viernes, 26 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Energía del Cerebro

Autor por Emilio Silvera    ~    Archivo Clasificado en La Mente - Filosofía    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La naturaleza de la mente es el misterio más profundo de la humanidad y del Universo, se trata, además, de un enigma de proporciones gigantescas, que se remonta a milenios atrás, y que se extiende desde el centro del cerebro hasta los confines del Universo.

Hemos llegado al límite del conocimiento?Ha llegado el ser humano al límite del conocimiento?

                           Lo cierto es que somos seres de luz, estamos hechos del material estelar

Es un secreto que provocó vértigo y depresión en alguna de las mentes más preclaras de algunos de los filósofos y pensadores más grandes que en el mundo han sido. Sin embargo, este amplio vacío de ignorancia está, ahora, atravesado, por varios rayos de conocimiento que nos ayudará a comprender cómo se regula la energía mental.

La falta de sueño hace que el cerebro se “coma” a sí mi... en Taringa!El increíble hallazgo de 97 zonas que no se conocían del cerebro.Descifrando el código Enigma del cerebro - OpenMindMisterios del cerebro que aún no han conseguido resolverRedes de neuronas, misterio para los estudiosos del cerebro - Ciencia UNAM

Lo cierto es que los misterios del cerebro están profundamente enterrados en una maraña de conexiones sin fin que llamamos neuronas y a sus funciones sinapsis, esos relámpagos de luz que crean las ideas

Aunque puede que no sepamos que es la Mente, sabemos algunas cosas sobre el cerebro. Está formado por una red, una increíble maraña de “cables eléctricos” que serpentean a través de una gran cantidad de “sustancias” neuroquímicas. Existen quizás cien mil millones de neuronas en el cerebro humano, tantas como estrellas hay en la Vía Láctea, y, cada una de ellas recibe datos eléctricos de alrededor de mil neuronas, además de estar en contacto y en comunicación con unas cien mil neuronas más.

Cómo crea el cerebro recuerdos, los retiene y rememora? – Centro  Psicológico CPC

El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos.

La unidad a partir de la cual se configuran todas las fabulosas actividades del cerebro es una célula del mismo, la neurona. Las neuronas son unas células fantásticamente ramificadas y extendidas, pero diminutas.

Ciencia y científicos: Ramón y Cajal y la teoría neuronalLas ilustraciones de Santiago Ramon y Cajal en el MITDoctrina de la neurona - Wikipedia, la enciclopedia libreCajal y sus dibujos, un puente fascinante entre la ciencia y el arte |  Ciencia | EL PAÍS

La hipótesis neuronal de las células anatómicamente separadas se estableció cuando Santiago Ramón y Cajal (1852-1934) modificó el método cromo-argéntico de Golgi y lo utilizó en una serie magistral de experimentos. Aunque Golgi y Ramón y Cajal compartieron el premio Nobel en 1906, siguieron siendo rivales encarnizados hasta el final.

Si todas las neuronas del cerebro, los cien mil millones, están anatómicamente separadas unas de otras, ¿Cómo podían los mensajes eléctricos que pasaban a través de cada una de ellas saltar de una neurona a la siguiente?. La respuesta es que no saltan sino que hacen otra cosa, y esto tiene una importancia fundamental en relación con el modo en que funciona el cerebro.

Best Neurona GIFs | Gfycat

El descubrimiento fue realizado por Otto Loewi, cuando trabajaba en Australia durante la década de 1920. Lowell estaba trabajando con la transmisión neuronal del cerebro al corazón a través del nervio vago. Aisló el corazón de una rana con el nervio vago intacto, y demostró que la estimulación del nervio hacía que los latidos del corazón fueran más lentos. Pero él quería saber cómo se transmitía al corazón el mensaje eléctrico que transporta el nervio vago. ¿Se trataba de una conexión eléctrica o química, o de alguna otra cosa diferente? La clave estaba en una solución química que bañaba el corazón después de la estimulación del nervio vago que como consecuencia segregaba esta sustancia química que hacía de intermediaria en la transmisión del mensaje desde una célula a la siguiente.

Historia de la biología – Histo Embriología

Por lo tanto, los impulsos eléctricos nerviosos pasan a los extremos de las neuronas, donde la llegada del impulso hace que la terminación nerviosa libere una sustancia química (un neurotransmisor), que cruza el estrecho espacio que hay entre dos neuronas (la sinapsis), y entonces la sustancia química actúa sobre la segunda neurona para modificar su capacidad de emitir , a su vez, impulsos nerviosos. Cada neurona liberará sólo un tipo de neurotransmisor (habitualmente), pero lo liberará hacia muchas neuronas diferentes.

La síntesis cerebral del glutamato | Bio (Ciencia+Tecnología)Glutamato, un neurotransmisor con múltiples (y desconocidas) funciones

Ácido gamma-aminobutírico (GABA) — Mejor con SaludGuía metabólica | Hospital Sant Joan de Déu Barcelona

Existen dos neurotransmisores principales en el cerebro: el glutamato y el GABA. El glutamato actúa sobre la segunda neurona para aumentar la probabilidad de que emita un impulso nervioso (por lo que es un transmisor excitante), mientras que el GABA actúa para disminuir la probabilidad de que lo emita (luego es un transmisor inhibidor).

No obstante, una neurona no recibe una sola entrada desde una sinapsis neuronal individual, sino que recibe muchos miles. Decenas de miles de sinapsis desde miles de neuronas diferentes cubren la superficie ramificada de una sola neurona. Omito explicar aquí (podría ser tedioso para del lector) todos los mecanismos de los transmisores entre sinapsis y las ramas de salida (los axones) por las que se desplazan las señales eléctricas como ondas.

Anatomía Microscópica: Neuronas y Neuroglia | Parte 1/5 | POLÍTICA DE  IZQUIERDA ✍️ Amino

Una neurona, o una red de neuronas, puede así recoger información de muchas fuentes, incluidos los sentidos, la memoria y las emociones, para controlar la señal que ella misma va a emitir y que finalmente puede ocasionar una contracción o una relajación muscular.

El glutamato es el principal neurotransmisor del cerebro, pero paradójicamente es tambnién una toxina poderosa para las células del sistema nervioso. Cuando los niveles de glutamato son bajos, actúan como una señal entre neuronas, pero si son excesivos las sobreexcitan y las matan.. Esta acción “excitotóxica” del glutamato parece ser la causa de muerte neuronal durante las apoplejías y en las enfermedades neurodegenerativas, tales como la de Alzheimer, la de Parkinson, y la esclerosis múltiples.

Mal de Alzheimer: MedlinePlus enciclopedia médica

La enfermedad de Parkinson - Logopedia en Madrid - 91 518 16 69La Esclerosis Múltiple tiene unas expectativas y esperanza de vida geniales  que se acercan casi a la normalidad” - Doctor MosqueiraEsclerosis Múltiple: Cómo afecta a la movilidad

El glutamato es uno de los aditivos más frecuentes en los alimentos, presentándose en forma de sal como glutamato monosódico (GMS). Actúa reforzando el sabor y es omnipresente en la cocina china: la salsa de soja es especialmente rica en glutamato. Afortunadamente, el glutamato que está en el intestino y en la sangre apenas penetra en el cerebro, porque la barrera “sangre-cerebro” impide que glutamato cruce desde la sangre al cerebro.

La síntesis cerebral del glutamato | Bio (Ciencia+Tecnología)La VERDAD sobre el Glutamato Monosódico! - YouTube

No obstante, en medicina existe un trastorno conocido como “síndrome del restaurante chino” (donde nunca he comido, ni comeré) que puede aparecer por comer demasiados alimentos saturados de glutamano y que consiste en unos niveles de ese producto tan elevados en la sangre que no puede impedir que entre en el cerebro y cause la muerte neuronal. Claro que, otras fuentes nos dicen que el GABA, actúa como calmante y de alguna manera, contrarresta el mal. De hecho, los barbitúricos, el principio activo de las píldoras para dormir que toman algunos enfermos depresivos y las benzodiacepinas, como el Librium o el Valium, que reduce la ansiedad, actúan, por ejemplo, reforzando la acción del GABA en su receptor neuronal.

¡Nos queda tanto por aprender!

emilio silvera

El “universo” cuántico y…, sus alrededores

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Se cuenta que una vez Albert Einstein alagó al actor Charles Chaplin diciéndole: “Lo que siempre he admirado de Usted es que su arte es universal, todo el mundo le comprende a admira”. A esto Chaplin respondió a Einstein: “Lo suyo es mucho más digno de respeto, todo el mundo le admira y prácticamente nadie le comprende”.

