martes, 22 de junio del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Desde el pasado al presente…¿Qué será de mañana?

Autor por Emilio Silvera    ~    Archivo Clasificado en Nuestro entorno...Nuestro futuro    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

              La ruta de la seda que tantos sueños despertaron en las mentes de muchos

La investigación rigurosa del pasado con el fin de descubrir las raíces humanas, la percepción y el estudio de las diferencias culturales, el interés por indagar los mecanismos profundos que gobiernan los sistemas económicos y sociales, e incluso el análisis del funcionamiento de la mente humana, surgieron y se desarrollaron en épocas relativamente recientes. Salvo la Psicología, que tiene  una original y larguísima y valiosa tradición en la India, las restantes ciencias sociales son una creación propia de de la culturta europea occidental, lo que no deja de llamar la tención de muchos estudiosos puesto que culturas milenarias con trayectorias prácticamente ininterrumpidas como la de China e India parecían las mása adecuadas para que de ellas surgieran disciplinas como Historia, la Econmomía o la Sociología. Es curioso el indagar sobre la  génesis y los primeros logros de las ciencias que tienen como objeto el hombre y la sociedad que este ha creado.

Hemos pasado de la tradición oral a las bibliotecas.

Biblioteca Joanina, Coímbra, Portugal

Biblioteca Estatal del Sur de Australia, Adelaida, Australia

Biblioteca de la Abadía de Admont, Austria

Biblioteca Joanina, Coímbra, Portugal (Depositphotos) - Biblioteca Estatal del Sur de Australia, Adelaida, Australia (Depositphotos) -Biblioteca de la Abadía de Admont, Austria (Alamy)

Antes de la invención de la escritura, la cultura humana ya se había desarrollado extensamente en áreas tan variadas como las artes plásticas, la religión, , la agricultura, la poesía y las técnicas de la metalurgía, la alfarería y de la construcción. Nuestra especie, comenzó a crear Sociedades de convivencia que ganaron estadios superiores en áreas hasta entonces desconocidas.

Pero incluso después de que se generalizaran los escritos, la transmisión oral y la memorización de los acontemcimientos continuaron siendo imprescindibles durante mucho tiempo, por lo que el cultivo y mejoramiento de la memoria humana fue una de las gransdes preocupaciones de la Antigüedad.

Sutra del Diamante, hallado en la cueva de Dunhuang (China).  Es el documento impreso de fecha conocida más antiguo que se conserva. Fue realizado el 11 de mayo del año 871. La imprenta es un método mecánico destinado a reproducir textos e imágenes sobre papel, tela u otros materiales. En su forma clásica, consiste en aplicar una tinta, generalmente oleosa,  sobre unas piezas metálicas (tipos)para transferirla al papel por presión. Aunque comenzó como un método artesanal, su implantación trajo consigo una revolución cultural.

Muchos expertos estudiosos han sido los que han explicado el largo proceso de seguido por la Humanidad desde que empleo las antiguas técnicas de memorización  y recitación hasta la invención de la imprenta de tipos móviles, la producción masiva de libros  y su clasificación y conservación en extensas bibliotecas.

Culturas como la China, la Japonesa y la Coreana, fueron pioneras en la utilización de la imprenta, pero sería el europeo Gutemberg quien le dió el impulso definitivo que habia de convertirla en la herramienta básica de la cultura moderna.

Del mito a la construcción del pasado histórico.

   Imprenta europea del siglo XV.
La exploración del pasado inaugurada por Herodoto y Tucídides en el s. V a. C. no tiene  paralelismo con ninguna otra tradición. Algunos aseveran que sólo dentro de la tradición cristiana del mundo, y a partir de un hecho tan traumático como la caída del Impero Romano, podía nacer el rudimento de la idea de progreso histórico y, con ella, el deseo de un conocimiento veraz de los hechos del pasado.

