprendí que una solución exacta de las ecuaciones de Einstein de la relatividad general, descubierta por el matemático Roy Kerr, proporciona la representación absolutamente exacta de innumerables agujeros negros masivos que pueblan el universo. Este estremecimiento ante lo bello, este hecho increíble de que un descubrimiento motivado por una búsqueda de la belleza en matemáticas encontrará su réplica exacta en la naturaleza, es lo que me lleva a decir que la belleza es aquello a lo que lleva la mente humana en su nivel más profundo“.

Un agujero negro de Kerr o agujero negro en rotación es una región de agujero negro presente en el espacio-tiempo de Kerr, cuando el objeto másico tiene un radio inferior a cierta magnitud, por encima de este radio el universo de Kerr no presenta región de agujero negro. Un agujero negro de Kerr es una región no isótropa que queda delimitada por un horizonte de sucesos y una ergo-esfera presentando notables diferencias con respecto al agujero negro de Schwarzschild. Esta nueva frontera describe una región donde la luz aun puede escapar pero cuyo giro induce altas energías en los fotones que la cruzan. Debido a la conservación del momento angular, este espacio forma un elipsoide, en cuyo interior se encuentra un solo horizonte de sucesos con su respectiva singularidad, que debido a la rotación tiene forma de anillo.

Las 10 mejores noticias de ciencia en 2019 - Quo

La solución de Kerr de un agujero negro giratorio permite que una nave espacial pase a través del centro del agujero por el eje de rotación y sobrevivir al viaje a pesar de los enormes pero finitos campos gravitorios en el centro, y seguir derecha hacia el otro universo especular sin ser destruida por la curvatura infinita.

Para nosotros, teniendo el concepto que tenemos de lo que un agujero negro es, es tan difícil imaginar que una nave pueda entrar en él y poder salir más tarde, como imaginar que, en mundos extraños como el de arriba, puedan existir criaturas inteligentes como en la Tierra.

El universo, como todos sabemos, abarca a todo lo que existe, incluyendo el espacio y el tiempo y, por supuesto, toda la materia está en la forma que esté constituida. El estudio del universo se conoce como cosmología. Si cuando escribimos Universo nos referimos al conjunto de todo, al cosmos en su conjunto, lo escribimos con mayúscula, el universo referido a un modelo matemático de alguna teoría física, ese se escribe con minúscula.

Sea un vacío de Boötes y esté orgulloso de ello

El vacío de Boötes o el Gran Vacío es una gigantesca región del Espacio, que contiene muy pocas galaxias. Se encuentra cerca de la constelación de Boötes de ahí su nombre. Tiene un diámetro de cerca de 250 millones de años luz. Es uno de los vacíos más grandes conocidos en el Universo, por eso lo llaman súper-vacío.

El universo real está constituido en su mayoría por espacios aparentemente vacíos, existiendo materia concentrada en galaxias formadas por estrellas y gas (también planetas, quásares, púlsares, cometas, estrellas enanas blancas y marrones, estrella de neutrones, agujeros negros y otros muchos objetos espaciales). El universo se esta expandiendo, las galaxias se alejan continuamente los unas de las otras. Existe una evidencia creciente de que existe una materia oscura invisible, no bariónica, que puede constituir muchas veces la masa total de las galaxias visibles. El concepto más creíble del origen del universo es la teoría del Big Bang de acuerdo con la cual el universo se creó a partir de una singularidad infinita de energía y densidad a inmensas temperaturas de millones de grados K, hace ahora unos 15.000 millones de años.

emilio silvera

El Universo ¡Siempre el Universo!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hay que prestar atención a las coincidencias. Uno de los aspectos más sorprendentes en el estudio del Universo astronómico durante el siglo XX, ha sido el papel desempeñado por la coincidencia: que existiera, que fuera despreciada y que fuera recogida. Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y a explorar y explotar la nueva teoría de la gravedad de Einstein para describir el Universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de unirlas.

Hubble observa la curva de la luz cósmicaEl Hubble observa uno de los fenómenos estudiados por Albert Einstein

       La teoría de Einstein nos habló del Cosmos de otra manera, él nos dijo cómo se curvaba la luz al pasar cerca de objetos masivos.

Para comprobarlo entró en escena Arthur Eddington; un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de la galaxia, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de verificar, en una prueba decisiva durante un eclipse de Sol, la veracidad de la teoría de Einstein en cuanto a que el campo gravitatorio del Sol debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segmentos de arco cuando pasaba cerca de la superficie solar, y así resultó.

 El astrofísico Arthur Eddington - Cultura y ocio

Einstein y Eddintong en el jardín de la casa de éste último

Albert Einstein y Arthur Stanley Eddington se conocieron y se hicieron amigos. Se conservan fotos de los dos juntos conversando sentados en un banco en el jardín de Eddington en el año 1.930, donde fueron fotografiados por la hermana del dueño de la casa.

 Arthur Stanley Eddington y la producción de energía de las estrellasAnécdota Científica #10: Una confirmación de la Relatividad. | •Ciencia•  Amino

Placa tomada por Eddintong en Puerto Principe, en la que se corroboraba la predicción de Einstein de la Teoría de Relatividad General. La luz del Sol se curvaba en presencia de grandes masas.