Es cierto lo que Chaplin decía, todos admiraban a Einstein y pocos comprendían sus postulados. De hecho, cuando estaba buscando la teoría de Todo, la gente se amontonaban, literalmente, ante los escaparates de la Quinta Avenida para ver las Ecuaciones que pocos entendían…¡Así somos los Humanos! Lo que no comprendemos nos produce temor o admiración, o, las dos cosas a la vez.

                                        Gerad ´t Hooft

Hace ya algún tiempo que me desplace a Madrid, invitado  para asistir a una Conferencia que sobre el LHC y el Bosón de Higgs, la impartía el físico y premio Nobel de Física Gerad ´t Hooft.

La energía nuclear después de Chernóbil | Investigación y Ciencia |  Investigación y CienciaCómo coloco la TV? | Doctor Tecno | La Revista | EL UNIVERSO

Los ordenadores de la Unión SoviéticaNASA: Las misiones espaciales más locas de las próximas décadas

La charla de ‘t Hooft se inscribía en el ciclo La ciencia y el cosmos, y, entre otras cosas nos decía a los presentes que, la física, en concreto la física de partículas, ha sido siempre su gran pasión. “cuando era joven, la física estaba cambiando el mundo radicalmente: la energía nuclear, la televisión, los ordenadores, las primeras misiones espaciales….yo quería formar parte de todo eso”.

Qué es el genoma?Científicos de todo el mundo redefinen el genoma humano | Biociencia |  elmundo.es

Partículas elementales |Programa espacial de la Unión Soviética - Wikipedia, la enciclopedia libre

Y las partículas elementales “eran el mayor misterio de todos”, añade. “En cierto modo aún lo son, aunque ahora sabemos de ellas muchísimo más que entonces. Hoy los ordenadores siguen siendo emocionantes, la biología y el código del ADN, la astronomía y los vuelos espaciales… Sigue habiendo muchas cosas capaces de estimular la imaginación de jóvenes deseosos de aprender cosas nuevas impulsados por el deseo de estar ahí, en el momento en que se están haciendo los descubrimientos que cambian el mundo”.

Gerard ‘t Hooft explicó lo que significa, en los modelos teóricos, el famoso bosón: “El campo de la partícula de Higgs actúa como una especie de árbitro; proyectado contra otras partículas, este campo determina su comportamiento, si tienen carga o masa y hasta qué punto se diferencian de otras partículas. Si no encontramos el Higgs, si realmente no está, necesitaremos algo más que haga ese papel de árbitro”. Eso significaría, continuaba el Nobel, que “nuestras teorías ya no funcionan, y han funcionado tan bien hasta ahora que eso es difícil de imaginar”.

El bosón de Higgs tras cinco años de su anuncio - La Ciencia de la Mula  FrancisNuevo hito en la exploración del bosón de Higgs - INVDES

El lado oscuro del bosón de Higgs — Cuaderno de Cultura CientíficaPor qué el bosón de Higgs es una pieza fundamental en el modelo estándar -  La Ciencia de la Mula Francis

La espera fue enorme y todos esperaban las noticias sobre el dichoso Bosón

            Cuando comenzó la búsqueda se decía:

Sí al LHC se le resiste el Bosón de Higgs…, bueno, si es que anda por ahí.

Charla del premio Nobel Gerard `t Hooft en la Universidad de Córdoba -  YouTubeAnexo:Premios Nobel de Física - EcuRed

Fue en 1999 cuando ‘t Hooft recibió el premio Nobel de Física (junto con su colega y director de tesis Martinus Veltman),  por “dilucidar la estructura cuántica de las interacciones electro-débiles” -según palabras de la Academia sueca- de la física de las partículas elementales.

El Gran Colisionador de Hadrones: qué es y para qué sirve – Un poco de  ciencia, por favorEl CERN anuncia que el LHC funcionará en 2012El LHC descubre el pentaquark | Ciencia | EL PAÍSUna anomalía en el LHC podría sugerir la existencia de una nueva partícula  - Universitat Autònoma de Barcelona - UAB Barcelona

Acerca del Gran Colisionador de Hadrones (el acelerador LHC situado en el Laboratorio Europeo de Física de partículas, CERN, junto a Ginebra), el científico holandés explica que se trata “de una máquina única en el mundo” y continúa: “Esperamos descubrir nuevas cosas con él y poner a prueba teorías que, hasta donde hemos podido comprobar hasta ahora, funcionan muy bien, pero necesitamos ir más allá”.

El descubrimiento de la partícula de Higgs, o bosón de Higgs, fue el objetivo número uno del LHC, y tras un largo período de funcionamiento del acelerador, los miles de físicos que trabajan en los detectores, han logrado acotar el terreno de búsqueda, aunque, insisten, seguramente necesitarán tomar muchos más datos para descubrirlo. O tal vez descubrir que no existe, lo que supondría una revolución en la física de partículas, al obligar a replantear el llamado Modelo Estándar, que describe todas las partículas elementales y sus interacciones, y que hasta ahora funciona con altísima precisión aunque, dicen los expertos, está incompleto.

La teoría del todo (Stephen Hawking)

Gerard ‘t Hooft, uno de los grandes físicos teóricos de partículas elementales, considera que será muy difícil desarrollar una teoría del todo, un cuerpo teórico capaz de explicar todas las fuerzas que actúan en la naturaleza aunando la Relatividad General de Einstein y la Mecánica Cuántica, tan eficaces por separado en la descripción del macrocosmos y el microcosmos, respectivamente. “Mi impresión es que esta teoría unificadora, una teoría del todo, aún requerirá el trabajo de muchas nuevas generaciones de investigadores jóvenes y listos”, afirma. “No llegaremos a ella de un momento a otro por la simple razón de que el universo es demasiado complejo para que una única teoría lo abarque todo. Vale, no digo que sea imposible, pero me parece muy improbable. Y mientras llega, queda mucho por descubrir, incluso hallazgos espectaculares”.

El LHC alcanza la luminosidad fijada para 2010El CERN, el lugar en el que se guardan los secretos del universo | CulturaY el mundo no se acabó - QuoLinac 4 se ha convertido en el primer acelerador en la cadena de inyección del  LHC

      Muchas son las actividades desconocidas para el público que se desarrollan en el LHC

Por otra parte, el científico holandés ha señalado que el LHC realiza más actividades que intentar encontrar el bosón de Higgs. En este sentido, ha destacado que se buscan también partículas que podrían construir la materia oscura, un tipo de materia de la que los físicos tienen la certeza de que es cinco veces más abundante que el universo que la materia ‘normal’, pero que no absorbe, refleja ni emite luz, lo que hace muy difícil su detección y, por tanto, estudiar su naturaleza. Del mismo modo, también se está desarrollando una teoría capaz de unificar la teoría de la relatividad general de Einstein y la mecánica cuántica que, según ha explicado Hooft, “permitiría descubrir lo que ocurre dentro de los átomos”.

Partículas elementales: En busca de las estructuras más pequeñas del  universo eBook: Hooft, Gerard't, Zúñiga López, Ignacio: Amazon.es: Tienda  Kindle

De vez en cuando lo consulto

Recuerdo un pasaje escrito por él al principio de su interesante e instructivo libro “Partículas Elemetales”, que decía:

“Mi intención es narrar los últimos 25 años de investigación sobre las partículas más pequeñas que constituyen la materia. Durante esos 25 años, yo empecé a ver la Naturaleza como un test de inteligencia para toda la Humanidad en su conjunto, como un gigantesco puzzle con el que podemos jugar. Una y otra vez, nos tropezamos con nuevas piezas, grandes y pequeñas, que encajan maravillosamente con las que ya tenemos. Yo quiero compartir con ustedes la sensación de triunfo que sentimos en esos momentos.”

 

 

 

Tenía la intención (si se presentaba la oportunidad),  de preguntarle sobre “su Principio Holográfico” pero, no pudo ser. Sólo pude saludarlo e intercambiar unas breves palabras junto con Ignacio Cirac presente también en el evento.

 

El Principio Holográfico que compara el universo con un holograma,  explicado de manera sencilla

 

“En la década de los 90, los físicos Gerard ‘t Hooft, y Leonard Susskind postularon una hipótesis que sacudió por igual a la ciencia y a la opinión pública. Se la conoce como Principio Holográfico, y defiende la idea de que el universo puede ser interpretado como un holograma.”

 

Publicó el principio holográfico, el cual explica que la información de una dimensión extra es visible como una curvatura del espacio tiempo con una menos dimensiones. Por ejemplo, los hologramas son imágenes de 3 dimensiones colocadas en una superficie de 2 dimensiones, el cual da a la imagen una curvatura cuando el observador se mueve. Similarmente, en relatividad general, la cuarta dimensión esta manifestada en 3 dimensiones observables como la curvatura de un sendero de un movimiento de partícula (criterio) infinitesimal. Hooft ha especulado que la quinta dimensión es realmente la fábrica del espacio-tiempo.

