domingo, 14 de septiembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Masa y la Energía ¿Qué son en realidad?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una voz potente y ¿segura? nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea un atributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben encontrar la respuesta al problema planteado.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espín de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espín cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón. (1)

La interacción débil, recordareis, fue inventada por E. Fermin para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

Fabiola Gianotti – Unidad para la Igualdad

 

“Fabiola Gianotti (Roma, 29 de octubre de 1960)​ es una física de partículas italiana exportavoz de la colaboración internacional experimento ATLAS en el Gran colisionador de hadrones y la primera mujer nombrada Directora General de la Organización Europea para la Investigación Nuclear​ (CERN)”. Que en rueda de prensa ofreció algunas explicaciones cuando se “descubrió” el Bosón de Higgs.

     Entonces dijo:

Bosón de Higgs: qué es y por qué es tan importante

“En nuestros datos observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a este excitante punto, pero hace falta un poco más de tiempo para preparar estos resultados cara a su publicación.”

 

Interacciones Del Modelo Estándar De La Física De Particulas - Standard  Model, HD Png Download - vhv

 

El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgs podría ser el puente para comprender el 96% del universo que permanece oculto.

El 4 de julio de 2012 se anunció el descubrimiento de un nuevo bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el nombre? El Premio Nobel de Física para el bosón de Higgs sólo podía ser concedido cuando el CERN afirmara con claridad y rotundidad que se había descubierto el Higgs, si el CERN es conservador, la Academia Sueca lo es aún más. Sin embargo, el rumor es que quizás baste con que el CERN diga que se ha descubierto “un” Higgs.

FacebookQué fue del bosón de Higgs? | Ciencia | EL PAÍS

¿Por qué, a pesar de todas las noticias surgidas desde el CERN, creo que no ha llegado el momento de celebrarlo? ¿Era acaso el Higgs la partícula encontrada?

 

Había que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? Y, ¿Cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

Las matemáticas del bosón de Higgs, para las abuelas cansadas de cháchara  (Parte I) - La Ciencia de la Mula FrancisQué es el Higgs? | Cuentos CuánticosMecanismo de Higgs - Wikipedia, la enciclopedia libre

                                                 ¿Qué es el Higgs y sus mecanismos?

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10’5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electro-débil unificada.

Física y Todo lo demás: Masa, Bosón de Higgs y Campos EscalaresLos 6 números que definen todo el universo | Internacional | Noticias | El  Universo

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electro-débil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

La Masa y la Energía ¿Qué son en realidad? : Blog de Emilio Silvera V.

 

Para cada suceso, la línea del haz es el eje común de los cilindros de malla de alambre ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿Dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios.

 

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que viene a ser una de las soluciones que le falta al Modelo Estándar para que todo encaje con la teoría.

¡Ya veremos en que termina todo esto! Dijeron que habían descubierto el famoso Bosón pero… Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se concedió, junto al CERN, el Premio Príncipe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011— y que no ha podido disfrutar del Nóbel.

Los padres del bosón de Higgs obtienen el premio Nobel de Física 2013 |  Sociedad | Cadena SER

El compalero fallecido no pudo estar en la celebración

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos Steven Weinberg y Abdus Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W– y Z0 de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice:

“Es una alfombra bajo la que barremos nuestra ignorancia.”

Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no teníamos la menor prueba experimental que entonces pareció que iba asomando la cabeza en el LHC.

Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Enroque de ciencia: ¿Qué es el campo de Higgs? (1)

Después de todo esto, tal como lo plantearon los del CERN,  se puede llegar a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependía de que se encontrara el Bosón de Higgs.  Y en 2012, por fin, el mayor Acelerador del mundo, el LHC, nos dijo, que el Bosón ha sido encontrado y las pruebas tenían una fiabilidad enorme.

¡La confianza en nosotros mismos, no tiene límites! Pero el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fin, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veráz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.

¿Pasará igual con las cuerdas?

El Campo de Higgs es un campo cuántico que de acuerdo con una hipótesis del modelo Estándar de la Física de Partículas permearía el Universo entero. Los bosones del campo electromagnético son los fotones; en el campo de Higgs se denominan bosones de Higgs,  en la suposición de la existencia de un campo escalar, el “campo de Higgs”, que impregnaría todo el espacio.

emilio silvera

Agradecido le quedo a León Lederman que con sus ideas ha nutrido el presente trabajo.

Las maravillas del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 La estrella 'SWIFT J1822.31606', un magnetar anómalo en el universo |  Ciencia Kanija 2.0

“La estrella Swift J1822.3-1606, ubicada a 16.300 años luz de la Tierra, en la constelación de Sagitario, tiene aproximadamente una vida de 550.000 años, un objeto relativamente joven del universo cósmico.

Un proyecto liderado por la investigadora del Consejo Superior de Investigaciones Científicas (CSIC) Nanda Rea, ha descubierto el segundo magnetar anómalo del universo. Los magnetares, estrellas de neutrones con una masa un poco mayor que la del Sol, son capaces de contenerla comprimida en un radio de aproximadamente 10 kilómetros, mientras que el Sol requiere de 696 000 kilómetros. El trabajo, realizado desde el Instituto de Ciencias del Espacio, centro mixto del CSIC y el Instituto de Estudios Espaciales de Catalunya, aparece en el último número de Astrophysical Journal.”

Los astrónomos encontraron una clase extraña y enigmática de estrellas de neutrones, cuyo campo magnético es billones de veces más potente que el de nuestro Sol, es decir, que el de una estrella mediana, y, no digamos, el de la Tierra. Tan intenso es el campo magnético que genera una de estas estrellas que, podría borrar una tarjeta de crédito desde 160.000 kilómetros de distancia. Le pusieron de nombre magnetares (estrellas magnéticas).

Estas particulares estrellas de neutrones, desafían cualquier explicación física desde que la primera de ellas fue descubierta en 1982. Los nuevos datos sobre sus características los han proporcionado desde el Observatorio Rossi X-ray Timing Explorer, de la NASA.

http://1.bp.blogspot.com/-06578QpjE7g/TxRJMc3SwHI/AAAAAAAAE0c/tlk-2Wq2ZM4/s1600/416239main1_rxte-226x217.jpg

Observatorio Rossi X-ray Timing Explorer

Son muchos años ya los que llevan los Astrónomos sospechando que las AXP eran magnetares, pero carecían de las pruebas definitivas. El satélite Rossi, por fin, la consiguió al sorprender a una de ellas en pleno estallido, como lo haría una magnetar.

Rossi X-ray Timing Explorer - Wikipedia, la enciclopedia libre

Después de 16 años en el espacio el satélite Rossi X-ray Timing Explorer (RXTE) de NASA realizó su última observación. El satélite proporcionó imágenes sin precedentes sobre los ambientes extremos alrededor de enanas blancas, estrellas de neutrones y agujeros negros. RXTE envió los datos de su última observación científica a tierra teniendo más que merecido el descanso.