 

16 fotos e imágenes de Arthur Eddington - Getty Images

 

Aunque Eddington era un hombre tímido con pocas dotes para hablar en público, sabía escribir de forma muy bella, y sus metáforas y analogías aún las utilizan los astrónomos que buscan explicaciones gráficas a ideas complicadas. Nunca se casó y vivió en el observatorio de Cambridge, donde su hermana cuidaba de él y de su anciana madre.

Eddington creía que a partir del pensamiento puro sería posible deducir leyes y constantes de la naturaleza y predecir la existencia en el universo de cosas como estrellas y galaxias. ¡Se está saliendo con la suya!

 Firmamento Austral: GalaxiasEl Universo y la Vida… ¡Nuestra imaginación! : Blog de Emilio Silvera V.NeoFronteras » Actualidad astronómica: el kiosco del astrónomo - Portada -Las galaxias tienen vida? - Quora

                                        Estrellas en las Galaxias

Entre los números de Eddington, uno lo consideró importante y lo denominó “número de Eddington”, que es igual al número de protones del universo visible. Eddington calculó (a mano) este número enorme y de enorme precisión en un crucero trasatlántico concluyendo con esta memorable afirmación.

“Creo que en el Universo hay

 15.747.724.136.275.002.577.605.653.961.181.555.468.044.717.914.527.116.709.
366.231.425.076.185.631.031.296

de protones y el mismo número de electrones.”

Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080. Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente.

Durante la década de 1.920, cuando Eddington empezó su búsqueda para explicar las constantes de la naturaleza, no se conocían bien las fuerzas débil y fuerte, y las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la gravedad y las fuerzas electromagnéticas.

 

La fuerza de atracción entre la esfera grande y la pequeña es la expuesta en la ecuación de arriba

La fuerza nuclear fue conocida después de que Eddington hiciera sus formulaciones sobre la Gravedad y el magnetismo.

Eddington, a las conocidas, las dispuso en tres grupos o tres puros números adimensionales. Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y del electrón:

m/ me ≈ 1.840

La inversa de la constante de estructura fina:

2πhc / e2 ≈ 137

Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón:

e2 / Gmpme ≈ 1040

A éstas unió o añadió su número cosmológico, NEdd ≈ 1080.

A estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafío de la ciencia teórica.

“¿Son estas cuatro constantes irreducibles, o una unificación posterior de la física demostrará que alguna o todas ellas pueden ser prescindibles?

¿Podrían haber sido diferentes de los que realmente son?”

 

Mecánica cuántica - Wikipedia, la enciclopedia libre

 

Funciones de onda del electrón en un átomo de hidrógeno a diferentes niveles de energía. La mecánica cuántica no puede predecir la ubicación exacta de una partícula en el espacio, solo la probabilidad de encontrarla en diferentes lugares. Las áreas más brillantes representan una mayor probabilidad de encontrar el electrón.

 

 

Esquema de una función de onda mono-electrónica u orbital en tres dimensiones.

 

Relación de indeterminación de Heisenberg - Wikipedia, la enciclopedia librePrincipio de Incertidumbre de Heisenberg para la Física atómica - FÍSICA  MODERNA

 

Nunca ha resultado fácil hablar de las infinitesimales estructuras de lo muy pequeño y de sus comportamientos, allí residen los misterios de la materia y, con estas pequeñas estructuras están, en realidad, conformadas todas las estructuras macroscópicas como las galaxias y otras que en el Universo podemos contemplar. Todo lo grande está hecho de cosas pequeñas.

Repito:

“¿Son estas cuatro constantes irreducibles, o una unificación posterior de la física demostrará que alguna o todas ellas pueden ser prescindibles?

¿Podrían haber sido diferentes de los que realmente son?”

 

Teoría del todo o teoría unificada

 

De momento, con certeza nadie ha podido contestar a estas dos preguntas. Como  ocurre con tantas otras, están a la espera de esa Gran Teoría Unificada o del Todo, que por fin nos brinde las respuestas tan esperadas y buscadas por todos los grandes físicos del mundo. ¡Es todo tan complejo! ¿Acaso es sencillo y no sabemos verlo? Seguramente un poco de ambas cosas; no será tan complejo, pero nuestras mentes aún no están preparadas para ver su simple belleza. Una cosa es segura, la verdad está ahí, esperándonos.

 Cartas A Una Joven Matematica Pdf Descargar - Compartir Carta

Esta es la estatuilla del premio Abel de las matemáticas

Ningún otro proyecto moderno de matemáticas tiene un alcance tan amplio, ha producido tantos resultados profundos y contado con tanta gente trabajando” como el programa Langlands. Se considera la Gran Teoría Unificada de las Mátemáticas

Academia Noruega de Ciencias y Letras

 La evolución de la persona autista depende de su nivel intelectual

Para poder ver con claridad no necesitamos gafas, sino evolución. Hace falta alguien que, como Einstein hace 100 años, venga con nuevas ideas y revolucione el mundo de la física que, a comienzos del siglo XXI, está necesitada de un nuevo y gran impulso. ¿Quién será el elegido? Por mi parte me da igual quién pueda ser, pero que venga pronto. Quiero ser testigo de los grandes acontecimientos que se avecinan, la teoría de supercuerdas y mucho más.