Acordaos de que, a mediados del año 2,003 apareció la noticia de que la “información sería el componente fundamental de la naturaleza” postulada por un grupo de físicos entre los que se incluyen el Premio Nóbel danés Gerard t´Hooft y el físico de la Universidad de California Raphael Bousso, basadas en el “Principio Holográfico”. Esta teoría, por singular y chocante que pareciese en su momento ha tenido a lo largo de estos siete años una influencia notable tanto en la sociedad científica como en los círculos alternativos.

el principio holográfico | Fumigadora Continente

Personajes tan influyentes como Deepak Chopra sin ir más lejos habla del ámbito cuántico como el campo de información de donde parte todo lo conocido, materia, emociones, pensamientos. El controvertido joven físico Nassam Haramein defiende un universo basado en el holograma. Científicos japoneses -al igual que del resto del mundo- investigan con hologramas creando imágenes 3D o explican el funcionamiento del mundo físico basado en los campos de energía e información. Hay hasta “farmacología holográfica” a cargo de empresas farmacéuticas. El año pasado el físico Craig Hogan tras la detección de un extraño ruido en el detector de ondas gravitacionales el GEO 600, afirma que podría probar que, efectivamente, vivimos en un holograma.

La Influencia de la Teoría del Principio Holográfico en la Sociedad

La información sería el componente fundamental de la naturaleza. Es la que especifica el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia. El Big Bang que dio lugar al nacimiento del Universo tendría más que ver con una gigantesca “bajada” de bytes de información por parte de un superordenador, que con una explosión masiva de materia, según una nueva teoría que establece que en su origen la naturaleza está formada únicamente por pequeños paquetes de información pura que son los que especifican el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia.

Archivo:Carpani Ricardo Quiénes somos, de dónde venimos y hacia dónde vamos  1991.jpg - ECyT-ar

    ¿Quiénes somos? ¿De donde venimos? ¿Hacia donde vamos?

El ser humano continúa con su carrera particular para descubrir lo que siempre ha querido saber: quiénes somos y de dónde venimos. Esas dos preguntas esenciales son, en realidad, el motor gracias al cual se mueve gran parte de la investigación científica de todos los tiempos.

En esta carrera por buscar certezas, cosas tan inquebrantables para explicar el origen del mundo como son los átomos o los quarks están quedando relegados a segundo término para dar paso a nuevas teorías.

Una de las más interesantes, postulada por un grupo de físicos entre los que se incluyen el Premio Nóbel danés Gerard t´Hooft y el físico de la Universidad de California Raphael Bousso, afirma que en el origen de la naturaleza podría haber únicamente ultra-pequeños paquetes de información pura.

Aunque parezca raro la información no viaja en un bloque como lo haría una carta, sino que esta se divide en pequeños paquetes de información, viajando a través de los diferentes  canales de la red y llegando todos al mismo punto. Para esto es preciso que todos los ordenadores hablen el mismo idioma, o lo que es decir el Protocolo TCP/IP, (que es el idioma) que en un principio empezó a usarse en 1983 para dirigir el tráfico de los paquetes de información por Arpanet, garantizando así que todos lleguen a su destino.

La @ que parece que nació a partir de internet se utilizaba en la antigüedad, como unidad de peso o incluso para decir a cuanto costaba algo en libros de contabilidad. Sin embargo se puso de moda gracias al ingeniero estadounidense Ray Tomilson, que diseñaba un sistema de correo electrónico para Arpanet, simplemente bajo los ojos al  teclado y eligió un signo que no se utilizara en los nombres de usuario.

La Influencia de la Teoría del Principio Holográfico en la Sociedad «  MEDICINA CUANTICAfilosofia soy libre: ¿El universo es un holograma?2013 mayo 26 : Blog de Emilio Silvera V.El principio holográfico: el más bello avance hacia la gravedad cuántica. –  Estudiar Física

Según explica al respecto Newsfactor, esta teoría, basada en el “Principio holográfico”, establece que la información (“información” en este caso significa bits fundamentales de materia y las leyes físicas que los gobiernan) especifica el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia. La información sería pues, una variable para llegar a una “teoría del todo”.

Y, más allá de las cuerdas…

Según la teoría cuerdas, el espacio está descrito por la vibración, en miles de maneras, de diminutas cuerdas de una dimensión. Una cuerda vibrando arriba y abajo a cierta frecuencia podría crear un átomo de helio o una ola gravitacional, tal y como las cuerdas de una guitarra crean diferentes sonidos a diferentes frecuencias.

Los teóricos de esta teoría han mantenido hace mucho tiempo que estas cuerdas son el componente fundamental de la naturaleza. El “Principio Holográfico”, sin embargo, cambia esta noción y mantiene que, mirando más de cerca una cuerda, se ven bits cuánticos, llamados “baldosas de Planck”, que, engarzados, dicen a las cuerdas como tienen que vibrar.

Un ordenador cuántico de la NSA podría descifrar todas las contraseñas del  mundoCúbit - Wikipedia, la enciclopedia libreComputación cuántica. | Blog de Jose Antonio Martinteletransporte cuántico | Actualidad informática

Estas “baldosas de Planck” son bits cuadrados que delimitan un “área de Planck”, o lo que es lo mismo, un trillón de un trillón, de un trillón de un trillón de un trillón de un trillón de un centímetro cuadrado. Una cuerda de baldosas de Plank sería la versión natural de un byte.

El “Principio Holográfico”, descrito por Gerard t´Hooft y Leonard Susskind y refinado por Bousso, nos permite saber cuántos datos (bits y bytes) son necesarios para decirnos en detalle cada cosa que ocurre en cualquier región del espacio.

¡Por imaginación que no quede!

emilio silvera

El Universo y los pensamientos

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y los pensamientos    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 ¿Cuándo lo conoceremos? Sí,  me refiero al Universo. Su compleja y peculiar naturaleza hizo posible que surgieran las estrellas y las galaxias a partir de la sustancia cósmica que, durante diez mil millones de años ha estado evolucionando en los hornos nucleares de las estrellas para que, finalmente, esa evolución de la materia, se pudiera convertir en pensamientos.

NASA presenta asombroso mapa del Universo | PortalPolitico.tvLa NASA revela algunas de las imágenes más asombrosas del universo | PerfilAsombroso: el mapa más completo del cielo de rayos X captado por un  telescopio rusoWatch the Best YouTube Videos Online - A veces creo qué hay vida en otros  planetas y a veces creo que no.… | Arte del universo, Fondos de universo,  Arte de galaxiaLa asombrosa escala del universo

Que poco a poco, el intelecto humano va desvelando secretos del universo, tiene hoy día poca discusión.  Claro que, no siempre fue así. En 1900 fue Kelvin el que señaló que “dos nubes” se cernían sobre el horizonte: una tenía que ver con las propiedades del movimiento de la luz y la otra con aspectos de la radiación que emiten los objetos cuando se calientan.

EL FÍSICO LOCO: Cuerpo Negro. Ley de Wien. Ley de Stefan-BoltzmannDos maneras de viajar 'más rápido' que la luz

                                             La semilla de la Mecánica cuántica y la Relatividad

Y, aunque los dos problemas fueron rápidamente abordados, no eran en absoluto menores. Cada uno de ellos inició una auténtica revolución, y cada uno de ellos nos llevó a un nuevo entendimiento de la Naturaleza. Al entender aquellos dos conceptos (de luz y radiación), el espacio, el tiempo y la realidad (que durante muchos años habían regido nuestros pensamientos, tuvieron que ser apartados para adoptar otras maneras de entenderlos y otras formas de pensamientos) .

La teoría de la relatividad especial, explicada de manera sencilla | Teoría  de la relatividad, Libros de fisica cuantica, Filosofía de la cienciaQué le pasa al tiempo cuando nos... | La respuesta de Trivia |Por qué el tiempo pasa más despacio cerca de un agujero negro? Caso  «Interstellar» – Ciencia de SofáInterrelación entre materia y energía

La luz representa el límite de velocidad que impone nuestro Universo, nada puede ir más rápido que la luz en el vacío, si viajamos a velocidad cercana a la de la luz… ¡El Tiempo se ralentiza! Y, además, los cuerpos viajeros aumentan su masa, ya que, la energía inercial, al ser frenada, se convierte en masa. Los grandes objetos como mundos, estrellas y galaxias, curvan el Espacio por medio de la Gravedad que generan, y, la masa y la energía son dos aspectos de la misma cosa (E = mc2 ).