Sin embargo, hasta el siglo XV no aparecería un pionero que introdujera las primeras técnicas de lo que hoy conocemos como crítica histórica. En efecto, fue Lorenzo Valla quien utilizó por primera ves el conocimiento de la gramática histórica para descubrir anacronismos en documentos falsificados y quien aplicó el análisis filológico y del estilo para fijar autoría de libros y documentos.

Por otra parte, también durante los siglos y XV y XVI surgió el interés por el estudio de las ruinas, sobre todo las de Roma, aunque no fue hasta el XVIII, con la obra de Johann Joachim Winckekmnn, que se sentaron las bases de la formación de la moderna arqueología: esta conocería durante esta centuria y la siguiente un espectacular desarrollo.

De la construcción del pasado al análisis del presente.

Boorstin demuestra finalmente cómo el descubrimiento y la colonización americana fueron elementos fundamentales para que surgiera la Antropología y la Etnología y, con ellas,  ideas como la del origen común de toda la humanidad, a pesar de la diversidad racial y cultural.

Más propias de los siglos XVIII y XIX son la Economía, la Sociología y la sicología , de las que Adam Smith, Jonh Graunt y Sigmund Freud fueron, más que precursores, auténticas fundadores. Hay otras aportaciones considerables como las de David Ricardo, Kal Marx, o John Mynard Keynes en los análisis económicos. Malthus en los estudios demográficos y Adolphe Quletet en la Estadística aplicada a la sociología.

Pero, todo este recorrido, estaría falto de algo esencial, los descubrimientos de la Física del siglo XIX que han posibilitado a los físicos de nuestro tiempo conquistar los secretos de la constitución íntima de la materia, llegando hasta las constituyentes del núcleo atómico.

Imagen relacionada
Imagen relacionada
Imagen relacionada

No importa donde puede estar, qué maravilloso paisaje esté contemplando… Un hombre sólo con su sombra… con la única compañía de la soledad…. Algo esencial le falta en su vida, no se han cumplido las reglas.

Resultado de imagen de “El hombre sólo está en mala compañía”

Es verdad, aquellos que comentó Valery, cuando en 1924 dijo: “El hombre sólo está en mala compañía” Sí, el hombre es eminentemente un animal social y, necesita, que sus congéneres sean sabedores y admiradores de su s obras. Sin otros que vean lo que haces el esfuerzo tendrá menor sentido. Se estaba refiriendo a la divulgación de los conocimientos, de los descubrimientos, de que investigar sin divulgar tenía poco o ningún valor.

Con todo este repaso llegamos a la conclusión de que debimos descubrir la historia antes de poder explorarla. Y, como he deicho antes, los mensajes del pasado se transmitían primero a través de las habilidades de la  memnoria, luego de la escritura, y, finalmente, de manera explosiva en los libros.

  Los pensamientos llevados a la escritura para decir al mundo cómo están conformadas las cosas, la Naturaleza y el Universo mismo

El insospechado tesoro de  reliquias que guarda la tierra se remontaba a la prehistoria. El pasado se convirtió en algo más que un almacén de mitos o un catálogo de lo familiar. Nuevos mundos terrestres y marinos, riquezas de continentes remotos, modos de vida de pueblos lejanos, abrieron nuevas perspectivas en nuestras mentes que, así, de esa manera, comprendieron que, muchos antes que nosotros estuvieron aquí y crearon grandes  cosas, hicieron grandes ciudades, inventaron grandes formas de vivir y elevaron los grupos humanos a la categoría de Sociedad, de Civilización que trajeron progreso y novedades,

Así, las nuevas formas cotidianas de convivencia en Sociedad, llevó a estos seres a tener que aprender a convivir de distinta manera, a compartir con los demás y, se dió cuenta de que, las ideas, en conjunto, alcanzaban cotas mayores y mayores logros también no quedando perdidas como tantas veces ocirrió a la lorga la historia de la Humanidad.

Claro que, hoy tenemos una idea muy clara: Toda la Humanidad es una. El origen y el destino de todos… ¡Es el mismo!