Magnetar | Cosmo NoticiasCaptan la imagen de un chorro de materia emergiendo de un agujero negro |  Ciencia

La capacidad de cronometrado de RXTE fue crucial para registrar los cambios rápidos en rayos X asociados con las estrellas de neutrones, también conocidas como púlsares. Una estrella de neutrones es lo más cercano a un agujero negro que los astrónomos pueden observar directamente, concentrando medio millón de veces más masa que la de la Tierra en una esfera no mayor que una ciudad. Esta materia está tan comprimida que incluso una cuchara de café pesa tanto como el Everest. Las estrellas de neutrones pueden girar cientos de veces por segundo, y, una especie de esa familia es, precisamente los magnetares.

Qué son las estrellas de neutrones?

“Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares,​ con un radio correspondiente aproximado de 12 km.  En cambio, el radio del Sol es de unas 60 000 veces esa cifra. Las estrellas de neutrones tienen densidades totales de 3,7×1017 a 5,9×1017 kg/m³ (de 2,6×1014 a 4,1×1014 veces la densidad del Sol), comparable con la densidad aproximada de un núcleo atómico de 3×1017 kg/m³.5​ La densidad de una estrella de neutrones varía desde menos de 1×109 kg/m³ en la corteza, aumentando con la profundidad a más de 6×1017 u 8×1017 kg/m³ aún más adentro (más denso que un núcleo atómico).​ Esta densidad equivale aproximadamente a la masa de un Boeing 747 comprimido en el tamaño de un pequeño grano de arena.”

Hallan la estrella de neutrones más gigantesca del universo

Sabemos que una estrella de Neutrones es una esfera ultra-densa que tiene aproximadamente unos 16 km de diámetro. Es, como sabéis, el núcleo de una estrella colapsada que en su día pudo ser mucho más masiva que nuestro Sol y que explotó en forma de supernova. Las hay que emiten pulsos continuos de radiación X, al girar, que son la variedad a las que llamamos púlsares.

Los físicos recelan de los detalles que no terminan de encajar. No pueden ignorarlos por pequeños que sean. Les hacen temer la existencia de algún error fundamental en sus modelos y teorías. Por eso tras más de tres decenios de incertidumbre, los expertos en estrellas de neutrones respiran un poco más tranquilos gracias al estudio publicado en The Astrophysical Journal por el español Manu Linares desde el Instituto Tecnológico de Massachusetts (MIT).

El misterio que entramaban las estrellas de neutrones era el siguiente: desde los años 70 los astrofísicos las han estado estudiando a partir de las explosiones que se producen en sus capas externas. Pero las estrellas de neutrones no explotaban como ellos pensaban que debían hacerlo. Hasta que por fin Terzan 5, la que ha estudiado Linares, les ha dado una alegría.

 Estrella de neutrones - EcuRed

Ilustración artística de una estrella de neutrones y su disco de acreción. Crédito: NASA/Dana Berry.

Bombas de energía

Las estrellas de neutrones son el objeto observable más denso que existe en el universo. Son masas parecidas a nuestro Sol pero comprimidas en un radio de 8 a 15 kilómetros. En su interior la fuerza de la gravedad es billones de veces mayor a la terrestre. La descomunal presión compacta los átomos hasta que protones y electrones se funden formando neutrones. La temperatura y densidad son tan extremas que estos neutrones podrían llegar a romperse y dejar libres sus quarks.

A los astrofísicos les interesan sobremanera porque sus condiciones no existen en ningún otro lugar del universo observable. “Es como un laboratorio natural que nos permite investigar las leyes de la física en un rango de energías, densidades y campos magnéticos inalcanzables en la Tierra”, explica Manu Linares a SINC.

Escenas así son corrientes en el Universo. Algunas estrellas de neutrones son tan densas que atraen la masa de las estrellas cercanas y llegan a tener una potencia magnética tan grande que eyectan intensos e inmensos rayos Gamma y X al espacio interestelar que son detectados por nuestros ingenios que observan este tipo de sucesos. Es tal su intensidad que superan más de mil veces los campos magnéticos de una estrella de neutrones corriente.

                          Intensa emisión de rayos Gamma al espacio

Claro que pueden llegar a estallar en el proceso, toda vez que coger nasa de objetos circundantes con el campo magnético que ya poseen y que, al inyectarle nuevo material también se agranda y pone la estabilidad de la estrella en un equilibrio difícil de mantener. Hasta hace muy poco no se sabía que esta clase de estrellas, los AXP, también podrían sufrir estallidos.

Fue el Rossi, precisamente, el que detectó el estallido en la estrella AXP 1E 1048-5937. Posteriores investigaciones indicaron que tiene un campo magnético  de aproximadamente 10^ 15 Gauss.

http://4.bp.blogspot.com/_XGCz7tfLmd0/TDUaKVAfCZI/AAAAAAAAGeA/pNphHD4hT8U/s1600/quapul02.jpg

En el verano de 1967 Anthony Hewish y sus colaboradores de la Universidad de Cambridge detectaron, por accidente, emisiones de radio en los cielos que en nada se parecían a las que se habían detectado hasta entonces. Llegaban en impulsos muy regulares a intervalos de sólo 1 1/3 segundos. Para ser exactos, a intervalos de 1,33730109 segundos. La fuente emisora recibió el nombre de “estrella pulsante” o “pulsar”.

   Esta es la imagen que de un púlsar tenemos pero… En general, las estrellas de neutrones pueden ser de variado rango o clase y hasta donde conocemos: De Neutrones, Púlsares y Magnetares cada una de ellas con sus extrañas y específicas cualidades que, al no llegar a comprenderlas… del todo, nos maravillan.

Astrophysics ciencia kosmos GIF - Find on GIFER

                                                     Son como faros cósmicos

Se cree que los púlsares reciclados son púlsares ordinarios que han perdido energía y se han debilitado, y que luego se han puesto a girar de nuevo por acreción del gas de la estrella compañera. Existe una alta proporción de púlsares reciclados en los núcleos de los cúmulos globulares, donde la alta densidad de estrellas hace más probable la captura de una vieja estrella de neutrones en un sistema binario. Los primeros púlsares reciclados en ser descubiertos tenían  períodos de pulsos muy cortos y se conocen como “púlsares de milisegundo”, aunque más tarde se descubrieron otros con períodos mucho más largo.

Para poder llegar a estrella de neutrones, la estrella original que implosiona es más masiva que nuestro Sol. La estrella de Neutrones es muy densa, tan densa como el núcleo de un átomo y, cuando colapsa se convierte en un púlsar giratorio que es el resultado de una explosión de supernova como la presenciada en 1054.