 El futuro será cuántico o no será": preguntas para entender qué es la física  cuántica y cómo afecta nuestras vidas - BBC News Mundo

 

Cuando lleguemos a comprender la Física que viene, podremos comprender, mucho mejor, nuestro Universo.

Igualmente, antes de pasar a otros temas, debo comentar que algunos físicos piensan que las constantes de la naturaleza son “reprocesadas” cuando la materia colapsa en una singularidad de densidad infinita, por ejemplo, cuando un universo cerrado colapsa y rebota a un estado de expansión, como fue sugerido por primera vez por John A. Wheeler. El universo colapsa en el Big Crunch y explota expandiéndose para formar un nuevo universo y comenzar de nuevo. Es la teoría del universo cíclico que, se renueva una y otra vez. Sin embargo, me queda la duda de que, si eso fuese así, ?surgiría la vida en esos otros universos? o, por el contrario tendría otras leyes y otras reglas.

 Seguro que el Big Bang fue el principio de todo el Universo? Te tenemos una  sorpresa – El Financiero

Las imágenes que nuestras mentes pueden recrear, son tan ricas y bellas que, sin lugar a ninguna duda serán imágenes gravadas en lo más profundo de nuestro ser y que emergen, como mensajes llegados del espacio infinito, para recordarnos que, todo lo que podamos imaginar…¡Existe!

 Viaje a Maldivas: Isla Vaadhoo, el mar de estrellas

Mirando al cielo estrellado, o desde la orilla, la inmensidad del océano que se pierde en el horizonte, nos podríamos sentir insignificantes. Sin embargo, no es así como deberíamos mirarlo. He dicho algunas veces que todo lo grande está hecho de cosas pequeñas, y esa afirmación nos da la respuesta. Formamos parte de algo muy grande: el Universo, y, nosotros, somos la materia evolucionada hasta su más alto grado que, habiendo llegado a tener una Mente, tiene conexión directa con el Cosmos infinito al que pertenecemos y, ahora, sólo estamos en la fase de adaptarnos a su ritmo antes de que un día, finalicemos fundiéndonos con él, y, de esa manera, sí que formaremos parte real del Universo.

Estamos en un nivel de sabiduría aceptable pero insuficiente; es mucho el camino que nos queda por recorrer y, como dice Freund, la energía necesaria para explorar la décima dimensión es mis billones de veces mayor que la energía que puede producirse en nuestros mayores colisionadores de átomos. La empresa resulta difícil para seres que, como nosotros, apenas tenemos medios seguros para escapar del débil campo gravitatorio del planeta Tierra.

 Gran Colisionador de Hadrones: qué hemos descubierto con élEl Big Bang podría haber generado dos futuros diferentes y no ser el origen  del tiempo, según la hipótesis de un físico | Marca

                 ¿Cómo poder comparar nuestras fuerzas artificiales con las de la Naturaleza?

Energías de tal calibre, que sepamos sólo han estado disponibles en el instante de la creación del universo, en su nacimiento, en eso que llamamos Big Bang. Solamente allí estuvo presente la energía del hiperespacio de diez dimensiones, y por eso se suele decir que cuando llegue la teoría de cuerdas sabremos y podremos desvelar el secreto del origen del universo. A los físicos teóricos siempre les resultó provechoso introducir dimensiones más altas para fisgar libremente en secretos celosamente escondidos.

 如梦观:这个世界只是一个梦- 简书Física. La ilusion de simplificar la naturaleza. - Cien... en Taringa!

Puede que viajemos a esas dimensiones más altas en momentos especiales, o, teoricemos sobre la posibilidad de su existencia como hacemos con el gráfico de arriba que representa un modelo de manguera de un espacio-tiempo de dimensiones más altas de tipo Kaluza-Kleim donde la longitud, o mejor, la dimensión a lo largo de la longitud de la manguera representa el 4-espacio-tiempo normal, y la dimensión alrededor de la manguera representa la dimensión extra “pequeñas” (quizá escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.

Si existen dimensiones más altas, nuestros sentidos primitivos, muy sujetos a lo terrenal, no pueden percibirlas y, necesitamos evolucionar para ver, lo que el Universo es. Aunque eso sí, es el mismo Universo el que nos tiene situados en esta fase “primitiva”, para él, el Tiempo cuenta de otra manera y, ha decidido que la evolución humana se produzca y desarrolle por el tiempo universal, el humano, es demasiado corto para tan gran empresa.

Según esa nueva teoría, antes del Big Bang nuestro Cosmos era realmente un Universo perfecto de diez dimensiones, un mundo en el que el viaje inter-dimensional era posible. Sin embargo, ese mundo deca-dimensional era inestable, y eventualmente se “rompió” en dos, dando lugar a dos universos separados: un universo de cuatro (el que podemos ver) y otro universo de seis dimensiones que, permanece oculto a nuestra percepción.