Todos estos postulados pudo la Física “patas arriba”, Einstein entró como elefante en cacharrería y formó una revolución que, poco a poco, tuvo que ser aceptada, con la ayuda de Max Planck y de Arthur Stanley Eddington que comprendieron la Teoría einsteniana y sus muchas repercuiones.

El año milagroso de Einstein | OpenMind

Por aquel entonces, el joven Einstein trabajaba en la Oficina de Patentes de Berna (Suiza)

La relatividad de Einstein (que abordó una de aquellas nubes) en dos etapas,  1905 y 1915, cuando quedó completa la teoría en su primera parte especial y en la segunda general. Mientras luchaba con enigmas que implicaban a la electricidad, el magnetismo y el movimiento de la luz, Einstein se dio cuenta de que la idea de Newton de espacio y tiempo, la piedra angular de la física clásica, era errónea y él, con su nueva manera de ver el universo, postuló que el espacio y el tiempo no eran independiente en absoluto, como Newton había pensado, sino que está mezclado de una manera que contradice nuestra experiencia común y, cuando pudo finalizar la segunda parte de la relatividad, Einstein terminó de desterrar a Newton al exponer sus ecuaciones de campo de la relatividad general que describe, de manera magistral, lo que es la fuerza de Gravedad y las leyes que rigen la física gravitatoria. Así quedó demostrado que espacio y tiempo son parte de un todo unificado y, también demostró que deformándose y curvándose participan en la evolución cósmica  y escriben la geometría del universo. Así que, desde entonces, sabemos que, aquellas estructuras rígidas e inmutables de Newton, a partir de Einstein, serían flexibles y dinámicas.

Henrietta Leavitt - Noticias Zoco - Diario CórdobaEl Gran Universo: Cefeidas, Fulgurantes, Novas y demás Estrellas Rebeldes

Henrietta Leavitt: Contribuyó en mucho a la astronomía al descubrir las Estrellas Cefeidas que posibilito conocer una Ley que permitía calcular las distancias a estrellas lejanas y a las galaxias.

Universeando: LAS ESTRELLAS

La distancia a una galaxia lejana se determina estudiando la luz proveniente de estrellas de tipo Cefeidas Variables. El espectro de la luz estelar revela la velocidad a la que se mueve la galaxia (Efecto Doppler) y la cantidad de expansión que ha sufrido el universo desde que la luz salió de su fuente.

¿Qué dudas podemos tener sobre el hecho cierto de que, las dos teorías de la relatividad se encuentran entre los mayores logros del intelecto humano? Las ideas que contienen, cambiaron la manera de mirar el universo y dio lugar al nacimiento de la cosmología como ciencia.

Teoría cuántica | Radiación del cuerpo negro - YouTubeAstrofísica y Física: ¿Qué es un cuerpo negro?

La otra “nube negra” a la que se refería Kelvin, relacionada con la radiación que emitían los cuerpos calientes, nos llevó a la segunda revolución: La Mecánica Cuántica, con ello llegaron nuevos conceptos a los que fue sometido el intelecto humano y que revolucionó la física de la época para transmutarnos hacia un mundo moderno lleno de conceptos nuevos que chamuscaban los brillantes barnices de la física clásica al quedar literalmente achicharrados por la potente luz que desprendía la realidad cuántica.

La radiación del cuerpo negro – Física cuántica en la red

El catorce de diciembre de 1900 en los albores del siglo XX, el físico alemán Max Planck (1858-1947) presentó un trabajo acerca de la ley de radiación del cuerpo negro en una reunión de la Sociedad alemana de Física de Berlín y esta fecha puede ser considera, sin ninguna duda, como el nacimiento de la Mecánica cuántica. En su deducción. Planck introdujo en Física el concepto nuevo de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de en una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada fue, posteriormente la base, para la teoría cuántica.

Atención, pregunta: La realidad de la función de onda cuántica, ¿es un  problema para filósofos o para físicos? | Francis (th)E mule Science's NewsLa CONSTANTE de PLANCK: definición sencilla - ¡¡RESUMEN FÁCIL!!

En su deducción de la expresión teórica de la intensidad de radiación en función de la longitud de onda y de la temperatura. Planck abandonó la física clásica al introducir un concepto radical ad hoc cuya esencia puede formularse como sigue: Un oscilador de frecuencia natural v puede tomar o ceder energía únicamente en proporciones de magnitud E = hv, donde h es una constante de la naturaleza, llamada constante de Planck, h, el cuanto de acción, pues tiene dimensiones de acción (energía por tiempo) Js: Julios (J), unidad de energía por segundo (s)unidad de tiempo) y solo puede tener, y por lo tanto emitir energía dadas por E = nhv, donde n es un entero positivo, v la frecuencia de radiación y h la constante de Planck. Así, Planck fue capaz con esta hipótesis de encontrar una expresión teórica para la función de distribución espectral de densidad de energía en función de la longitud de onda   o de la frecuencia de la cavidad de radiación de cuerpo negro  de la cavidad de radiación de cuerpo negro (aquí obvio las ecuaciones).
Photoelectric Effect

Toda esta función llamada ley de Planck se ajusta muy bien a los datos obtenidos experimentalmente. El valor de la constante de Planck, h, puede ser determinado encajando la función de la ecuación a los datos experimentales. La importancia fundamental, la explicación física de la cuantificación o cuantización (discretización) introducida por la ecuación, no fue completamente entendida ni por el mismo por Planck que la consideraba simplemente un truco matemático para ajustar una función matemática a los datos físicos. Planck era un físico formado en la tradición clásica, y que solo abandonó los supuestos clásicos “en un acto de desesperación” como él dijo alguna vez.

La Constante de PLANCK - Mediawiki de Fisica

El significado físico de la entrada del cuento de acción en la escena física, no fue generalmente apreciada por los físicos hasta 1905, cuando el genial físico (de nuevo) Einstein, aplicó las ideas cuánticas de Planck a su inconmensurable trabajo sobre el Efecto Fotoeléctrico (que le ganaría el Nobel de Física) al sugerir que la misma no era una misteriosa propiedad de los osciladores en las paredes de la cavidad y la radiación de cuerpo negro, la cuantificación es una característica fundamental de la propia energía lumínica.

Claro que, una característica central de la Física Clásica es que si conocemos las posiciones y velocidades de todos los objetos en un instante particular, podemos decir cuáles serán sus posiciones y velocidades en cualquier otro instante, ya sea pasado o futuro. Sin equivocación, la física clásica declara que el pasado y el futuro están gravados en el presente. Esta característica es también compartida por la Relatividad Especial y General. Aunque los conceptos relativistas de pasado y futuro son más sutiles que sus que sus familiares contrapartidas clásicas, las ecuaciones de la relatividad, junto con una evaluación completa del presente, los determinan por completo.

Siempre nos preguntaremos por el número que saldrá o dónde estará la partícula que buscamos

De forma completamente inesperada, encontraron que sólo las leyes cuánticas eran capaces de resolver la barahúnda de rompecabezas y explicar una gran variedad de datos recién adquiridos procedentes de los átomos y del reino subatómico. Sin embargo, si hacemos la medida más perfecta técnicamente posible para comprobar cómo son las cosas en este preciso momento, lo más que podemos esperar es predecir la probabilidad de que las cosas sean de una manera o de otra en un instante escogido en el futuro, o de que las cosas fueron de una determinada manera o de otra en algún instante escogido en el pasado. El Universo, según la mecánica cuántica, no está grabado en el presente; el universo, según la mecánica cuántica, participa (por decirlo de alguna manera) en un juego de Azar.

Mecánica cuántica - Wikipedia, la enciclopedia libreExplorando la Mecánica CuánticaLa Mecánica Cuántica: PrólogoTeoría cuántica de campos - Wikipedia, la enciclopedia libre

Mientras que la Intuición humana, y su encarnación de la Física Clásica, imagina una realidad en la que las cosas a veces se mantienen en un estado confuso entre ser parcialmente de una manera y parcialmente de otra. Las cosas sólo se hacen definidas cuando una observación apropiada las obliga a abandonar las posibilidades cuánticas y asentarse en un resultado específico. Sin embargo, el resultado que se hace real no puede predecirse: solo podemos predecir las probabilidades de que las cosas resulten de una manera o de otra.

El experimento EPR. Einstein, Podolsky, Rosen - Hablando de Ciencia

    La Paradoja EPR y los conceptos de Tiempo y Espacio, Presente, Pasado y Futuro 

La paradoja de Einstein-Podolsky-Rosen, denominada “Paradoja EPR”, trata de un experimento mental propuesto por Albert Einstein, Boris Podolsky y Nathan Rosen en 1935. Es relevante, pues pone de manifiesto un problema aparente de la mecánica cuántica, y en las décadas siguientes se dedicaron múltiples esfuerzos a desarrollarla y resolverla. 