De todas las maneras y aunque han sido descubierto y, sin duda alguna existen, aún tenemos mucho que aprender de los magnetares que, son los objetos más extraños de la familia de las estrellas de neutrones.

emilio silvera

Estrellas cercanas que podrían facilitar la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hay una veintena de estrellas que se encuentran dentro de un radio de acción marcado por los doce años-luz de distancia al Sol. ¿Cuál de ella se nos presenta como la más probable para que, algunos de sus planetas pudieran albergar alguna clase de vida, incluso Vida Inteligente? La estrella más cercana a nosotros es Alfa Centauri que, en realidad es un sistema estelar situado a unos 4.37 años-luz de nosotros (unos 42 billones de kilómetros). En realidad, se trata de un sistema de tres estrellas.

Alfa Centauri contiene al menos un planeta del tamaño terrestre con algo más de la masa de la Tierra que está orbitando a Alfa Centauri B. Sin embargo, su cercanía a la estrella, unos 6 millones de kilómetros lo hace tener una temperatura de más de 1.ooo ºC lo que parece ser muy caliente para albergar alguna clase de vida.

http://bitacoradegalileo.files.wordpress.com/2011/07/alpha-y-beta-cen-hubble.jpg

Alfa Centauri, seguramente por su cercanía a nosotros, ha ejercido siempre una sugestiva atracción para nosotros cuando miramos el cielo nocturno. Resulta ser, en su conjunto, la tercera estrella más brillante de todas, y junto con Hadar (Beta Centauri), las dos en la imagen de arriba, es una muy importante y útil referencia para la localización de la Cruz del Sur.  Además, y como se trata de una estrella triple, Alpha Centauri A, la componente principal, se constituye en una buena candidata para la búsqueda de planetas del mismo tipo que la Tierra.

Las tres estrellas se formaron a partir de la misma nebulosa de materia interestelar. El trio de estrellas se van orbitando las unas a las otras a un ritmo como de vals, unidas por los lazos invisibles de la fuerza gravitatoria que generan y con la que se influyen mutuamente. Lo cierto es que las estrellas triples gozan de pocas probabilidades para albergar la vida, porque no pueden mantener a sus planetas en una órbita estable y segura, la inestabilidad que producen las tres estrellas en esos posibles planetas, parece que sería insoportable para formas de vida inteligente. Claro que, las distancias a las que se encuentran unas estrellas de otras es grande y… ¿Quién sabe? Nunca podemos afirmar nada sin haberlo confirmado.

Alfa Centauri Bb - Wikipedia, la enciclopedia libreUna supertierra orbita a la estrella de Barnard | ESO España

                  Se han descubierto planetas en Próxima Centauri y en la Estrella de Barnard

La siguiente estrella más allá de Alfa Centauri es la estrella de Barnard, situada a 6 años-luz aproximadamente de nuestro Sol, o, lo que es lo mismo, a unos sesenta mil billones de kilómetros de distancia. Esta estrella parece contar con una familia de planetas. Sin embargo, es una estrella muy vieja, casi tanto como el propio universo, y, por tanto, es deficitaria en la mayoría de los elementos químicos esenciales para la vida. Es poco prometedora para buscar vida en sus alrededores.

Las 10 estrellas más cercanas al Sol se encuentran en un rango de distancia entre los 4 y 10 años luz. Para tener una idea, la Vía Láctea mide unos 100.000 años luz, lo cual convierte a estas estrellas en verdaderas vecinas:

Las estrellas mas cercanas al sol en un radio de 20 años luz. - Foro Coches

 

Estrellas a 20 años luz a partir del sol

  1. Alfa Centauri (que, en realidad, es un sistema de tres estrellas): a 4,2 años luz.
  2. Estrella de Barnard: a 5,9 años luz.
  3. Wolf 359: a 7,7 años luz.
  4. Lalande 21185: a 8,2 años luz
  5. Sirio (un sistema binario de estrellas): a 8,6 años luz
  6. Luyten 726-8 (otro sistema binario): a 8,7 años luz.
  7. Ross 154: a 9,7 años luz
  8. Ross 248: a 10,3 años luz
  9. Epsilon Eridani: a 10,5 años luz.
  10. Lacaille 9352: a 10,7 años luz

 

 

Más allá de Barnard existe un cierto numero de estrellas, todas ellas poco prometedoras para la existencia de vida y de inteligencia porque, o son demasiado pequeñas y frías para emitir la clase de luz que la vida tal como la conocemos requiere, o demasiado jóvenes como para que haya aparecido la vida inteligente en los planetas que las circundan. No encontraremos otra estrella que pueda albergar la vida y seres inteligentes hasta que no viajemos a una distancia próxima a los once años-luz del Sol.

Épsilon Eridani está situada a unos 10,5 años-luz del Sol, es una de las estrellas más cercanas  al Sistema Solar y la tercera más próxima visible a simple vista. Está en la secuencia principal, de tipo espectral K2, muy parecida a nuestro Sol y con una masa algo menor que éste, de unas 0,83 masas solares. Es joven, sólo tiene unos 600 millones de años de edad mientras que el Sol tiene 4.600 millones de años.

▷ Epsilon Eridani, un joven espejo del Sistema Solar — AstrobitácoraSistema Épsilon Eridani | Halopedia | Fandom

Épsilon emite menos luz visible y luz ultravioleta que nuestra estrella, pero probablemente sea suficiente para permitir allí el comienzo de la vida que, si tenemos en cuenta el corto tiempo que ha pasado, no llegaría a poder ser inteligente. Claro que, los cálculos realizados sobre la vida de las estrellas en general y sobre esta en particular… ¡No son fiables! Y, siendo así (que los), tampoco podemos estar seguro de lo que en sus alrededores pueda estar presente. Se le descubrió un planeta orbitando a su alrededor, Épsilon Eridani b, que se descubrió en el año 2000. La masa del planeta está en 1,2 ± 0,33 de la de Júpiter y está a una distancia de 3,3 Unidades Astronómicas. Se cree que existen algunos planetas de reciente formación que orbitan esta estrella.

Todo sobre la estrella de Tau Ceti y las noticias 2021

Más allá de Épsilon Eridani hay nueve estrellas que se encuentran todavía dentro de un margen de distancia del Sol que no sobrepasan los 12 años-luz. Sin embargo, todas ellas, menos una, son demasiado jóvenes, demasiado viejas, demasiado pequeñas o demasiado grandes para poder albergar la vida y la inteligencia. La excepción se llama Tau Ceti.