 DIMENSIONES OCULTAS II - CIENCIAMANIA

No tenemos que descartar que sea ese universo invisible, el de seis dimensiones, el que nos pueda sacar de apuro cuando llegue el momento, y, eso, amigos míos, sólo será posible si hemos evolucionado para poder hacerlo.

emilio silvera

En tan vasto Universo… ¡No estamos solos!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

TV - TV-Tipps am Freitag – NP - Neue Presse
Lo cierto es que sólo conocemos las formas de vida que han poblado la Tierra y, no tenemos ninguna muestra de la vida extraterrestre. No podemos ni afirmar ni negar que criaturas podrán estar presentes en otros mundos y, podrían existir planetas enormes habitados por insectos enormes, o, también, planetas con varios soles que estuviera habitado por criaturas de piel blanca, o por aniamles gigantes, o… ¡Por quién sabe qué!

16 ideas de Urantia en 2021 | urantia libro, planetas del espacio, sistema  estelar

Pensar que estamos solos en el Universo “infinito”, es demasiado pretencioso y no creo que seámos “la especie elegida” ni nada parecido. En cientos de miles de mundos como el nuestro y parecidos, estarán presentes las más diversas criaturas que, en algunos casos tendrán entendimiento y en otros, como pasa en la Tierra, simplemente serán seres vivos vegetativos sin ninguna clase de conciencia, o, con una conciencia limitada.

PROCESSO DE SOCIALIZAÇÃO | CAPÍTULO 6 | REINALDO DIAS | UNIJORGE. - YouTube

Poco esfuerzo mental tendríamos que hacer para vernos en ellos reflejados

Una característica sorprendente de nuestro retrato reconstruido del antepasado primitivo es su carácter moderno. Si este organismo lo encontráramos hoy, seguramente no delataría su inmensa antigüedad, excepto por sus secuencias de DNA. Tuvo que estar precedido, necesariamente, por formas más rudimentarias, estadios intermedios en la génesis de sistemas estructurales, metabólicos, energéticos y genéticos complejos que son compartidos por todos los seres vivos de hoy en día. Por desgracia, tales formas no han dejado descendientes igualmente primitivos que permitan su caracterización. carencia complica mucho el problema del origen de la vida.

La Tierra nació hace unos 4.550 millones de años. Se condensó, junto con los otros planetas del sistema solar, en un disco de gas y polvo que giraba alrededor de una joven estrella que iba a convertirse en nuestro Sol. Fenómenos de violencia extrema,  incompatible con el mantenimiento de ningún de vida, rodearon este nacimiento. Durante al menos quinientos millones de años, cometas y asteroides sacudieron la Tierra en formación, con lo que la hicieron incapaz de albergar vida durante todo este tiempo. Algunos impactos pudieron haber sido incluso suficientemente violentos como para producir la pérdida de toda agua terrestre por vaporización, después de lo cual los océanos se habrían vuelto a llenar con agua aportada por cometas. Según esta versión de  los acontecimientos, los océanos actuales de remontarían a la última oleada de bombardeo cometario intenso, que los expertos creen que tuvo lugar hace unos cuatro mil millones de años. Existen señales de que había vida en la Tierra poco después de que dichos cataclismos llegaran a su fin.

Künstlerische Darstellung des Planeten um Alpha Centauri B | ESO Deutschland

El tiempo inexorable no deja de transcurrir, el Universo dinámico hace que todo lo que contiene, sobre todo la materia, evolucione desde formas simples a complejas y, en algunos lugares que han logrado tener las para ello, puede estar presente la vida. Nosotros, seres evolucionados a partir de la matería inerte creada en las estrellas, hemos logrado saber algunas cosas y no dejamos de hacernos preguntas como aquella de: ¿Habrá otros mundos? ¿Estarán, como la Tierra, llenos de vida? Bueno, lo de los mundos sí hemos sido capaces de saberlo y estarán muy cerca del millar los mundos que hemos descubierto. Sin embargo, la vida, sólo la hemos podido encontrar aquí en nuestra casa, en la Tierra.

No dejamos de mandar ingenios espaciales a mundos cercanos, como Marte, para tratar de saber. Nos embarga una ilusión, una esperanza, y…, al mismo tiempo, un temor: ¿Estaremos sólos? Y, si no lo estamos, ¿Cómo serán esos otros mundos y que criaturas lo habitan? ¿Si alguna vez llegamos allí, seremos tan destructivos como lo hemos sido aquí en la Tierra? ¿Le querremos quitar lo que ellos tienen? ¡Esperemos que no! Y, sobre todo, en ese primer , ¿Sabremos comportarnos y respetar sus derechos?

Avatar: el mundo de Pandora llega a los parques Disney - La TerceraToma vida Pandora del Mundo de AVATAR | Viva la Magia

Novedad DisneyWorld 2017- Pandora: El Mundo De AvatarAsí es Pandora - The World of Avatar en Animal Kingdom - YouTube

Cuando pude ver la película Avatar, quedé fascinado por el mundo que allí quedaba escenificado y las criaturas que lo poblaban, y, sobre todo, era sobrecogedor el alto grado espiritual que tenían de la Naturaleza con la que se sentían en comunidad, formaban una simbiosis perfecta que nosotros, los humanos, nunca podremos alcanzar.

