domingo, 05 de diciembre del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El micro mundo de los átomos y la información

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando por primera vez se puso este trabajo, dio lugar a comentarios que nos llevan hasta la realidad de hasta donde, resulta para nosotros incomprensible ese micro mundo de la cuántica, ese “universo” infinitesimal donde ocurren cosas que, no llegamos a comprender.

Qué es la teoría cuántica, teoría y ejemplosMecánica cuántica - Wikipedia, la enciclopedia libre

Puede explicarse el cerebro humano usando física cuántica? - BBC News MundoOtros mundos | Domestika

Sí, existe otro mundo que no vemos pero, ¡está en éste! Que no lo podamos ver, no demuestra su inexistencia ubicada en el micro-mundo infinitesimal de las partículas y los átomos que viven allí

Dualidad onda-partícula (o el electrón como onda en el espacio de momentos)  - La Ciencia de la Mula FrancisVen la luz como onda y partícula a la vez | Ciencia al día

Onda y partícula

La mecánica cuántica domina en el micro-mundo de los átomos y de las partículas “elementales”. Nos enseña que en la naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. Esta onda no es como una onda de agua.  Es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.

Dualidad onda-partícula (o el electrón como onda en el espacio de momentos)  - La Ciencia de la Mula Francis

Por el contrario, la relatividad general era siempre necesaria cuando se trataba con situaciones donde algo viaja a la velocidad de la luz, o está muy cerca o donde la gravedad es muy intensa. Se utiliza para describir la expansión del universo o el comportamiento en situaciones extremas, como la formación de agujeros negros. Sin embargo, la gravedad es muy débil comparada con las fuerzas que unen átomos y moléculas y demasiado débil para tener cualquier efecto sobre la estructura del átomo o de partículas subatómicas, se trata con masas tan insignificantes que la incidencia gravitatoria es despreciable. Todo lo contrario que ocurre en presencia de masas considerables como planetas, estrellas y galaxias, donde la presencia de la gravitación curva el espacio y distorsiona el tiempo.

http://elojocondientes.files.wordpress.com/2011/03/la-tierra-no-es-redonda.png

La Gravedad hace que la Tierra se vea como un mapa. Es una vista altamente exagerada, pero ilustra a las claras cómo la atracción gravitatoria que se manifiesta desde la masa de roca bajo nuestros pies no es la misma en todo lugar. La gravedad es más fuerte en áreas amarillas y más débil en las azules. (Imagen tomada por el satélite Goce)

Como resultado de estas propiedades antagónicas, la teoría cuántica y la teoría relativista gobiernan reinos diferentes, muy dispares, en el universo de lo muy pequeño o en el universo de lo muy grande. Nadie ha encontrado la manera de unir, sin fisuras, estas dos teorías en una sola y nueva de Gravedad-Cuántica.

¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son.

File:Observable universe logarithmic illustration.png

Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño.  La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33  centímetros, más joven que el Tiempo de Planck, 10-43 segundos y supere la temperatura de Planck de 1032 grados.

Facebook

Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.

Una nueva teoría científica cuestiona el origen del universo • Tendencias21La gravedad cuántica, camino de convertirse en ciencia | Investigación y  Ciencia | Investigación y Ciencia

Hallan, durante un experimento, una nueva clase de tiempo cuánticoFísica cuántica, desafío de la intuición humana – Alternativa: Educación

En los intentos más recientes de crear una teoría nueva para describir la naturaleza cuántica de la gravedad ha emergido un nuevo significado para las unidades naturales de Planck. Parece que el concepto al que llamamos “información” tiene un profundo significado en el universo. Estamos habituados a vivir en lo que llamamos “la edad de la información”.  La información puede ser empaquetada en formas electrónicas, enviadas rápidamente y recibidas con más facilidad que nunca antes.

Los tiempos cambian y la manera de informar también, lejos nos queda ya aquellos toscos aparatos impresores del pasado, ahora, en espacios muy reducidos, tenemos guardada más información que antes había en una colección de libros.