La estrella Tau Ceti es la 22 estrella más cercana a nuestro sistema solar. Se encuentra a solo doce años luz de la Tierra. Al igual que nuestro sol, es una enana amarilla. Es un poco más pequeño y menos activo que el sol. Un equipo de astrónomos de la Universidad de Hertfordshire acaba de publicar un estudio que confirma la existencia de cuatro planetas en órbita alrededor de Tau Ceti. Estos 4 planetas serían planetas telúricos con masas de alrededor de 4 veces más que la Tierra. Pero lo que los hace realmente interesantes es que dos de estos planetas estarían ubicados en la zona habitable de su estrella.

Tau Ceti satisface todas las exigencias básicas para que en ella (en algún planeta de su entorno) haya podido evolucionar la vida inteligente: Se trata de una estrella solitaria como el Sol -al contrario que Alfa Centauri- no tendría dificultad alguna en conservar sus planetas que no serían distorsionados por la gravedad generada por estrellas cercanas. La edad de Tau Ceti es la misma que la de nuestro Sol y también tiene su mismo tamaño y existen señales de que posee una buena familia de planetas. No parece descabellado pensar que, de entre todas las estrellas próximas a nosotros, sea Tau Ceti la única con alguna probabilidad de albergar la vida inteligente.

¿Quién sabe lo que en algunos de esos planetas que orbitan la estrella Tau Ceti pudiera estar pasando? Y, desde luego, dadas las características de su sistema solar y la cercanía que parece existir entre alguno de los mundos allí presentes, si algún ser vivo inteligente pudiera contemplar el paisaje al amanecer, no sería extraño que pudiera ser testigo de una escena como la que arriba contemplamos. ¿Es tan bello el Universo! Cualquier escena que podamos imaginar en nuestras mentes… ¡Ahí estará! en alguna parte.

Es cierto que la vida, podría estar cerca de nosotros y que, por una u otra circunstancia que no conocemos, aún no hayamos podido dar con ella. Sin embargo, lo cierto es que podría estar mucho más cerca de lo que podemos pensar y, desde luego, es evidente que el Sol y su familia de planetas y pequeños mundos (que llamamos lunas), son también lugares a tener en cuenta para encontrarla aunque, posiblemente, no sea inteligente.

Con certeza, ni sabemos cuentos cientos de miles de millones de estrellas puede haber en nuestra propia Galaxia, la Vía Láctea. Sabemos más o menos la proporción de estrellas que pueden albergar sistemas planetarios y, sólo en nuestro entorno galáctico podrían ser cuarenta mil millones de estrellas las que pudieran estar habilitadas para poder albergar la vida en sus planetas.

Descubren cuatro planetas como la Tierra en la estrella Tau CetiKOI-5Ab, el nuevo planeta que descubrieron en la NASA | 0221

Estas cifras asombrosas nos llevan a plantear muchas preguntas, tales como: ¿Estarán todas esas estrellas prometedoras dando luz y calor a planetas que tengan presente formas de vida, unas inteligentes y otras no? ¿O sólo lo están algunas? ¿O ninguna a excepción del Sol y su familia. Algunos astronómos dicen que la ciencia ya conoce la respuesta a esas preguntas. Razonan que la Tierra es una clase de planeta ordinario, que contiene materiales también ordinarios que pueden encontrarse por todas las regiones del Universo, ya que, la formación de estrellas y planetas siempre tienen su origen en los mismos materiales y los mismos mecanismos y, en todas las regiones del Universo, por muy alejadas que estén, actúan las mismas fuerzas, las mismas constantes, los mismos ritmos y las mismas energías.

Planetas como la Tierra y muy parecidos los hay en nuestra propia Galaxia a miles de millones y, si la vida hizo su aparición en esta paradisíaca variedad de planeta, estos astrónomos se preguntan, ¿por qué no habría pasado lo mismo en otros planetas similares al nuestro? ¿Tiene acaso nuestro planeta algo especial para que sólo en él esté presente la vida? La Naturaleza, amigos míos, no hace esa clase de elecciones y su discurrir está regido por leyes inamovibles que, en cualquier circunstancia y lugar, siempre emplea los caminos más “simples” y lógicos para que las cosas resulten como nosotros las podemos contemplar a nuestro alrededor. Y, siendo así (que lo es), nada aconseja a nuestro sentido común creer que estamos solos en tan vasto Universo.

emilio silvera

Enigmas que no sabemos desvelar

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El eslabón perdido: la construcción de un mito — Shorthand SocialEl “eslabón perdido”. Por: Vale V. Villasuso | by Cachivache | Cachivache  MediaEl 'eslabón perdido' en la historia humana se confirma después de un largo  debate

Parece que el Chimpancé y el Humano tuvieron un antecesor común del que divergieron las dos ramas. Este ancestro no era ni Homo ni Pan. No se ha sabido explicar el por qué, mientras el hombre ha evolucionado y estudia las estrellas, el chimpancé sigue en la copa de los árboles.

 Archaeopterux,  eslabón perdido entre dinosaurios y aves. Está claro que al decir “eslabón perdido” nos estamos refiriendo a los fósiles de formas transicionales o estados intermedios en la evolución animal, se toma como una especie de eslabón implicado en el estado evolutivo lineal que de unas formas pasan a otras consecutivas. En realidad el término no es correcto, toda vez que, no hay uno, sino muchos, y no son partes de una cadena sino partes de un árbol muy ramificado.

Acepta el reto!

 

             Hablamos del eslabón perdido pero, son muchos los cabos sueltos que no hemos sabido unir

La Tierra, un planeta lleno de seres vivos a los que conocer y respetar |  Ciencia Fácil - Blogs hoy.es

¿Qué es lo que nos apartó tan decisivamente de todas las otras especies con las que compartimos el planeta? ¿En qué momento de nuestra historia evolutiva aparecieron las diferencias que nos separaron de los demás criaturas? ¿La denominada “mente” (o mundo mental) es algo específico de los humanos o se trata de un rasgo general de la psicología animal? ¿Por qué surgió el lenguaje? ¿Qué es eso que llamamos cultura, y que muchos consideran el sello de la Humanidad?  ¿Somos la única especie que puede presumir de ella? Y quizás la pregunta más crucial de todas: ¿por qué estas diferencias nos escogieron a nosotros y no a otras especies?

La especie elegidaClasificación de los seres vivos - Acerca Ciencia

 

Lo cierto es que, en el árbol de la vida en el que cada rama es una especie, nosotros sólo somos una muy pequeña sin más importancia que cualquiera de las demás

Son preguntas que, a veces, no sabemos contestar y, sin embargo, sabemos que Alma-Mente y Cuerpo, conforman un conjunto armonioso que hacen de nosotros seres ¿únicos? en el Universo.

Reconocer Las Emociones, El Camino Hacia La Felicidad - Filosofía & Co.Qué es un sentimiento? emociones de amor,miedo...

Tenemos unos sensores que nos permiten sentir emociones como la tristeza, la ternura, el amor o la alegría.  Nos elevamos y somos mejores a través de la música o la lectura de unos versos.  Igualmente podemos llegar al misticismo del pensamiento divino, o incluso profundizar en los conceptos filosóficos de las cosas hasta rozar la metafísica.