Hemos sabido recrear historias de esos mundos presentidos y de sus habitantes. En ellas, han quedado reflejados los instintos humanos, tantos los buenos como los malos y, mientras que unos querían preservar aquella Naturaleza, otros, sin embargo, querían destruirla apoderarse de sus preciados tesoros. ¡La condición Humana! ¿Estamos acaso destinados al desacuerdo que nos lleve a la destrucción, o, por el contrario, es precisamente esa condición la que nos llevará lejos?

Podría existir Pandora? | Star Tres

La belleza que se describe en el mundo llamado “Pandora” también está aquí pero, ¡no sabemos cuidarla!

Fascinantes criaturas de exóticas bellezas nos podrían estar esperando, en un futuro lejano, en esos mundos soñados que tantas veces hemos podido imaginar. Es difícil saber qué comportamiento tendremos con ellos si eso llega a sucecder, sin embargo, el ejemplo que nos deja la película a la que pertene la imagen de arriba, no es muy alentador ni dice mucho en de nuestra especie que, irrumpimos por la fuerza en un planeta extraño y, violando todas las reglas, pasamos por encima de los derechos de otros para conseguir nuestros objetivos. ¿La Civilización que ocupa el planeta? ¿Qué importa? Si hay que destruirla, ¡adelante!

La fuerza bruta que siempre acompañó a la falta de inteligencia, es la única salida para seres  de cuya racionalidad podríamos dudar,  sin el menor temor a equivocarnos. Destruir nunca será el camino más conveniente. Creo que sería aconsejable guiarse por ese principio de la física, la causalidad. Si respetamos seremos respetados. Sobre todo, no podemos llegar a nuevos lugares pretendiendo imponer nuestras costumbres y nuestras reglas. En esos otros lugares donde posiblemente  existan seres que tienen su propia de vivir, se impone, sobre todo, que supeditemos nuestro comportamiento a su propias reglas a su propio mundo. Los extraños allí seremos nosotros. Ellos,  los seres de la historia, a diferencia de nuestra Civilización Terrestre, sí han sabido convivir con su entorno, han creado una especie de simbiosis que une a todos los seres de aquel fascinante mundo, sean seres racionales o plantas, hasta el punto de poder comunicarse entre ellos en un alto grado de compenetración que va mucho más allá de lo físico.

No siempre somos conscientes de que nuestra simbiosis con el mundo que habitamos es grande, de él dependemos para seguir aquí y estamos a su merced cuando suceden fenómenos naturales que no podemos controlar.

En esos otros Mundos pueden estar presentes seres maravillosos que han optado por otras maneras de vivir, más cercana y conectados con la Naturaleza a la que respetan y comprenden al ser conscientes de que ellos mismos, forman de ella que es algo que, los humanos no han acabado de comprender y, se comportan como si la Tierra fuera un simple instrumento a su servicio, sin ser conscientes que tal comportamiento, los puede llevar a la extinción de la especie.

Las montañas, los árboles, los ríos y el viento, todo bañado por la luz y el calor de esa estrella que nos alumbra, forman un todo que mantiene el equilibrio que hace posible la vida. Si alguno de esos parámetros se viera alterado seriamente… ¡Mal nos iría! Y, sin embargo, algunos se empeñan en no ver lo evidente.

3840 X 2160 Movies Wallpapers - Top Free 3840 X 2160 Movies Backgrounds -  WallpaperAccess

Si algún día conseguimos llegar a otros mundos y en ellos encontramos a criaturas vivas más o menos evolucionadas, lo conveniente sería respetarlos y, dentro de lo posible, aprender de ellos procurando alterar lo menos posible lo que allí nos encontremos y, si tienen algo que nosotros necesitamos, hacer un intercambio justo olvidándonos de la fuerza bruta que conlleva la destrucción irreparable.

La historia que nos cuentan en esa maravillosa película, , desde el principio nos pone a favor de los habitantes de aquel Mundo agredido y de sus habitantes, hasta tal punto es así que muchos de los terrestres que visitan aquél planeta, no dudan, en dar sus propias vidas por preservar aquel entorno, para nosotros de fantasía y que para aquellos seres tan especiales que han sido capaces de convivir con su mundo y “hablar” con él, demostrando de alguna manera que, son mucho más civilizados que nosotros. Cuando ví aquella película… ¡Qué envidia me dieron!

navi-river-journey-disneyworld_disneyadictos - Disney World OrlandoPrepárate para las aventuras del mundo de Pandora! - Blog Viporlando

Utilizar lo que la Naturaleza les ofrecía sin dañar, no coger más de lo estrictamente necesario para vivir, respetando las otras formas de vida del planeta y dejando que el ritmo de la Naturaleza sea el que desarrolle las cosas, sin agredir el entorno y dejando que cada cosa ocupe su lugar sin tratar de violentar, de alguna manera, su desarrollo natural.

Si el caso llega, tendremos que aprender a mirar más allá de la superficie, a entender los mensajes que nos envían la mirada de esos nuevos y exóticos seres y, sobre todo, tratar de comprender su mundo, sus maneras para poder respetarlas y hacernos acreedores, nosotros también, a su respeto.