Sin embargo, nos falta dar el paso final y hacer que esa unidad sea realmente cierta, estamos en la edad de la globalización, las noticias diarias nos traen escenas de cualquier parte del muindo en tiempo real, y, sin embargo, las diferencias continúan.

Necesitamos un sólo Gobierno Mundial, un Consejo compuesto por seres de todo el planeta y que rija nuestros destinos y distribuya las riquezas de manera proporcional al número de la población de cada región. La igualdad debe estar presente en todas partes. No hablar de ella con bonitas palabras en un alto estrado,  NO, sino que, se deben evitar desigualdades que, a estas alturas están fuera de lugar.

         Así se conforman los pobres para no caer en la desesperación e impotencia

Es imperdonable que puedan existir algunas personas (unos pocos cientos de miles, o, incluso algunos millones) que domine el 90% de toda la riqueza mundial. Eso no es moral. Algunas familas, para que sus hijos puedan estudiar están pasándolo mal y tienen carencias de necesidades primarias, mientreas que otros, tienen a sus hijos estudiando en el extranjero en colegios por los que paga en un año lo que aquí en España se paga por todo el curso, y, los padres del primero están pasando necesidades mientras que, los del segundo, su mayor preocupación es hacer una lista de los invitados que vendrán el domingo a su próxima montería en la finca de 6.000 Has.

Resultado de imagen de MOntería en una finca de 4.000 Has

Seguramente será necesaria para la estabilidad de la población pero… La imagen me pone fuera de mí. Se puede comprender que se mate para comer, es la única excusa por la que se puede dejar pasar estas salvajadas que, la mayor parte de las veces es por diversión, no por necesidad.

Mientras todo esto siga a sí, el avance será pequeño. Hoy días, el lugar de quellos Sacerdotes de las épocas pasadas, lo ocupan los gurus del dinero que se pavonean por el mundo y…si se escarvara un pocoi en el origen de las fortunas, muy pocos podrían pasar el examen.

En fin amigos, me desvío de mi cometido principal que es hablaros de lo que pasó en tiempos pasados, de como podemos actuar en el presente para preparar el terreno y tener un futuro mejor.

Hablamos de Ciencia y de Cultura, de Letras y de Números, de lo infinito y de lo infinitesimal, de la Mente y de la Conciencia pero, ¿seremos alguna vez conscientes? En cuanto a la pregunta planteada…. ¡El futuro siempre será incierto!

emilio silvera

Partículas, antipartículas, fuerzas…

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Bajo la “definición basada en quarks y leptones”, las partículas elementales y compuestas formadas de quarks (en púrpura) y leptones (en verde) serían la “materia”; mientras los bosones “izquierda” (en rojo) no serían materia. Sin embargo, la energía de interacción inherente a partículas compuestas (por ejemplo, gluones, que implica a los neutrones y los protones) contribuye a la masa de la materia ordinaria.

 

 

 

File:Annihilation.png

 

 

Esquema de una aniquilación electrón-positrón.

 

Ya hemos descrito en trabajos anteriores las dos familias de partículas elementales: Quarks y Leptones. Pero hasta ahí, no se limita la sociedad del “universo” infinitesimal. Existen además las antifamilias. A quarks y electrones se asocian, por ejemplo, antiquarks y antielectrones. A cada partícula, una antipartícula.

Uno de los primeros éxitos de la teoría relativista del campo cuántico fue la predicción de las antipartículas: nuevos cuantos que eran la imagen especular de las partículas ordinarias. Las antipartículas tienen la misma masa y el mismo spin que sus compañeras las partículas ordinarias, pero cargas inversas. La antipartícula del electrón es el positrón, y tiene, por tanto, carga eléctrica opuesta a la del electrón. Si electrones y positrones se colocan juntos, se aniquilan, liberando la energía inmensa de su masa según la equivalencia masa-energía einsteniana.