Alguien dijo: ” Cuando las palabras no alcanzan para expresar todo lo que el ser humano quiere decir los artistas acuden a la música. Dicen que es ¡el lenguaje del alma! y recurren a ella para ¡compartir pensamientos y emociones. Lo cierto es que, nos hace mejores y nos eleva a un plano superior.

Los cinco lenguajes de amor que debes conocer para mejorar tu relación |  BioguiaLAS EMOCIONES Y LA MÚSICA – albayabril

La música es el lenguaje de las emociones, pero ¿Qué es el amor? ¿Quién no ha sentido alguna vez ese nudo en el estómago y perdido las ganas de comer? ¿Quién no ha sentido alguna vez ese sufrimiento profundo de estar alejado del ser amado y el inmenso gozo de estar junto a ella/él?

Al igual que todo lo grande está hecho de cosas pequeñas, lo que entendemos por felicidad esta compuesto de efímeros momentos en los que ocurren cosas sencillas que, la mayoría de las veces, ni sabemos apreciar. Una simple mirada, una caricia, estar juntos ante ese paisaje de ensueño… ¡Son momento inolvidables!

Descubren un «tesoro» de genes relacionados con la inteligencia humana

De ese ingrediente llamado inteligencia unos tienen más que otros. Unas veces por sus circunstancias personales y el entorno en el que nació, otros de manera natural y genética.

Lo que llamamos inteligencia está dentro de todos nosotros, unos tienen más cantidad de ese ingrediente y otros tenemos menos.  Aparece con el lenguaje, pero ya desde la cuna el niño muestra una actividad sensorial y motriz extraordinaria que, a partir del primer año, presenta todos los caracteres de comprensión inteligente.  Con la ayuda de su entorno, el niño va realizando las adaptaciones sensoriales elementales construidas por reflejos.

Psicología: Los únicos cuatro tipos de personalidad que existen, según la  ciencia

         Todos somos iguales pero diferentes

Mas tarde, aparecerán los numerosos estadios de las adaptaciones intencionales de libre inclinación que acabaran conduciendo al individuo a desarrollar una personalidad única, con el poder de inventar mediante la deducción o combinación mental de los hechos que ve y conoce por el mundo real y que puede dar lugar a crear situaciones y mundos de fantasía, es la creación de la mente.  Con las vivencias del entorno, lo que se enseña y lo que aprende por el estudio, se forma una personalidad más o menos elevada según factores de índole diversa que nunca son los mismos, en cada caso se dan circunstancias muy individualizadas.

Busca SET detectar niños talento en Tamaulipas | Noticias de Matamoros :  W1420.com

Todos quedamos marcados para el resto de nuestras vidas en relación a lo que de niño nos han enseñado, nos han querido y el entorno familiar en el que nos tocó vivir, son cosas que se gravan a fuego en la mente limpia del niño que de esta manera, comienza su andadura en la vida condicionado por una u otra situación que le hace ser alegre y abierto o taciturno, solitario y esquivo con una fuerte vida interior en la que, para suplir las carencias y afectos, se crea su propio mundo mental y privado.

La  mente Humana es un bien “divino”, no se trata de una cosa más, es algo muy especial y tan complejo y poderoso que, ni nosotros mismos, sus poseedores, tenemos una idea clara de dónde puede estar el límite.

9 datos curiosos acerca de tu mente - La Mente es MaravillosaSigue en pie lo del chip en el cerebro para aumentar la memoria?

 La ciencia ignora los detalles de por qué y cómo soñamos, cómo se forman exactamente los recuerdos y qué mecanismos hacen posible el desarrollo y el cambio de las emociones, entre otros.

– Si verdaderamente tratan de recordar algo, mirarán hacia arriba y a la izquierda.

 – Las personas deprimidas tienen un volumen tres veces mayor de sueños, que el de las personas que no están tristes.

– El cerebro de los niños expuestos a la violencia familiar tiene los mismos patrones de actividad que el de los soldados que han combatido en una guerra.

– Los videojuegos pueden generar una adicción tan fuerte como la de la heroína.

– Cuando estás fatigado, o tienes hambre, te será más difícil decir “no”, serás más vulnerable.

– Cada uno de nosotros tiene alrededor de setenta mil pensamientos al día, Las sinapsis neuronales son conexiones que se producen 10 veces con exponente de un millón.

Cómo mejorar la memoria y aumentar la capacidad intelectual - La Mente es  Maravillosa

                                                                   Capacidad intelectual y la memoria

La mente guarda nuestra capacidad intelectual, tiene los pensamientos dormidos que afloran cuando los necesitamos, es la que guía nuestras actitudes y comportamientos, la voluntad y todos los procesos psíquicos conscientes o inconscientes, es la fuente creadora o destructora y, en definitiva, es lo que conocemos por “ALMA” y que, en realidad, es la consciencia.

Todas las cosas son, pero no de la misma manera, hay esencia y sustancia que conviven para conformar al sujeto que ES.  “Somos” parte del Universo y estamos en el tiempo/espacio para desarrollar una misión que ni nosotros mismos conocemos, vamos imparables hacia ella y actuamos por instinto.  Nos dieron las armas necesarias para ello: Inteligencia, Instinto y curiosidad.  Estos tres elementos nos transportan de manera imparable hacía el futuro inexorable que nos está reservado.

Cómo crea el cerebro recuerdos, los retiene y rememora? – Centro  Psicológico CPC

El conjunto de nuestras mentes tiene un poder infinito que, de momento, está disperso, las ideas se pierden y cuando nacen no se desarrollan por falta de medios y de apoyos, es una energía inútil que, invisible, está vagando por el espacio sin ser aprovechada.

Estoy totalmente seguro de que nuestros cerebros ven el mundo que les rodea bajo su propia perspectiva, es decir, lo filtra y en buena medida lo crea, el cerebro no es pasivo, sino que, todo lo que percibe lo transmite “a su manera”, desde su propia percepción, desde su propia realidad, desde su propio mundo físico de todos los eventos y experiencias que tiene registrados para conformar un entorno y un mundo de las propias ideas.

Si pudiéramos “ver” lo que ve un perro, nos quedaríamos asombrados del mundo tan diferente al nuestro que percibe su cerebro con sus propias ideas y percepciones físicas y psíquicas.

Nosotros, los humanos, somos algo especial y nuestros cerebros no están en proporción con el peso de nuestros cuerpos si nos comparamos con el resto de los animales.  Tanto es así que, si el cuerpo del ser humano siguiera las proporciones, con respecto al cerebro, que se dan como media en los mamíferos, nuestros cuerpos deberían pesar casi diez toneladas (aproximadamente lo que pesa un rinoceronte).