¡Quién pudiera ser uno de los afortunados que, en el futuro, visitarán algunos de esos Mundos!

Nos quedan muchos muros por derribar, muchas puertas que abrir para las que aún no poseemos las llaven, y, sobre todo, para que cuando eso llegue y sea una realidad (esperemos que así sea), lo más importante: ¡Que hayamos podido evolucionar hasta ese deseado estadio de sabiduría que ahora no tenemos! De todas las maneras, no me gustaría que ese primer encuentro se produjera aquí en la Tierra. Es preferible que los visitantes seamos nosotros y, como antes digo, espero que para entonces, la Humanidad sea otra.

عدي باركوMundos de hieloTres nuevos mundos en una estrella cercana animan la búsqueda de vidaOtros mundos habitables en el universo | VIDA | PERU21

Claro que, también podríamos toparnos con civilizaciones mucho más avanzadas que la nuestra y, en ese caso… ¡La desventaja sería nuestra! Siempre hemos oído decir que no debemos hacer a otros lo que no queremos que nos hagan a nosotros y, si respetamos esa máxima… ¡Todo podrá ir mejor! El presente es el que tenemos y no sabemos lo que nos depara el futuro pero, una cosa es bien cierta: ¡No dejamos de avanzar! Cada día que pasa damos un paso hacia ese futuro que presentimos y estamos más cerca de saber… ¡Si realmente, como pensamos, estamos miuy bien acompañados en este inmenso Universo nuestro! Y, digo en éste universo nuestro porque, en realidad, pienso que tampoco es, el único Universo.

emilio silvera

Los núcleos, la masa, la energía…¡La Luz!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Todos sabemos sobre alguna cosa, y, a lo largo de nuestras vidas, nuestro camino toma una dirección que no siempre es la que hubiéramos deseado escoger, no pocas veces son las circunstancias las que nos llevan por ese sendero. Aprendemos por experiencias vividas, por estudios, por observación y experimentando. De todas las maneras, nuestros conocimientos son limitados pero, nuestra ignorancia, es infinita.

La partícula emitida por un núcleo radiactivo, por lo general lleva una considerable cantidad de energía. Y, ¿de dónde procede esa energía? Es el resultado de la conversión en energía de una pequeña Qué son las partículas beta? Usos y propiedadesLas Partículas Alfa, La Desintegración Alfa, La Desintegración Radiactiva  imagen png - imagen transparente descarga gratuita

Los físicos se vieron partícula beta emitida en una desintegración del núcleo no alberga energía suficiente electrones no eran igualmente deficitarios. Emergían con un amplio espectro de energías, y el máximo (corregido por muy pocos electrones) era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o partículas alfa emitidas por un nucleido particular poseían iguales energías en cantidades inesperadas. En ese caso, ¿qué era erróneo en la emisión de partículas beta?, ¿qué había sucedido con la energía perdida?

En 1.922, Lise Maitner se hizo por primera vez partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida. Esa misteriosa segunda partícula tenía propiedades bastante extrañas; no poseía carga ni masa. Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía. A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.

 

Habitualmente aceptamos que la física es la ciencia que estudia la estructura y propiedades de la materia y la energía, las formas de existencia de las mismas en el espacio y el tiempo, así como las leyes de rigen sus interacciones. En este definición no hay limitaciones precisas Sin embargo, tan pronto como se propuso la posibilidad de su existencia, los físicos creyeron en ella ciegamente. Y neutrón y al saberse que se desintegraba en un protón y liberaba un electrón que, Fermi dio a esta partícula putativa el Los neutrinos podrían explicar nuestra existencia - Ciencia UNAMFrancis en LFDLC: Los neutrinos - La Ciencia de la Mula Francis

El neutrón dio a los físicos otra prueba palpable de la existencia del neutrino. Como ya he comentado en otra página de este trabajo, casi todas las partículas describen un movimiento rotatorio. Esta rotación se expresa, más o menos, en múltiplos de una mitad, según la dirección del giro. protón, el neutrón y el electrón tienen rotación de una mitad. Por tanto, si el neutrón con rotación de una mitad origina un protón y un electrón, cada uno con rotación de una mitad, ¿Qué sucede con la ley sobre conservación del protón y el electrón totalizan una mitad con sus rotaciones (si ambas rotaciones siguen la misma dirección) o cero (si sus rotaciones son opuestas); pero sus rotaciones no pueden sumar jamás una mitad. Sin embargo, por otra neutrino viene a solventar la cuestión. Supongamos que la rotación del neutrón sea +½, y admitamos protón sea +½ y la del electrón -½, neutrino una rotación de +½ y la balanza quedará desequilibrada.

+½ (n) = +½ (p) – ½ (e) + ½ (neutrino)

Nuestra Consciencia forma el Cosmos y la Ciencia: NEUTRINOS SOLARESNeutrinos – Yachay Tech

                                            Detectando Neutrinos

En otras palabras, la existencia de neutrinos y antineutrinos debería salvar no una, sino tres, importantes leyes de conservación: la conservación de la energía, la de conservación del espín y la de conservación de partícula/antipartícula.

neutrón) ha formado dos partículas (el protón y el electrón), y si incluimos el neutrino, tres partículas. Parece más razonable suponer que el neutrón se convierte en dos partículas y una antipartícula. En otras palabras: lo que realmente necesitamos equilibrar no es un neutrino, sino un antineutrino.