Confirman el entrelazamiento cuántico gracias a la luz de una estrellaEntrelazamiento cuántico

A Einstein (y a muchos otros científicos), la idea del entrelazamiento cuántico le resultaba extremadamente perturbadora. Esta particular característica de la mecánica cuántica permite preparar estados de dos o más partículas en los cuales es imposible obtener información útil sobre el estado total del sistema haciendo sólo mediciones sobre una de las partículas. 

Por primera vez, se observa la paradoja de Einstein-Podolsky-Rosen en un  sistema de muchas partículas - INVDES

Por primera vez, se observa la paradoja de Einstein.Podolsky-Tosen en un sistema de muchas partículas.

El experimento planteado por EPR consiste en dos partículas que interactuaron en el pasado y que quedan en un estado entrelazado. Dos observadores reciben cada una de las partículas. Si un observador mide el momento de una de ellas, sabe cuál es el momento de la otra. Si mide la posición, gracias al entrelazamiento cuántico y al principio de incertidumbre, puede saber la posición de la otra partícula de forma instantánea, lo que contradice el sentido común.

De la física clásica a la física cuántica | Bienestar MutuoLa información cuántica – RCI | EspañolSemana 23 de junio: MEDICINA CUÁNTICA // Claudina NAVARRO | Enrique  Martínez LozanoQS - Entrelazamiento cuántico. La ecuación más bonita del mundo.

No todo lo que podemos constatar en la Mecánica cuántica es fácilmente asimilado por nuestras Mentes que, aplicando el sentido común (que a veces resulta el menos común de los sentidos) nos niegan esa realidad incontestable.

Esto, para nuestro común raciocinio, no resulta nada familiar y sí resulta muy extraño. No estamos acostumbrados a una realidad que permanece ambigua hasta que es percibida. Pero la singularidad de la mecánica cuántica no se detiene aquí. Tan sorprendente al menos como esta es una característica que se representa en un artículo por Einstein en 1935 con dos colegas más jóvenes, Nathan Rosen y Boris Podolsky, que pretendía ser un ataque a la teoría cuántica. Con giros posteriores del progreso científico, el artículo de Einstein puede considerarse ahora como uno de los primeros en señalar que la mecánica cuántica –si se toma al pie de la letra- implica que algo que uno observa aquí puede estar instantáneamente ligado a algo que está sucediendo allí, independientemente de la distancia.

La paradoja de Einstein-Podolsky-Rosen - VIX

Claro que Einstein consideraba absurdas tales conexiones instantáneas y postulaba que la teoría necesitaba mucho desarrollo para llegarla a conocer por completo. Sin embargo, cuando la teoría y la tecnología permitió comprobar todos aquellos supuestos absurdos cuánticos, los investigadores pudieron comprobar que podía haber  un vínculo instantáneo entre lo que sucede en lugares ampliamente separados. Dos objetos pueden estar muy distantes en el espacio, pero por lo que concierne a la mecánica cuántica es como si fueran una única entidad. Además, debido al rígido vínculo entre espacio y tiempo encontrado por Einstein, las conexiones cuánticas también tienen tentáculos temporales.

Aumentan las posibilidades de viajar a través del tiempo • Tendencias21Cómo crear tu propio agujero de gusano? - UNAM Global - YouTubeAgujeros de gusano cuánticos? ¿En serio? — Cuaderno de Cultura Científica

                                 Muchas son las cosas que aún no hemos llegado a comprender

Tenemos que comprender que abrir nuestras mentes a la verdadera naturaleza del Universo ha sido, desde siempre, uno de los objetivos más importantes de la Física. Al menos para mí, es difícil imaginar, una experiencia más cautivadora y reveladora que la de aprender, conocer y saber cómo hemos podido llegar hasta ésta segunda década del siglo XXI en la que, sentimos y somos conscientes de que la realidad que en este “universo” del saber del mundo sentimos, es, un pálido reflejo, de la realidad que nos acecha en el futuro.

Mientras tanto, algunos no dejan el empeño de unificar en una sola esas dos grandes teorías cuántica-relativista. Algunos, sin el equipamiento necesario, se metieron osados en las rápidas aguas que los arrastró en la corriente, y, sin embargo, tuvieron el tiempo necesario para dejar, a los que venían detrás, sus ideas de que, una teoría cuántica-relativista era posible. Así, llegó, con Kaluza-Klein aquel primer impulsoque se intentó en la quinta dimensión para unificar la Relatividad General de Einstein con el Electromagnetismo de Maxwell.

Compactación (física) - Wikipedia, la enciclopedia libreTEORÍA DE KALUZA-KLEIN

Pasó el tiempo y surgieron aquellas teorías de gran unificación que se llamaron de supergravedad, supersimetría, la cuerda heterótica, supercuerda y, la última y unificadora de todas las demás, la Teoría M. Y, la persistencia de todo este elenco de esforzados físicos, no cayó en saco roto. El sueño se mantiene muy vivo y no pierden la esperanza de alcanzar la recompensa a tanto trabajo y sacrificio. Los científicos recorren ahora caminos desbrozados por exploradores del pasado y ellos los siguen abriendo nuevos surcos, como si de exploradores se tratara, buscan y se acercan a una fusión armoniosa de las Leyes de lo muy Grande y de lo Muy Pequeño. Estamos seguros de que más tarde o más temprano, las supercuerdas nos darán una gran alegría que, cuando surja, será como la de Einstein y Planck, otra gran revolución.

   Todo unido en una misma teoría en la que subyace la Gravedad-Cuántica, de eso nos habla la teoría de cuerdas que va mucho más allá de los Quarks

El sencillo repaso que llevamos dado a algunos acontecimientos de la física, son, por sí mismos, suficiente para comprender que nuestra comprensión de la verdadera naturaleza del espacio y el tiempo sería un testimonio de la capacidad del intelecto humano. Finalmente ¿llegaremos a conocer la realidad que subyace dentro de los conceptos del espacio-tiempo? Aquí, antes de dar una respuesta categórica, tendríamos que pasar un largo tiempo en silencio y pensando muy profundamente en la clase de respuesta que podríamos dar, toda vez que, tenemos delante de nosotros el horizonte de marcadores que delimitan las más remotas fronteras que, en nuestras mentes, quedan fuera de toda la experiencia humana, y, en ese sentido, sólo podemos intuir, para poder dar (con la experiencia hasta el momento adquirida), una respuesta que, de ninguna manera, puede ser categórica en ningún sentido que nos lleve a una realidad, ya que, en Ciencia, todo tiene que estar constatado y, el futuro, nos queda lejos, muy pero que muy lejos aún.

Si nos paramos a pensar por un momento, lo que hemos podido llegar a conseguir en las distintas ramas de la Ciencia, no tendríamos lugares suficientes para alojar la cantidad de asombro que nos abrumaría. Muchos han sido los logros que el ser humano ha podido conquistar con tan sólo su cerebro como herramienta principal. Y, al verdadero físico, por ejemplo, siempre se le aceleró el corazón cuando estaba a la vista del descubrimiento soñado. ¿Podéis imaginar lo que sentiría Einstein cuando al fin, después de largos años de búsqueda, pudo formular su teoría de la relatividad general?

¿Qué sensación puede existir para un científico que esa de descubrir los secretos de la Naturaleza?

Hay cuestiones importantes que nunca debemos olvidar y, desde luego, hombres de grandes pensamientos posibilitaron que nosotros estemos ahora en el nivel en el que nos encontramos en muchas ramas del saber humano que, sin auqellas ideas… Por ejemplo:

Gottfried Wilhelm von Leibniz.jpg

El gran filósofo alemán Gottfried Wilehlm Leibniz (que era contemporáneo de Newton con el que tuvo algunas refriegas), creía firmemente que el espacio no existe en ningún sentido convencional. Hablar de espacio, afirmaba, no es nada más que una forma fácil y conveniente de codificar dónde unas cosas se relacionan con otras. Sin objetos en el espacio, decía Leibniz, el propio espacio no tiene significado o existencia independiente, es decir, él nos decía que el espacio sin materia, el espacio vacío, no tenía ningún sentido. Un espacio vacío vendría a ser como un alfabeto sin letras.

Experientia docet: Einstein y...Ernst Mach

                 Mach trabajando

Otro personaje que no es fácil de olvidar (Einstein lo tenía siempre en sus pensamientos en la relatividad general), es Mach que, entre otras muchas cuestiones se planteó que, en un universo vacío no hay distinción entre girar y no girar –no hay concepto de movimiento o aceleración si no hay puntos de referencia para comparar- y por lo tanto, girar o no girar sería lo mismo. Si las dos piedras de Newton unidas por una cuerda se pusieran a girar en un universo por lo demás vacío, Mach decía que la cuerda permanecería flácida. Si nosotros girásemos en un universo por lo demás vacío, nuestros brazos y piernas no se despegarían del cuerpo, y el fluido de nuestros oídos no se vería afectado, nosotros no sentiríamos nada. Esta es una sugerencia profunda y sutil. Para asimilarla realmente nosotros necesitaríamos meternos seriamente el el ejemplo e imaginar la quietud uniforme y negra del espacio totalmente vacío.