 

Miguel Paz (migpazmp) - Perfil | Pinterest

                                           No siempre “nuestro mundo”, coincide con el mundo

Nuestro cerebro es potente y tiene capacidades para “crear” su propio mundo, así pensamos que el mundo que vemos, oímos y tocamos es el mundo “real”, sin embargo, estaría mejor decir que es un mundo real humano, otros lo ven, lo oyen y lo perciben de manera diferente a la nuestra, así que, en nuestro propio mundo, para ellos, la realidad y el mundo es diferente, la que conforme sus cerebros.

No podemos ni comunicarnos con seres que comparten con nosotros el mismo planeta.  Estos seres, de diversas morfologías y diferentes entornos en sus formas de vida, tienen un desarrollo cerebral distinto y, a veces, ni sabemos que es lo que tienen (caso de las plantas y vegetales en general), o, de cualquier animal en particular.

Por qué un equipo de científicos quiere cambiar el concepto de qué es  "vida" (y cómo podría revolucionar las misiones que buscan extraterrestres)  - BBC News Mundo

¿Por qué no podría ser una extraterrestre? Los ingredientes que la forman son los mismos que los míos

Pensemos que si eso es así en nuestro propio mundo, ¿Cómo podríamos contactar con seres pertenecientes a mundos situados en Galaxias alejadas miles de millones de kilómetros de la nuestra? Bueno, posiblemente podremos hacerlo pasado un tiempo de relación mutua, toda vez que, según creo, serían muy similares a nosotros en lo esencial y, las inteligencias terminan por comprenderse.

El Rincón Emprendedor de El Salvador: Tecnología de traducción…. ¿Podremos  comunicarnos con los delfines?Entrevista a Pilar Cañizo, presidenta de ANAA | Blog oficial del Ejército  de Tierra de España

                                               La comunicación conseguida es incompleta

Al principio, ni siquiera podríamos comunicarnos con ellos cuyos lenguajes abstractos y matemáticas estarían conformados de manera muy diferente mediante una organización distinta de signos y guarismos pero, finalmente, una cierta similitud de sus cerebros con los nuestros, harían posible un entendimiento, ya que, ellos y nosotros tendríamos, es muy posible, las mismas percepciones del universo. No se descarta la posibilidad de Civilizaciones que, basadas en el Carbono, como la nuestra, esté conformada por seres similares o parecidos a nosotros.

Y, a todo esto, sólo una cosa tenemos clara: ¡Sabemos tan poco!

emilio silvera

Sabemos cómo evoluciona el Universo, observando las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hace algún tiempo que salió la noticia en los medios:

7784

La estrella hiper-gigante HR 8752 atravesando el Vacío Evolutivo Amarillo (YEV, por sus siglas en inglés) en una recreación artística. La gráfica muestra el aumento de temperatura que ha sufrido la superficie de la estrella en las últimas décadas. /© A. Lob

“Un equipo de científicos europeos, entre ellos investigadores del Instituto de Astrofísica de Canarias (IAC), ha hecho públicos los resultados de 30 años de investigación sobre la estrella hiper-gigante HR 8752, que han revelado el eslabón perdido en la evolución de este tipo de astros.Concretamente, han descubierto que, la región inestable conocida como Vacío Evolutivo Amarillo, puede cambiar profundamente la evolución de una estrella ya que, en estas tres décadas, HR 8752 ha aumentado de forma espectacular su temperatura superficial en 3.000 Kelvin (K) a su paso por esta región.”

Los resultados obtenidos venían a desvelar algunos misterios que antes, no tenían explicación.

El gran vacío amarillo… - Naukas
                    La estrella hiper-gigante HR 8752 atravesando el Vacío Evolutivo Amarillo
¿Por qué hay una zona del diagrama de Hertzprung-Russell aparentemente vacía? ¿Y por qué se llama “vacío amarillo”?
En el diagrama H-R hay dos regiones que tiene muy pocas estrellas: la “la Laguna de Hertzsprung”  y el “Vacío amarillo” (Yellow Void en inglés). En la primera, se cree que el problema es que aún no se han observado estrellas en esa fase debido a que es una etapa rápida en la vida de una estrella de tipo solar; en el caso del vacío amarillo, se cree que debería haber hiper-gigantes amarillas, pero no hay ninguna.
El equipo de científicos Informaron sobre el hallazgo y dieron los detalles:
“Las hiper-gigantes –de las que solo se conocen 12 en la Vía Láctea–son las estrellas más luminosas que se conocen en la actualidad en el Universo. Pueden llegar a ser hasta millones de veces más brillantes que el Sol y tener un tamaño de varios cientos de radios solares, con temperaturas superficiales de entre los 3.500 K y los 35.000 K. En concreto, HR 8752 es unas 250.000 veces más luminosa que el Sol y puede ser observada con prismáticos en la constelación del hemisferio norte de Casiopea”.
Hipergigante - Wikipedia, la enciclopedia libre
     Comparación entre los tamaños del Sol y VY Canis Majoris, una hiper-gigante. Se trata de la estrella roja más grande conocida. Cuando miramos la reseña de este tipo de estrellas, en casi cualquier sitio que podamos mirar nos dicen algo parecido a esto:
Betelgeuse, la estrella a punto de explotar - @rosauradels - Steem -  GoldVoice.clubUna de las tareas mas simples... - Planetario Digital de Lima | Facebook
     Betelgeuse a punto de explotar comparada con Rigel y Aldebaran
“Una hiper-gigante es una estrella excepcionalmente grande y masiva, incluso mayor que una supergigante. Su masa puede ser de hasta 1000 veces la masa de nuestro Sol, próxima al límite máximo teórico, el cual establece que la cantidad de masa en una estrella no puede exceder las 120 masas solares 120 (su propia radiación la destruiría y, para evitarlo, está eyectando material al Espacio Interestelar continuamente como ocurre con Eta Carinae). Este límite en masa está asociado a la luminosidad de Eddington, por el que estrellas más masivas simplemente no pueden estar en equilibrio al vencer la presión de radiación  interna a la fuerza gravitacional, producirían tanta energía que se desprenderían de la masa en exceso de las 120 M. Aun así, algunas hiper-gigantes aparentan tener más de 100 M e, inclusive, haber tenido, inicialmente, entre 200 y 250 M, al contrario de lo que predicen las teorías actuales sobre la formación y evolución estelar.
La imagen con más resolución de Eta Carinae | ESO Chile

El interferómetro VLTI capta fuertes vientos en un conocido sistema estelar masivo. El equipo encontró nuevas e inesperadas estructuras en el interior del sistema binario, incluso en la zona que hay entre las dos estrellas, donde chocan vientos estelares a velocidades extremadamente altas. Esta nueva información sobre el interior de este enigmático sistema estelar podría conducir a una mejor comprensión de la evolución de las estrellas muy masivas.