El propio neutrino surgiría de la conversión de un protón en un neutrón. Así pues, los productos serían un neutrón (partícula), un positrón (antipartícula) y un neutrino (partícula). Esto  The Milky Way | Milky way, Stargazing, Haleakala

    Impresionante vista de la Vía Láctea Es importante conservar esas leyes puesto que parece estar presentes en toda clase de relaciones nucleares que no impliques electrones o positrones, y sería muy útil si protónneutrón son las relacionadas con las reacciones nucleares que se desarrollan en el Sol y en los astros. Por consiguiente, las estrellas emiten radiaciones rápidas de neutrinos, y se calcula que tal vez pierdan a causa de esto el 6 u 8% de su energía. Pero eso sería meternos en otra historia y, por mi Desde que puedo recordar, he sido un amante de la física. Me asombran cuestiones El Universo: La Velocidad de la Luz en Escuchando Documentales en mp3(26/09  a las 12:57:10) 44:09 13059657 - iVooxAstronomía | Científicos detectan la luz más potente del Universo |  TECNOLOGIA | EL COMERCIO PERÚ

La luz se manifiesta allí donde hay objetos formados de materia y se manifiesta por fenómenos de energías, a veces inimaginables. La luz es una de las maravillas del Universo formada por fotones sin masa que corren por el Espacio “Vacío” a 299.792.458 metros por segundo.

Muchos (casi todos) opinan que es algo inmaterial. Los objetos materiales grandes o muy pequeños como las galaxias o los electrones, son materia. La luz, sin embargo, se cree que es inmaterial; dos rayos de luz se cruzan sin afectarse el uno al otro. Sin embargo, yo creo que la luz es simplemente una El brillo de las estrellas | Universe2go

Está claro que los estudiosos de la época antigua y medieval estaban por completo a oscuras acerca de la naturaleza de la luz. Especulaban sobre que consistía en partículas emitidas por objetos relucientes o tal vez por el mismo ojo. Establecieron el hecho de que la luz viajaba en línea recta, que se reflejaba en un espejo con un ángulo igual a aquel con el que el rayo choca con el espejo, y que un rayo de luz se inclina (se refracta) Pirámide de Cristal, la refracción de la luz, con efecto Espectro de prisma  Imagen Vector de stock - Alamy

Cuando la luz entra en un cristal o en alguna sustancia transparente, de una  CMC: Inteligencia artificial (IA)

¿Nos suplirán un día? Seguro que en el futuro, serán otros los que hagan experimentos con la luz y busquen su verdadera naturaleza.

Los primeros experimentos importantes acerca de la naturaleza de la luz fueron llevados a cabo por Isaac Newton en 1.666, al permitir que un rayo de luz entrase en una habitación oscura a través de una grieta de las  Newton.newton

Newton dedujo  que la luz blanca corriente era una mezcla de varias luces que excitaban por separado nuestros ojos Newton atrapó el rayo emergente sobre una pantalla blanca para ver el efecto de la refracción reforzada. Descubrió que, en vez de formar una mancha de luz blanca, el rayo se extendía en una gama de colores: rojo, anaranjado, amarillo verde, azul y violeta, en este orden. Newton dedujo de ello que la luz blanca corriente era una mezcla de varias luces que excitaban por separado nuestros ojos para producir las diversas sensaciones de colores. La amplia banda de sus componentes se denominó spectrum (palabra latina que significa espectro o fantasma). Newton llegó a la conclusión de que la luz se componía de diminutas partículas (“corpúsculos”), que viajaban a enormes velocidades. Le surgieron y se planteó algunas inquietantes cuestiones: ¿por qué se refractaban las partículas de luz verde más que las de luz amarilla? ¿Cómo se explicaba que dos rayos de luz se cruzaran sin perturbarse mutuamente, es decir, sin que se produjeran colisiones En 1.678, el físico neerlandés Christian Huyghens (un científico polifacético que había construido el primer reloj de péndulo y realizado importantes trabajos astronómicos) propuso una teoría opuesta: la de que la luz se componía de minúsculas ondas. Y si sus componentes fueran ondas, no sería difícil explicar las diversas difracciones de los diferentes tipos de luz a través de un medio refractante, siempre y cuando se aceptara que la luz se movía más despacio en ese medio refractante que en el aire. La cantidad de refracción variaría con la longitud de las ondas: cuanto más corta fuese tal longitud, tanto mayor sería la refracción. Ello significaba que la luz violeta (la más sensible a Espectro electromagnético - Wikipedia, la enciclopedia libre▷ Esquema del espectro electromagnético ¡Fotos & Guía 2021!