          Ernst Mach en 1900.

 

El de Mach fue el primer desafío importante a la obra de Newton en más de dos siglos, y durante años envió ondas de choque a través de la comunidad de la Física. Claro que, todas estas ideas han ido evolucionando y nos han llevado a conceptos de campos de diversas procedencias, tales como: el campo de Faraday, los campos gravitatorios, campos nucleares, campos de Higgs, y otros. Cada vez se hizo más claro que el concepto de campo para una formulación moderna de la física era importante.

Claro que, pasado el tiempo, en todo aquello intervino alguien que, sencillo él, como si de un niño se tratara, se hacía preguntas “tontas” de una profundidad inalcanzable. Así, las ecuaciones de Maxwell no permitían que la luz parezca estacionaria, es decir, verla como si estuviera en reposo. Y ciertamente, no hay ningún informe fiable de nadie que realmente haya considerado un trozo estacionario de luz. Entonces se preguntaba el adolescente Einstein, ¿qué vamos a hacer con esta aparente paradoja?

Y volvemos al principio: Diez años más tarde, Einstein dio al mundo su respuesta con su teoría de la relatividad especial. Ha habido muchos debates sobre las raíces intelectuales del descubrimiento de Einstein, pero no hay duda de que su inquebrantable creencia en la simplicidad jugó un papel crítico. Einstein postulaba que la luz era un viajero solitario, la luz puede viajar a través del espacio vacío. Einstein nos vino a decir, con su sencilla manera de exponer las cosas que, si la teoría de Maxwell no apela a ningún patrón de reposo particular, la interpretación más directa es que no necesitamos uno. La velocidad de la luz, declaró Einstein, es de 1.080 millones de kilómetros por hora con respecto a nada y a todo.

Guillermo de ockham

“Hacer las cosas tan simples como sea posible, pero no más” En física hay un principio que se debe seguir:  En realidad es… “un principio” metodológico y filosófico atribuido a Guillermo Ockham (1280-1349),  según el cual, «en igualdad de condiciones, la explicación más sencilla suele ser la correcta». Esto implica que, cuando dos teorías en igualdad de condiciones tienen las mismas consecuencias, la teoría más simple tiene más probabilidades de ser correcta que la compleja.

Durante toda su vida, Einstein desafío el sentido común y, con la paradoja de las ecuaciones de Maxwell, él supo ver que la luz tenía su medida invariante en la marcha que le había asignado el universo, sin tener en cuenta la fuente de procedencia, siempre, y en todas las circunstancias, la luz, correría a 1.080 millones de kilómetros en el vacío espacial.

       En realidad, la velocidad de la luz en el vacío determina nuestro conocimiento del Universo

Así que, desde entonces, la velocidad de la luz es constante y, podemos deducir que, el espacio y el tiempo están en el ojo del que contempla. Cada uno de nosotros lleva consigo su propio reloj, su propio monitor del paso del tiempo que, como sabemos, no es igual para todo, ya que, es relativo en función de las circunstancias que en cada caso se puedan dar. El día que lleguemos a comprender la verdadera naturaleza de la luz, ese día, podremos decir ¡que sabemos!

emilio silvera

Siempre aprendiendo

Autor por Emilio Silvera    ~    Archivo Clasificado en Ciencia futura    ~    Comentarios Comments (20)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://mivozcolombia.files.wordpress.com/2011/09/indiferencia-1.jpgEL BLOG POLÍTICAMENTE CORRECTO DE OMAR HABBAB: No controles mi forma de  pensar porque es total

 

¡NO! Así no podemos avanzar, que nos dejen libres para pensar. La creatividad del pensamiento tiene que estar sólo supeditada al libre albedrío de cada cual. Así ha estado avanzando el mundo desde que…tenemos noticias de todas aquellas civilizaciones que fueron y que, expresaron sus ideas para que nosotros, muchos años más tarde, las pudiéramos desarrollar. Sin aquellos conocimientos no serían posibles éstos.

Qué verdad es, nunca te acostarás sin aprender algo nuevo. Aquí, en este mismo lugar, ocurre eso con frecuencia y, de vuestros comentarios he obtenido a veces conclusiones en las que, por mí mismo, no habría pensado. Como se suele decir, cuatro ojos ven más que dos.

http://trinityeyes.files.wordpress.com/2008/07/000af072-4891-1f0a-97ae80a84189eedf_p64.jpg

Por ejemplo, en el trabajo que denominé  ¿Qué haríamos sin la Física?, aparte de otras muchas intervenciones, me llamó la atención la de Fandila (14.2.1) en la que se refiere a la fotónica y la cuántica y llega a preguntarse si no debería llamarse “cuantónica”. Kike (14.2.1.1) que entabla el diálogo con él, lleva la conversación al campo del avance de la Ciencia a la que compara con la evolución de las especies. Ambos llevan su parte de razón.

Física con ordenador→ Ordenadores All in One: Qué son, pros, contras y modelos ?

Muchos de los problemas que surgen en campos de la Física moderna han sido abordados mediante su modelado e implementación en ordenadores, donde hay aplicaciones que requieren una enorme capacidad de cálculo. Prácticamente en todas las disciplinas de la Física se requiere obtener soluciones a problemas que consisten en la optimización de funciones en un determinado espacio de búsqueda. En otras palabras, muchas aplicaciones en Física consisten en solucionar problemas de optimización, que en numerosas ocasiones no se pueden abordar con herramientas matemáticas clásicas, debido a la complejidad del espacio de búsqueda, o de la función objetivo, o ambas cosas a la vez.

Leer más

Maravillas del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Implosión de las estrellas : Blog de Emilio Silvera V.La Implosión de una estrella - Ciencia y educación en Taringa!

La Implosión de las estrellas : Blog de Emilio Silvera V.La Implosión de una estrella - Ciencia y educación en Taringa!

 

“El final de la evolución es catastrófico con una gran explosión, explosión supernova, en la que las capas externas de la estrella son eyectadas con una energía similar a la que producirá el Sol durante toda su vida (aproximadamente 10.000 millones de años).”

Cuando llega ese momento final de una estrella por falta de contrapresión, la gravedad, cada vez más libre para hacer su trabajo, produce finalmente la implosión de la estrella y se produce tanto calor que, como he dicho antes, las capas exteriores explotan por la presión de la radiación, y la implosión queda interrumpida quedando una esfera extremadamente compacta de material nuclear o estrella de neutrones proveniente de  una explosión supernova de tipo II.

Qué son las estrellas de neutrones?Descubrieron una de las estrellas de neutrones más densas jamás detectada -  Infobae

El colapso bajo la propia gravedad la lleva a tener una densidad de unos 1017 Kg/m3; los electrones y protones están tan apretados que se funden y forman neutrones. En este punto conviene aclarar que el objeto en el cual se convierte una estrella finalmente, está directamente conectado a la masa de la estrella.

File:Karl schwarzschild.jpg - Wikimedia CommonsFermat's Library on Twitter: "Here's a funny coincidence: the Schwarzschild  radius is the radius defining the event horizon of a black hole. It is also  the last name of the astronomer who

El astrónomo Kart Schwarzschild hizo un estudio que se conoce como “radio de Schwarzschild”: para las estrellas como nuestro Sol, el final estará en una estrella enana blanca; para estrellas con dos veces y media la masa solar, su destino corresponde a una estrella de neutrones; y si la masa de la estrella es mayor que cinco veces la masa del Sol, la estrella se convertirá en un agujero negro.

Cuál es el destino final de una estrella cuya masa es menor a la del sol? Y  si su masa es como la del - Brainly.lat

Cuanto más masivo es un agujero negro, mayor es el radio de Schwarzschild. Para un agujero negro que venga de un cuerpo de masa M, este radio es igual a 2GM/c2, donde G es la constante gravitacional y c la velocidad de la luz. Fue calculado por primera vez por este astrónomo a partir de las ecuaciones de Einstein de la relatividad general.

Relatividad general I: conceptos – Sólo es Ciencia

Estos objetos cosmológicos que pueblan el universo tienen propiedades asombrosas. Las estrellas de neutrones, a menudo rotan con impresionante velocidad (más de 500 revoluciones por segundo). Debido a irregularidades en la superficie emiten una señal de radio que pulsa con esa velocidad. Estos objetos fueron descubiertos por la observación de esa señal de radio y por eso se les llamó “púlsares”. En las tablas astronómicas se indican por las letras LGM, que es una reliquia de los tiempos en los que se consideró la posibilidad de que fueran señales de otras civilizaciones extraterrestres.