                      Una partícula y su antipartícula no pueden coexistir: hay aniquilación de ambas.

¿Cómo predijeron los físicos la existencia de antipartículas? Bueno, por la «interpretación estadística» implicaba que la intensidad de un campo determinaba la probabilidad de hallar sus partículas correspondientes. Así pues, podemos imaginar un campo en un punto del espacio describiendo la creación o aniquilación de sus partículas cuánticas con una probabilidad concreta. Si esta descripción matemática de la creación y aniquilación de partículas cuánticas se inserta en el marco de la teoría relativista del campo cuántico, no podemos contar con la posibilidad de crear una partícula cuántica sin tener también la de crear un nuevo género de partícula: su antipartícula. La existencia de antimateria es imprescindible para una descripción matemáticamente coherente del proceso de creación y aniquilación según la teoría de la relatividad y la teoría cuántica.

La misteriosa sustancia conocida como “materia oscura” puede ser en realidad una ilusión, creada por la interacción gravitacional entre partículas de corta vida de materia y antimateria. Un mar hirviente de partículas en el espacio puede crear la gravedad repulsiva.

Puede ser posible que las cargas gravitacionales en el vacío cuántico podrían proporcionar una alternativa a la “materia oscura”. La idea se basa en la hipótesis de que las partículas y antipartículas tienen cargas gravitacionales de signo opuesto. Como consecuencia, los pares de partícula-antipartícula virtuales en el vacío cuántico y sus dipolos de forma gravitacional (una carga gravitacional positivos y negativos) pueden interactuar con la materia bariónica para producir fenómenos que se suele atribuir a la materia oscura. Fue el  físico del CERN, Dragan Slavkov Hajdukovic, quien propuso la idea, y demostró matemáticamente que estos dipolos gravitacionales podrían explicar las curvas de rotación de las galaxias observadas sin la materia oscura en su estudio inicial. Sin embargo,  señaló que quedaba mucho por hacer.

Pero sigamos con la cuántica…

El pionero en comprender que era necesario que existiesen antipartículas fue el físico teórico Paul Dirac, que hizo varías aportaciones importantes a la nueva teoría cuántica. Fue él quien formuló la ecuación relativista que lleva hoy su nombre, y a la que obedece el campo electrónico; constituye un descubrimiento comparable al de las ecuaciones del campo electromagnético de Maxwell. Cuando resolvió su ecuación, Dirac se encontró con que además de describir el electrón tenía soluciones adicionales que describían otra partícula con una carga eléctrica opuesta a la del electrón. ¿Qué significaría aquello? En la época en que Dirac hizo esta observación, no se conocían más partículas con esta propiedad que el protón. Dirac, que no deseaba que las partículas conocidas proliferasen, decidió que las soluciones adicionales de su ecuación describían el protón.

Pero, tras un análisis más meticuloso, se hizo evidente que las partículas que describían las soluciones adicionales tenían que tener exactamente la misma masa que el electrón. Quedaba así descartado el protón, cuya masa es por lo menos, 1.800 veces mayor que la del electrón. Por tanto, las soluciones adicionales tenían que corresponder a una partícula completamente nueva de la misma masa que el electrón, pero de carga opuesta: ¡El antielectrón! Esto quedó confirmado a nivel experimental en 1932 cuando Carl Anderson, físico del Instituto de Tecnología de Calífornia, detectó realmente el antielectrón, que hoy se llama positrón.

Antes de empezar, debemos recordar que el Premio Nobel de Física de 1936 se repartió a partes iguales entre Victor Franz Hess y Carl David Anderson. Merece la pena leer la Nobel Lecture de Carl D. Anderson, “The production and properties of positrons,” December 12, 1936, quien nos explica que en esta imagen un “electrón” de 63 MeV atraviesa un placa de plomo de 6 mm y emerge con una energía de 23 MeV, pero lo hace con la curvatura “equivocada” como si fuera una partícula de carga positiva, como si fuera un protón pero con la masa de un electrón. La Nobel Lecture muestra muchas otras fotografías de positrones y electrones. Anderson afirma: “The present electron theory of Dirac provides a means of describing many of the phenomena governing the production and annihilation of positrons.”