Lo que permitía al ojo distinguir los colores eran esas diferencias Pero la teoría de Huyghens sobre las ondas tampoco fue muy satisfactoria. No explicaba por qué se movían en línea recta los rayos luminosos, ni por qué proyectaban sombras recortadas, ni aclaraba por qué las ondas luminosas no podían rodear los obstáculos, del mismo modo que pueden hacerlo las ondas sonoras y de agua. Por añadidura, se objetaba que si la luz consistía en ondas, ¿cómo podía 

Con el éxito de Newton de su ley de la Gravitación Universal, no es extraño que afirmara de Newton se opuso violentamente a la naturaleza ondulatoria de la luz, ya que no veía cómo se podía explicar con ella la propagación rectilínea de la misma. Por otro lado estaba Christian Huygens, 13 Newton que defendía la naturaleza ondulatoria con algunas ventajas.

 

 Qué es en realidad la Luz? : Blog de Emilio Silvera V.

Ambas teorías explicaban perfectamente la reflexión y refracción de la luz. Newton y a la poca habilidad de Huygens Aproximadamente durante un siglo, contendieron Newton fue, con mucho, la más popular, en parte porque la respaldó el famoso Trabajos de fisica: Teoria corpuscular y ondulatoria de la luzCapitulo 2

Sería fácil explicarlo mediante la teoría ondulatoria; la banda luminosa representaba el refuerzo prestado por las ondas de un rayo a las ondas del otro, dicho de otra manera, entraban “en fase” dos trenes de ondas, es decir, ambos nodos, al unirse, se fortalecían el uno al otro. Por otra 

Considerando la anchura de las bandas y la distancia entre los dos orificios por lo que surgen ambos rayos, se pudo calcular la longitud de las ondas luminosas, por ejemplo, de la luz roja a la violeta o de los colores intermedios. Las longitudes de onda resultaron ser muy pequeñas. Así, la de la luz roja era de unos 0’000075 cm. Hoy se  expresan las longitudes de las ondas luminosas mediante una unidad muy práctica ideada por Ángstrom; esta unidad, denominada igualmente Ángstrom (Å) en honor a su autor, es la cienmillonésima parte de un centímetro. Así pues, la longitud de onda de la luz roja equivale más o menos a 7.500 Å, y la de la luz violeta a 3.900 Å, mientras que las de colores visibles en el espectro oscilan entre ambas cifras.

La cortedad de estas ondas es muy importante. La razón de que las ondas luminosas se desplacen en línea recta y proyecten sombras recortadas se debe a que todas son incomparablemente más pequeñas que cualquier objeto; pueden contornear un obstáculo sólo si este no es mucho mayor que la longitud de onda. Hasta las bacterias, por ejemplo, tienen un volumen muy superior al de una onda luminosa, y por tanto, la luz Rejilla de difracción | Ondas de luz | Física | Khan Academy en Español -  YouTubePatrones de difracción — Cuaderno de Cultura Científica

Un físico francés, Agustin-Jean Fresnel, fue quien demostró por vez primera en 1.818 que si un objeto es lo suficientemente pequeño, la onda luminosa lo contorneará sin dificultad. En tal caso, la luz determina el llamado fenómeno de “difracción”. Por ejemplo, las finísimas líneas paralelas de una “reja de difracción” actúan como una serie de minúsculos obstáculos, que se refuerzan  

La mano del Universo juguetea con unos puntos luminosos que quieren llegar a ser cegadores…Son nuestras Mentes, productos de la evolución del Universo que, a partir de la materia inerte, ha podido alcanzar el estadio bio-químico de la consciencia y, al ser conscientes, hemos podido Fraunhofer exploró dicha reja de difracción con objeto de averiguar sus finalidades prácticas, progreso que suele olvidarse, pues queda eclipsado por su descubrimiento más famoso, los rayos espectrales. El físico americano Henry Augustus Rowland ideó la reja cóncava y desarrolló técnicas Ante tales hallazgos experimentales, más el desarrollo metódico y matemático del movimiento ondulatorio, debido a Fresnel, pareció que la teoría ondulatoria de la luz había arraigado definitivamente, desplazando y relegando No sólo se aceptó la existencia de ondas luminosas, sino que también se midió su longitud con una precisión cada vez mayor. kripton - Reddit post and comment search - SocialGrep

  Tubos llenos de gases nobles puros: Helio, Neón, Argón, Xenón, Kriptón

Pero la incertidumbre reapareció al descubrirse que los elementos estaban compuestos por isótopos diferentes, cada uno de los cuales aportaba una raya cuya longitud de inda difería ligeramente de las restantes. En la década de 1.930 se midieron las rayas del criptón 86. Como quiera que este isótopo fuera gaseoso, se podía abordar con bajas temperaturas, En 1.960, el Comité Internacional de Pesos y Medidas adoptó la raya del criptón 86 como unidad fundamental de la longitud. Entonces se reestableció la longitud del metro como 1.650.763’73 veces la longitud de onda de dicha raya espectral. Ello aumentó mil veces la precisión de las medidas de longitud. Hasta entonces se había medido el antiguo metro patrón con un margen de error equivalente a una millonésima, mientras que en lo sucesivo se pudo medir la longitud de onda con un margen de error equivalente a una milmillonésima.

emilio silvera

ABRIRCERRAR