Resultado de imagenResultado de imagenResultado de imagenResultado de imagen
Resultado de imagenResultado de imagenResultado de imagenResultado de imagen
 Resultado de imagenResultado de imagenResultado de imagenPendrive Usb 32 Gb Verbatim Slider - FsComputers

Nuestra evolución en el proceso rápido y barato de la información se suele mostrar en una forma que nos permite comprobar la predicción de Gordon Moore, el fundador de Intel, llamada ley de Moore, en la que, en 1.965, advirtió que el área de un transistor se dividía por dos aproximadamente cada 12 meses. En 1.975 revisó su tiempo de reducción a la mitad hasta situarlo en 24 meses. Esta es “la ley de Moore” cada 24 meses se obtiene una circuiteria de ordenador aproximadamente el doble, que corre a velocidad doble, por el mismo precio, ya que, el coste integrado del circuito viene a ser el mismo, constante.

Anonymous Grid ComputingGrid Computing at Scale for Financial Services - The Digital Insurer

 

Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza. En 1.981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros.  Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos. Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen.

El Límite de las Teorías! : Blog de Emilio Silvera V.El micromundo de los átomos : Blog de Emilio Silvera V.2018 noviembre 24 : Blog de Emilio Silvera V.Las constantes de la naturaleza - John D. Barrow

El número máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2.  Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta ahora. Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la naturaleza.

Internet ilimitado no existe, nos lo venden así porque nunca llegarás a  consumirloSatélites artificiales: tipos, funciones y característicasQué son los satélites artificiales y para qué sirven? | El EconomistaInternet sin límites geográficos - Paperblog

La información llega a todos los rincones del Mundo

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias.

Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.

α = 2πehc ≈ 1/137

αG = (Gmp2)/ hc ≈ 10-38

La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro.

Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Resultado de imagen de Números puros adimensionalesResultado de imagen de Números puros adimensionales

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos. Con los adelantos actuales, estudiando la luz lejana de cuásares muy antiguos, se estudia si la constante de estructura fina (α) ha variado con el paso del tiempo.

Resultado de imagen de La inmensidad del Universo

          Ninguna imagen podrá nunca reflejar la realidad del Universo, su grandeza

El Universo es muy grande, inmensamente grande y, probablemente, todo lo que nuestras mentes puedan imaginar podrá existir en alguna parte de esas regiones perdidas en las profundidades cósmicas, en los confines del Espacio- Tiempo, en lugares ignotos de extraña belleza en los que otros mundos y otras criaturas tendrán, su propio hábitat que, siendo diferente al nuestro, también, sus criaturas, estarán buscando el significado de las leyes del Universo.

emilio silvera

¡Los genios existen!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Vanguardia publicó: NUEVA PROMESA

La nueva Einstein tiene 23 años y se llama Sabrina González

 

  • Sus investigaciones han llamado la atención de la NASA y de la empresa de desarrollo aeroespacial Blue Origin
La nueva Einstein tiene 23 años y se llama Sabrina González
Sabrina González Pasterski (Pasterski)

Sabrina González Pasterski fabricó un avión con 9 años e hizo que volara cuando tenía 14. Ahora tiene 23 y está considerada una de las mentes más brillantes del Instituto de Tecnología de Massachusetts (MIT) después de graduarse con la nota más alta de la historia.

Nacida en Chicago, de madre cubana y padre estadounidense, está explorando cuestiones físicas como los agujeros negros, la relación espacio-tiempo y la naturaleza de la gravedad . Sus investigaciones podrían cambiar drásticamente la comprensión actual del universo y son semejantes a las que llevaron a cabo personajes como Albert Einstein o Stephen Hawking en su juventud.

Sabrina González construyó un avión con 9 años e hizo que volara a la edad de 14

Sabrina González construyó un avión con 9 años e hizo que volara a la edad de 14 (Sabrina Aircraft)

La nueva promesa de la física no tiene tiempo para las redes sociales: ni cuenta de Twitter, ni actualiza su Facebook, cero fotos en Instagram y su currículum no aparece en LinkedIn. Y no, tampoco tiene smartphone. En su infancia pasaba horas en el garaje de su padre arreglando motocicletas y construyendo maquetas de aviones.

Lo que sí hace es actualizar periódicamente un sitio web llamado PhysicsGirl, donde cuenta sus logros, sus actividades y refleja parte de los trabajos en los que participa. Para poder llevar adelante todo ello Pasterski cuenta que nunca ha tenido novio ni ha probado alcohol o cigarrillos: “Prefiero mantenerme alerta, que me conozcan por lo que hago y no por lo que no hago”.