Lo que más arriba se explica, es decir, que cuando una estrella tiene más de 120 masas solares, su propia radiación la podría destruir y, para evitarlo, eyecta material estelar al espacio evitando su propia destrucción.
Eta Carinae", la estrella vecina que ayuda a explicar el Universo | CNN
Eta Carinae podría estar a punto de explotar. Pero nadie sabe cuándo -lo mismo podría ser mañana que tardar cientos de miles o millones de años- Eta Carinae es una de esas estrellas masiva  – aproximadamente 100 veces mayor que nuestro Sol- lo que hace que sea un excelente candidato para una supernova que sembrará el espacio interestelar de gas y polvo y materiales complejos del que, de nuevo, volverán a surgir estrellas y mundos. Los registros históricos muestran que hace unos 150 años Eta Carinae sufrió una explosión inusual que la convirtió en una de las estrellas más brillantes del cielo austral.
Pirulo Cósmico: Eta Carinae, la estrella condenada.
Eta Carinae, en la Nebulosa Keyhole, es la única estrella en la que actualmente se han detectado emisiones de luz LASER de manera natural. La imagen de arriba fue tomada en 1996, fue resultado de sofisticadas combinaciones de procesamiento de imágenes y los procedimientos diseñados para llevar a cabo nuevos detalles de la nebulosa que rodea a esta inusual estrella perdida entre las brumas del material que eyecta para evitar su muerte. Ahora son claramente visibles dos lóbulos, una región central caliente, y extrañas rayas radiales. Los lóbulos están llenos de carriles de gas y polvo que absorben la luz azul y ultravioleta emitida cerca del centro. Las rayas siguen sin explicación. ¿Estos indicios nos dicen cómo se formó la nebulosa? ¿ Sabremos algún día cuando Eta Carinae explotará?
Sabemos cómo evoluciona el Universo, observando las estrellas : Blog de  Emilio Silvera V.G.A.B.I.E.: Un auténtico monstruo cósmico, pillado en plena ex... |  Cosmico, Astronomos, Astronomía
Debajo de estas imágenes, en la prensa se pudio leer: “Descubierta una estrella monstruosa con 300 veces la masa del Sol, el astro rompe todos los récords y previsiones teóricas. Una estrella de 300 veces la masa de nuestro Sol es algo no sólo nunca visto hasta ahora sino también completamente inesperado para los astrónomos, que estimaban el límite máximo de masa en unas 150 veces la solar. Pero la han encontrado. Todavía se la conoce sólo por su anodino nombre oficial, R136a, y la han localizado unos científicos en la nebulosa Tarántula, de la galaxia vecina Gran Nube de Magallanes, a unos 165.000 años luz de distancia de la Tierra. “La existencia de un monstruo así, millones de veces más luminoso que el Sol, y perdiendo peso por los intensos vientos estelares, puede ayudarnos a responder una pregunta clave. ¿Cómo de masivas pueden ser las estrellas?”.
Estudian estrellas masivas con ayuda de infrarrojosEstudian estrellas masivas con interferometría infrarroja | Noticias de la  Ciencia y la Tecnología (Amazings® / NCYT®)
En nuestro entorno galáctico solo una de cada dos millones de estrellas es de tipo O, una clase cuyos objetos que tienen desde dieciséis a más de cien masas solares y una luminosidad de hasta varios millones de veces la del Sol. Estas estrellas, que culminan en explosiones de supernova, influyen de modo determinante en la estructura y evolución de las galaxias. Además, son las responsables de la existencia de, entre otros, algunos de los elementos que nos componen, pero su escasez dificulta su conocimiento.
▷ Las enanas rojas — AstrobitácoraEl primer júpiter caliente alrededor de una enana roja - Eureka
Una estrella enana roja que son las más abundantes del Universo y las que tienen mayor edad. Otra estrella como nuestro Sol, una estrella celeste claro super-masiva y otra última de dimensiones inconmensurables. Las estrellas que han sido profundamente estudiadas en todas sus variantes, formas y colores, tienen aún algunos secretos que tenemos que desvelar.
La estrella T Leporis a escala
Comparación entre la fotografía obtenida por el VLTI de la estrella tipo Mira T Leporis y el tamaño de la órbita de la Tierra alrededor del Sol. Las observaciones del VLTI revelan la presencia de un envoltorio esférico molecular que rodea a la estrella, y que es unas 100 veces más grande que el Sol.
Alguna vez me he referido aquí a R. Leporis, que es un capricho estelar. En el espacio existen muchas estrellas que, de poder saber de ellas nos dejarían sumidos en el mayor de los asombros. Las hay de Carbono como R. Lepori, de Circonio, de Litio, de Manganeso, de Estroncio, de Helio, de Bario, de Manganeso-Mercurio, de metales pesados, de Silicio, de Tecnecio, de Neutrones, y… ¿por qué no podría incluso existir algunas de Quarks?

 

Aquí tenemos a R Leporis, una estrella de Carbono a la que se puso el nombre de la “Estrella Carmesí”, o, la “Gota de Sangre”.

 

“R Leporis (R Lep / HD 31996 / HR 1607) es una estrella variable de la constelación de Lepus, cerca del límite con Eridanus. Visualmente es una estrella de un color rojo vívido, cuyo brillo varía entre magnitud aparente +5,5 y +11,7. Descubierta por John Russell Hind en 1845, es también conocida como Estrella carmesí de Hind.

A una distancia aproximada de 1100 años luz, R Leporis pertenece a la rara clase de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso. En R Leporis la relación carbonooxígeno estimada es 1,2, más del doble que la existente en el Sol. Tiene un radio entre 480 y 535 veces más grande que el radio solar, equivalente a 2,2 – 2,5 UA. Si estuviese en el centro del Sistema Solar, su superficie se extendería más allá de la órbita de Marte. Su temperatura superficial, extremadamente baja para una estrella, está comprendida entre 2050 y 2290 K. Brilla con una luminosidad entre 5200 y 7000 veces superior a la del Sol, siendo la mayor parte de la energía radiada como radiación infrarroja.
En la imagen podemos contemplar como algo que nos parece tan enorme como el Sol, puede quedar empequeñecido al lado de otros astros de cuya inmensidad ni podíamos imaginar que pudieran existir. Arriba Betelgeuse se exhibe presumida al lado de las otras estrellas que, siendo grandes y muy grandes, no pueden compararse a grandiosidad. Sin embargo, aún las hay mucho masa grandes que ella.
          Ahora es Antares la que se puede pavonear ante las demás

Del grupo destaca Antares, una supergigante M 1,5, 10 000 veces más luminosa que el Sol y con un diámetro que es probablemente más de 500 veces el del Sol. Nos contempla desde 520 años luz de distancia  y tiene una compañera enana. Su color es el rojo intenso.