Los púlsares cumplen 50 años « SEDA / LIADA - RedLIADA - Cursos LIADA -  Cielo del Mes - Fenómenos Astronómicos - RELEA

    Son como faros cósmicos en la inmensidad espacial

Los primeros cálculos realizados por el astrónomo de origen indio Subrahmanyan Chandrasekhar demostraron que un objeto frío y compacto tiene una masa sólo unas pocas veces superior a la del Sol. No importa de qué tipo de materia esté formado, no podrá resistir la presión. La fuerza gravitatoria se hace tan intensa que únicamente la teoría de la relatividad general de Einstein puede decirnos lo que sucederá. Como la fuerza gravitatoria actúa colectivamente sobre todas las partículas de la estrella, sigue siendo débil cuando actúa sobre una sola partícula. Por lo tanto, no hay (aún) necesidad de la Gravedad Cuántica para calcular exactamente la siguiente cadena de sucesos.

Subrahmanyan Chandrasekhar - Biography, Facts and Pictures

Subrahmanyan Chandrasekhar

Seguramente fue el físico John Archibald Wheel primero en comprender cuál sería el resultado de estos sucesos, y no tenemos la más mínima duda de que llevaba toda la razón. El resultado final de los sucesos es lo que él llamó un agujero negro. Éstos se producen cuando la materia durante la implosión alcanza en un cierto punto la velocidad de la luz.

Foundational Questions in Physics and CosmologyPrimera foto agujero negro: ¿Qué es el horizonte de sucesos?Un gran esfuerzo global persigue la primera imagen de un agujero negro |  Ciencia Home | EL MUNDOEstamos a punto de ver la primera fotografía de un agujero negro - RT

Entonces se pasa un borde matemático, un punto de no retorno, ni a la velocidad de la luz podría escapar de allí una nave espacial que, sin darse cuenta, traspasara ese punto o borde matemático que llamamos “horizonte de sucesos”. Incluso las señales que intentara emitir serían atrapadas por la fuerza descomunal de atracción del agujero negro, que genera la fuerza de gravedad en su estado puro y de máxima dimensión allí, en el interior del agujero, en lo que se conoce como una “singularidad”. Allí dejan de existir el espacio y el tiempo. La estrella original, a medida que se va contrayendo sobre sí misma para convertirse en un agujero negro, de forma efectiva y real se vuelve negra, hasta desaparecer de la vista de un posible observador que sólo sabe de su presencia. Por la enorme fuerza de gravedad que genera, hasta la luz es engullida por el monstruo.

Primera foto agujero negro: ¿Qué es el horizonte de sucesos?

              Si pudiéramos verlo, así sería el agujero negro. Estas son las primeras fotos obtenidas

El agujero acaba siendo solamente una gran bola de gravedad pura. De hecho, se han detectado y fotografiado estrellas vecinas a un gran agujero negro que, cuando las atrapa y engulle, acaban siendo literalmente desgarradas. Su materia es atraída, pasa el horizonte de sucesos y desaparece en el interior: la negra e invisible singularidad.

Podemos calcular cómo se comportan los chorros de partículas elementales cuando se aventuran cerca de un agujero negro. Stephen Hawking, estudiando este problema, tropezó con una dificultad que al principio consideró simplemente una formalidad: exactamente, ¿Cuándo se considera que algo es una partícula y cuándo puede ser vista como parte del espacio vacío?

NASA | Massive Black Hole Shreds Passing Star on Make a GIF2017 octubre 16 : Blog de Emilio Silvera V.

Si algo ocupa un nivel positivo de energía, se considera generalmente una partícula, pero cuando el nivel de energía está bajo cero, tiene que ser ocupado y es la ausencia de un objeto en tal nivel lo que se observa como una partícula. Consecuentemente, nos encontramos con que mientras que un astronauta, al caer en un agujero negro, ve el espacio-tiempo a su alrededor vacío, para un observador exterior parece que hay partículas que escapan de ser capturadas por el agujero. ¿Es esto una impresión de la teoría?, fue lo primero que pensó Hawking; y no importa el grado de refinamiento de sus cálculos, siempre parecía obtener un flujo débil de partículas que escapaban del agujero. En ese punto hizo el descubrimiento más importante: ¡esas partículas son reales! Cada agujero negro está emitiendo un flujo constante de partículas de todas las especies concebibles. La intensidad del chorro de partículas es inversamente proporcional al cuadrado de la masa del agujero negro.

La radiación de Hawking permitirá 'mirar' dentro de un agujero negro -  INVDES

La radiación de Hawking permitirá ‘mirar’ dentro de un agujero negro

Los aspectos que implican la radiación de Hawking son que antes de llegar a los estadios finales el tamaño del agujero negro se hará comparable a la longitud de Planck y toda la masa llegará a ser tan sólo un poco mayor que la masa de Planck. Las energías de las partículas emitidas también corresponderán a la de la masa de Planck. Solamente una teoría completa de la gravedad cuántica podrá predecir y describir exactamente lo que sucede al agujero negro en ese momento.

La Teoría de la Relatividad: Las escalas de Planck{\displaystyle \ell _{P}={\sqrt {\frac {\hbar G}{c^{3}}}}\approx 1.616199(97)\times 10^{-35}{\mbox{ metros}}}

“La longitud de Planck es la distancia o escala de longitud por debajo de la cual se espera que el espacio deje de tener una geometría clásica. Una medida inferior previsiblemente no puede ser tratada adecuadamente en los modelos de física actuales debido a la aparición de efectos de gravedad cuántica.”

Esta es la importancia de los agujeros negros para la teoría de partículas elementales en la longitud de Planck; sería un buen laboratorio ya que todas alcanzarán, por sí mismas, el régimen de energía de los números de Planck, y una buena teoría debe ser capaz de decirnos cómo calcular ese caso. En la teoría de supercuerdas se puede objetar que no nos dice nada de los agujeros negros, y mucho menos de cómo uno de ellos puede comenzar su vida como un agujero de tamaño astronómico y acabar explosivamente.

Teoría de cuerdas - Wikipedia, la enciclopedia libreSupercuerdas: ¿Veremos por fin una teoría unificadora? - NeCLO - Ciencia y  Cultura al MáximoTeoría de supercuerdas - Wikipedia, la enciclopedia libreTeoría de Cuerdas y la Teoría MBrana - Wikipedia, la enciclopedia libre

 

“Esta teoría reemplaza la singularidad en el centro de un agujero negro postulando que toda la región dentro del horizonte de sucesos es en realidad una maraña de cuerdas, las que la teoría de cuerdas postula que vibran para formar el espacio-tiempo, todas las partículas y fuerzas que conocemos, tanto en las tres dimensiones físicas de espacio como en direcciones compactas (las dimensiones extras están entrelazadas en la espuma cuántica).”

Variantes de la teoría

“Las cinco versiones de la teoría actualmente existentes, entre las que pueden establecerse varias relaciones de dualidad, son: La Teoría de cuerdas de Tipo I, donde aparecen tanto “cuerdas” y D-branas abiertas como cerradas, que se mueven sobre un espacio-tiempo de diez dimensiones.”

 

El pequeño libro de la teoría de cuerdas (Drakontos): Amazon.es: Gubser,  Steven S., Sampedro, Javier: LibrosLa Teoría de Cuerdas : Blog de Emilio Silvera V.

 

Los teóricos de cuerdas han tratado desenfrenadamente de conseguir el que esta teoría prediga los agujeros negros como cualquier buena teoría de la gravedad, sin embargo, de momento no ha sido posible. Cuanto más se piensa en ello, más importancia parecen tener los agujeros negros en el mundo de lo pequeño.

Cálculos realizados en relación a mini agujeros negros que obedecen tanto a las leyes cuánticas como a las relativistas de la gravedad, han dado resultados sorprendentes. Han aparecido las mismas expresiones matemáticas que las de la teoría de cuerdas.

Gabriele Veneziano - Wikipedia, la enciclopedia libre

“El físico italiano Gabriele Veneziano publicó una fórmula matemática para dominarlas a todas… a todas las partículas regidas por la interacción nuclear fuerte… las partículas llamadas hadrones… tanto bariones como el protón y el neutrón, como mesones como el pión y el kaón.”

 

“La teoría de cuerdas nació para explicar los resultados experimentales en la física de los hadrones. En la década de 1960 se descubrieron tantos nuevos hadrones que en lugar de partículas se hablaba de resonancias, como si fueran vibraciones de objetos más fundamentales. Para entenderlos era necesaria una nueva ley física universal.”