“Mi sueño es llevar a alguien a Marte. Sé que suena inviable pero si trabajas, todo puede ser posible”

 

 

Resultado de imagen de Los suburbios de Chicago

A esta joven criada en los suburbios de Chicago le llueven las ofertas de trabajo: Jeff Bezos, fundador de Amazon y de la empresa aeroespacial Blue Origin, le guarda un puesto a González. Así también lo ha declarado la NASA. Y no sólo le sobran los empleos futuros, también ha recibido cientos de miles de dólares en becas de la Fundación Nacional para las Ciencias.

Mientras estudia un doctorado en la Universidad de Harvard, González no deja de lado su proyecto personal: poder enviar una nave al espacio construida por ella misma. De hecho cuándo le preguntan por su sueño, contesta:

Así será el primer viaje al corazón de Marte | HistoriasLa NASA anuncia que preparasu primera misión tripulada al planeta Marte  para 2030

“Llevar a alguien a Marte. Sé que suena inviable pero si trabajas, todo puede ser posible”.

 

Su sueño empezó en el colegio con la ayuda de su profesor de matemáticas: “Cuando tenía 14 años se presentó a un concurso de maquetas con el avión que había construido 5 años atrás, así que le dije ‘está muy bien pero  “¿Qué has hecho últimamente?’”.

Las palabras de su profesor calaron muy a fondo en la joven, al punto de convertirse en su eslogan personal: “Siempre estoy pensando qué he hecho últimamente, así siempre tengo un objetivo a seguir, nunca me quedo sin metas que alcanzar”.

La revista Forbes ya ha incluido a Sabrina González Pasterski en la lista de los 30 mejores talentos menores de 30 años

La revista Forbes ya ha incluido a Sabrina González Pasterski en la lista de los 30 mejores talentos menores de 30 años (Forbes)
Sabrina González Pasterski
Sabrina Gonzalez Pasterski 2014.jpg
Información personal
Nacimiento 3 de junio de 1993
ChicagoIllinoisEstados Unidos
Residencia Edison Park (Chicago)
Nacionalidad Cubana, estadounidense
Educación
Alma máter Universidad de HarvardInstituto Tecnológico de Massachusetts
Supervisor doctoral Andrew Strominger
Información profesional
Ocupación Física Ver y modificar los datos en Wikidata
Empleador Boeing Phantom WorksCERNNASA
Distinciones Inaugural MIT Freshman Entrepreneurship Award​
Web
Sitio web physicsgirl.com Ver y modificar los datos en Wikidata
[editar datos en Wikidata]

A esta mente privilegiada de las ciencias no le importa que el 30% de los graduados en física y química en EE.UU. estén desempleados: “La física es muy emocionante, es un trabajo sin horarios. Cuando sientes que no puedes más, descansas y cuando no, te dedicas a la física”.

Entre sus principales influencias se encuentran el físico y ganador del Premio Nobel de Física, León Max Lederman, el matemático y físico inglés Freeman John Dyson y el químico, también ganador del Premio Nobel de Química, Dudley R. Herschbach.

“La física es muy emocionante, es un trabajo sin horarios. Cuando sientes que no puedes más, descansas y cuando no, te dedicas a la física”

SABRINA GONZÁLEZ PASTERSKI

Física

Hasta aquí la noticia publicada.

Niño prodigio″ de 11 años finaliza su carrera de física en nueve meses con  matrícula de honor | ACTUALIDAD | DW | 06.07.2021

El niño que se ha graduado en Física a los 11 años ahora sueña con alargar la vida humana

Laurent Simons, un niño prodigio belga, ha conseguido graduarse en apenas nueve meses y con sobresaliente en una carrera que, por lo general, requiere tres años.

 

Parece que, muy de vez en cuando, se produce alguna mutación que viene a caer en la Mente de algún “elegido” que destaca de los demás por su comprensión de las cosas más complejas, en cuyo campo avanzan con más facilidad que lo hicieron y lo hacen otros.

Recordemos que el padre de Newton era analfabeto, y, tal detalle nos dice que el genio puede saltar en cualquier momento, en cualquier lugar, y, en el seno de cualquier familia.

Esperemos que sea para mejor.