Aldebaran, la estrella Alfa Tauri, es una Gigante K5. Aparentemente forma parte del grupo de estrella de las Hyades, aunque en realidad sólo está a 60 años luz aproximadamente la mitad de la distancia del cúmulo.

El enigma de Betelgeuse | Siderofilia | SciLogs | Investigación y Ciencia

Betelgeuse, la estrella Alfa Orionis, la décima más brillante del cielo, es una gigante tipo M2 que es una variable semirregular. Se dice que está a unos 400 años luz de la Tierra y su luminosidad es 5000 veces superior a la del Sol pero, si se encuentra a la misma distancia de la Asociación de Orión (como algunos postulan), la luminosidad verdadera sería de 50 000 veces la del Sol. Su diámetro es cientos de veces el del Sol. Su brillo varía a medida que se expande y contrae en tamaño.

Arturo (estrella) - Wikipedia, la enciclopedia libre

Arthurus es la estrella Alfa Boötis, magnitud -o,o4, la estrella más brillante al norte del ecuador celeste y la cuarta más brillante de todo el cielo. Es una gigante K 1 situada a 35 a.l.

Rigel: imágenes, fotos de stock y vectores | Shutterstock

Rigel, la estrella Beta Orionis de magnitud o,12 es una gigante B 8 situada a 1 400 años luz su luminosidad es de unas 150 000 veces la del Sol, tiene una compañera de magnitud 6,8, que es a su vez una binaria espectroscópica.

Al lado de estas gigantes, el Sol y otras estrellas resultan minúsculos como podemos ver en la imagen y, sin embargo, ya sabemos todos la importancia que nuestro Sol tiene para hacer posible la vida en la Tierra.

¡No por pequeño se es insignificante! Ya sabéis: ¡Todo lo grande está hecho de cosas pequeñas!

                  El grupo de tres estrellas gigantes Pismis 24-1 (CSIC).

Mucho antes de que Russell descubriera la estrella carmesí y Johannes Hevelius quedara fascinado por la estrella Mira, la estrella maravillosa, los astrónomos árabes se fijaron en una estrella de la constelación de Perseo que cambiaba de brillo cada tres días, con una pauta muy regular y acentuada. Los árabes escribieron una de las escasas páginas destacadas de la astronomía medieval, paliando de alguna manera la importante decadencia que sufrió esta ciencia en ese período en Europa y el Mediterráneo en el periodo comprendido entre Ptolomeo y Copérnico, que duró un milenio y medio.

Detalle de la estrella 'Mira' (NASA)

        Detalle de la estrella ‘Mira’ (NASA

WASHINGTON.- “El satélite Galaxy Evolution Explorer (Galex) de la NASA ha descubierto una estela extraordinariamente larga, parecida a la de un cometa, procedente de la estrella Mira. Los responsables de la investigación coincidieron en que “nunca se ha visto algo similar alrededor de una estrella.

La estela que arrastra Mira mide 13 años luz; es decir, tres veces la distancia que separa el sol de su estrella más cercana, alfa-centauro. Sin embargo, la estela nunca había sido observada porque sólo brilla en la luz ultravioleta. Precisamente el satélite Galex, puesto en órbita en abril de 2003, posee un telescopio de 50 centímetros de diámetro que observa galaxias en busca de fuentes de luz ultravioleta. Fue así como se topó como la estela de Mira.”

 

 

Bueno, hablar aquí de las estrellas que conocemos bien y de sus historias resulta entretenido y nos enseña un poco de la historia estelar en objetos individuales y determinados que, por una u otra razón tienen destacadas razones para que los astrónomos se fijaran en ellos.

Estrellas masivas como Eta Carionae, Betegeuse, Arthurus, Antares y tantas otras que ahora sabemos que existen nos llevan a saber que, cuando mueren, se pueden convertir en otros objetos distintos como, por ejemplo:

Estrellas de Neutrones

Qué son las estrellas de neutrones?Hallan la estrella de neutrones más gigantesca del universo

Estrellas que se forman a partir de estrellas masivas (2-3 masas solares) cuando al final de sus vidas, agotado el combustible nuclear de fusión, quedan a merced de la Gravedad que no se ve frenada por la fusión nuclear, y, en ese momento, la estrella comienza a contraerse bajo su propio peso, de forma tal que, los protones y electrones  se funden y se convierten en neutrones que, al verse comprimidos tan violentamente, y, no pudiendo permitirlo por el principio de exclusión de Pauli, se degeneran y y hacen frente a la fuerza gravitatoria, consiguiendo así el equilibrio de lo que conocemos como estrella de neutrones de intenso campo electromagnético y rápida rotación. Estos objetos, después de los Agujeros Negros, son los más densos que se conocen en el Universo, y, su masa podría pesar 1017 Kg/m3.

¿Estrella de Quarks?

Es hipotética, aún no se ha observado ninguna pero se cree que pueden estar por ahí, y, si es así, serían mucho más densas que las de neutrones, ya que, ni la degeneración de los neutrones podría parar la Fuerza de la Gravedad que sería frenada por los Quarks que también, son fermiones.

Si la estrella no es masiva, y tiene una masa como la del Sol, su final será la de convertirse en una ¡Estrella Enana Blanca!

Nuestro Sol es de esta clase de estrellas y, tampoco su densidad se queda corta, ya que, alcanzan 5 x 108 Kg/m3. Aquí, cuando la estrella implosiona y comienza a comprimirse bajo su propio peso por la fuerza de Gravedad, como ocurrió con la estrella de Neutrones, aparece el Principio de Exclusión de Pauli, el cual postula que los fermiones (los electrones son fermiones) no pueden ocupar el mismo lugar estando en posesión del mismo número cuántico, y, siendo así, se degeneran y hace que, la compresión de la estrella por la Gravedad se frene y vuelve el equilibrio que la convierte en estrellas enana blanca.

El fenómeno de convertirse en enana blanca ocurre cuando la estrella original tiene una masa máxima posible de 1,44 masas solares, el límite de Shandrashekar, si fuera mayor se convertiría en estrella de neutrones. Y, siendo mayor la masa de 3-4 masas solares, su destino sería un agujero negro.

Nos despediremos con estas bellas imágenes de sendas Nebulosas Planetarias como, un día lejano aun en el futuro, nos mostrará nuestro Sol al llegar al término de su vida. Ese será su final: Una bonita Nebulosa Planetaria con una estrella enana blanca en en el centro.

Claro que, tampoco ese será el final para el Universo en el que, nuevas estrellas seguirán naciendo para hacer posible que, mundos como la Tierra puedan, con su luz y su calor, hacer surgir formas de vida que, como la nuestra, pueda alcanzar la consciencia de Ser y, a partir de ahí… comenzará otra nueva aventura que será digna de contar.

emilio silvera