“Leonard Susskind, Yoichiro Nambu y Holger Nielsen encontraron en 1970 que el modelo dual de Veneziano describía la interacción entre parejas de cuerdas abiertas y el modelo dual de Virasoro entre parejas de cuerdas cerradas. El misterioso objeto fundamental que vibraba dando lugar a las resonancias en los modelos duales eran cuerdas.”

Reseñas del BLOG DE  Don FRANCISCO R. VILLATORO

Y a todo esto…

“La fórmula para la captura y emisión de partículas por un agujero negro es exactamente igual a la fórmula de Veneziano. Esto resulta extraño ya que no es un tema de cuerdas. La realidad es que la teoría no está acabada y que unos y otros dan palos de ciego buscando el camino que nos lleve a la “buena” teoría, y allí, seguramente, estará la explicación de estas conexiones que hoy aparecen en los números y que no podemos explicar.”

Agujeros de gusano

Científicos presentan un nuevo método para descubrir agujeros de gusano en  el universo - RTVE.es

Qué son los exóticos "agujeros de gusano" de Einstein y Rosen (y por qué  nos podrían permitir viajar a través del tiempo y el espacio) - BBC News  Mundo

Aumentan las posibilidades de viajar a través del tiempo • Tendencias21

Quizás algún días nos salven

Si creemos a Stephen Hawking, los agujeros negros son simplemente el principio de una deformación mucho más seria del espacio-tiempo, por ejemplo, su idea del “espacio-tiempo espumoso”. Pero eso no es todo; él y otros, en particular Sidney Coleman de la universidad de Harvard, han especulado con el papel especial que juegan los “agujeros de gusano”, que son conductos en el espacio-tiempo que conectan regiones muy distantes del universo, e incluso, pueden comunicar nuestro universo con otro universo. La formulación de Einstein de la teoría de la gravedad podría admitir tales rarezas.

“Por sorprendente que parezca, la antigravedad es un fenómeno predicho por la teoría relativista de la gravedad de Einstein, en el régimen ultrarrelativista. David Hilbert descubrió a finales de 1915, y publicó en 1917 y 1924, que la solución de Schwarzschild de las ecuaciones de Einstein permite que una partícula que se mueva en un círculo alrededor de una masa a una velocidad mayor que c/√3 puede sufrir una fuerza antigravitatoria (una fuerza gravitatoria repulsiva). Dicha fuerza repulsiva podría servir para acelerar naves espaciales a velocidades relativistas (idea d Felbel físico Franklin

r). Se ha sugerido que podría descubrirse dicha fuerza utilizando los haces de protones del LHC del CERN. Un nuevo artículo, que analiza en detalle la solución de Reißner-Weyl-Nordström para una masa cargada, muestra que no es posible verificar esta fuerza con haces de protones moviéndose en el anillo del LHC a velocidades utrarrelativistas ya que se requiere una partícula con gran masa, que cumpla que m²>q², lo que no ocurre ni con un protón ni con un electrón. La verificación experimental de la antigravedad tendrá que esperar.”

ALBURQUERQUE (EEUU).- Los túneles de protones que existen en laboratorios de EEUU y Europa podrían probar en un par de años la antigravedad, asegura Franklin Felber. Este científico afirma haber resuelto la ecuación de campo gravitatoria formulada por Albert Einstein.

“Mi fórmula es la primera solución en lo que se refiere al movimiento de una masa a la velocidad de la luz”, declara desde Albuquerque (Nuevo México)

 En busca de la antigravedad: 70 años de investigación militar persiguiendo  una fuerza que quizás no existeEn busca de la antigravedad: 70 años de investigación militar persiguiendo  una fuerza que quizás no existe

Hace algún tiempo ya que se pudo leer en la prensa que el físico de EE.UU, Franklin Felber, acababa de dar un paso nuevo en el desarrollo de la teoría de la relatividad general. La clave para viajar a velocidades cercanas a la de la luz podría estar en la solución exacta de una ecuación que planteó Albert Einstein hace casi un siglo: aprovechar las particularidades de la fuerza de la gravedad para enviar naves a otros mundos, a velocidades inconcebibles hasta ahora.

En busca de la antigravedad: 70 años de investigación militar persiguiendo  una fuerza que quizás no existedesarrollo defensa y tecnologia belica: Desencubrimiento parcial flota  operativa antigravedad actual del Gobierno de Estados Unidos

Los resultados de Felber nos dicen que cualquier cuerpo que viajara a un 57’7% de la velocidad de la luz generaría un extraño campo gravitatorio a su alrededor, conocido como antigravedad, que repelería los objetos que se acercaran en lugar de atraerlos. De esta forma, las naves espaciales del futuro podrían emplear los campos de antigravedad como medio de propulsión. Para ello, bastaría con acercarse al área de acción de un objeto que viajara a gran velocidad para ser rechazadas por su fuerza gravitatoria. De acuerdo con los nuevos cálculos, que acaban de presentarse en el Foro Internacional de Tecnología y Aplicaciones Espaciales de Alburquerque, en Estados Unidos, el impulso provocado por un objeto lo bastante grande podría enviar un vehículo hasta zonas inexploradas del universo.

La NASA anuncia que preparasu primera misión tripulada al planeta Marte  para 2030

La solución de Felber, la primera que se consigue para masas con velocidades cercanas a la de la luz, también establece que los humanos y el equipo que viajaran a bordo de la nave no sufrirían grandes daños durante la inmensa aceleración provocada por la antigravedad. Además, estos resultados podrían servir para poner a prueba en aceleradores de partículas algunas de las predicciones de la teoría de Einstein.

El hallazgo de Felber, vicepresidente y responsable de la división de física de la empresa Starmark, ha provocado ya algunas controversias, aunque su informe ha sido publicado por el Instituto Americano de Física en su último boletín de conferencias y ha pasado al examen de otros especialistas, pero siempre ha sido igual: cuando surge algo nuevo – aunque sea bueno – surgen los escépticos y detractores.

Diez preguntas para entender la teoría de la relatividad general de  Einstein | Público

¿Hasta cuándo estarán dando réditos las ecuaciones de campo de la relatividad general de Einstein? ¡Qué maravilla!

Volviendo al tema anterior, los investigadores podrían pensar que, si la teoría de Einstein admite los agujeros de gusano, éstos tienen que existir. Esto se parece a lo que ocurre en mecánica cuántica, en la que todo lo que está permitido sucede obligatoriamente, es decir, si alguna configuración es posible, ésta tiene una probabilidad definida de que en realidad ocurra. Seguramente, el lector de este trabajo habrá visto alguna vez o habrá leído alguna historia de ciencia ficción, y sabrá cómo les gustan a los autores del género los agujeros de gusano. Entran con sus naves en uno situados en nuestra Vía Láctea y, en un instante, salen por otro agujero de gusano situado en Andrómeda, una galaxia hermana situada a más de dos billones de kilómetros de la nuestra.

Stephen Hawking crea su primera app para Ipad | Tecnología - ComputerHoy.com

Hawking y Coleman parece que están a favor de la existencia de dichos agujeros de gusano, sin embargo, otros reputados científicos no creen en tal posibilidad.

Existe un análisis formal de la gravedad cuántica que se realizó en la universidad de Siracusa, en el estado de Nueva Cork, por Abhay Ashtekar. El trabajo fue desarrollado después por los investigadores Lee Smolin y Carlo Rovelli, que propusieron que los ingredientes fundamentales del espacio-tiempo no son puntos sino lazos cerrados. Aunque se parece un poco a lo que vimos en la teoría de cuerdas, ésta es una aproximación completamente diferente; de acuerdo con Smolin y Rovelli, lo esencial es que los lazos están atados en nudos y que fuera de esos nudos no hay espacio-tiempo en absoluto. La teoría de nudos es uno de los temas más difíciles de las matemáticas modernas.

Nudos y Teoría CuánticaNudos y Teoría Cuántica

Durante sus excursiones por las matemáticas de la teoría de cuerdas, los especialistas se han encontrado también con el problema del nudo. Edward Witten, uno de los mejores, ha descubierto varios teoremas matemáticos sobre nudos que le han hecho merecedor de la prestigiosa medalla Field, considerada el premio Nobel de las matemáticas, que se otorga cada cuatro años en el Congreso Internacional de matemáticas a jóvenes matemáticos menores de 40 años.

Si alguna de las cuestiones aquí planteadas le parecen asombrosas, no quiero ni pensar lo que pasaría por su mente si contara algunas cuestiones planteadas en congresos y reuniones científicas, que se ha discutido y filosofado sobre saltos cuánticos de un universo a otro (generalmente a través de agujeros de gusano), mundos paralelos en cosmología cuántica.

emilio silvera