Por otro lado, el Premio Nobel de Física de 1933 se repartió a partes iguales entre Erwin Schrödinger y Paul Adrien Maurice Dirac. También vale la pena leer la Nobel Lecture de Paul A. M. Dirac, “Theory of electrons and positrons,” December 12, 1933, aunque no cuente la historia de su descubrimiento, afirma que su ecuación predice el “antielectrón” de soslayo: ”There is one other feature of these equations which I should now like to discuss, a feature which led to the prediction of the positron.” (fuente: Francis (th)E mule Science’s News).

Resultado de imagen de Las antipartículasResultado de imagen de Las antipartículas

La aparición de las antipartículas cambió definitivamente el modo de pensar de los físicos respecto a la materia. Hasta entonces, se consideraba la materia permanente e inmutable. Podían alterarse las moléculas, podían desintegrarse los átomos en procesos radiactivos, pero los cuántos fundamentales se consideraban invariables. Sin embargo, tras el descubrimiento de la antimateria realizado por Paul Dirac hubo que abandonar tal criterio. Heisenberg lo expresaba así:

“Creo que el hecho de que Dirac haya descubierto partículas y antipartículas, ha cambiado toda nuestra visión de la física atómica… creo que, hasta entonces, todos los físicos habían concebido las partículas elementales siguiendo los criterios de la filosofía de Demócrito, es decir, considerando esas partículas elementales como unidades inalterables que se hallan en la naturaleza como algo dado y son siempre lo mismo, jamás cambian, jamás pueden transmutarse en otra cosa. No son sistemas dinámicos, simplemente existen en sí mismas. Tras el descubrimiento de Dirac, todo parecía distinto, porque uno podía preguntar: ¿por qué un protón no podría ser a veces un protón más un par electrón-positrón, etc.?… En consecuencia, el problema de la división de la materia había adquirido una dimensión distinta.”

 

Dado que la antimateria tiene la misma masa que la materia, es decir son de la misma magnitud y signo (la definición de masa es positiva siempre), el efecto gravitacional de la antimateria no debe ser distinto de la materia, es decir, siempre sera un efecto atractivo. Pero, ¿acaso no importa la equivalencia establecida de antipartícula viajando al futuro = partícula viajando al pasado?

                Existe un “universo” que se nos escapa de la comprensión

 

La respuesta es sí. Dicha equivalencia proviene de algo llamado simetría CPT (Charge-Parity-Time), y nos dice que la equivalencia entre las partículas y antipartículas no solo corresponde a realizar una transformación sobre la carga, sino también sobre la paridad y el tiempo. La carga no afecta la gravedad, pero la paridad y el tiempo si la afectan. En otras palabras, al modificarse el tiempo (poner el tiempo al reves) y el espacio (la paridad es “girar” el espacio), estamos alterando el espacio-tiempo, y como la teoría general de la relatividad lo afirma, es la geometría de este el que determina la gravedad.

El carácter mutable de la materia se convirtió en piedra angular de la nueva física de partículas. El hecho de que partículas y antipartículas puedan crearse juntas a partir del vacío si se aporta energía suficiente, no sólo es importante para entender cómo se crean las partículas en aceleradores de alta energía, sino también para entender los procesos cuánticos que se produjeron en el Big Bang.

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

Como ya lo hemos expresado, el conocimiento que se obtuvo sobre la existencia de antifamilias de partículas o familias de antipartículas es una consecuencia de la aplicación de la teoría relativista del campo cuántico, para cada partícula existe una partícula que tiene la misma masa pero cuya carga eléctrica (y otras llamadas cargas internas) son de signo opuesto. Estas son las antipartículas. Así, al conocido electrón, con carga negativa, le corresponde un «electrón positivo» como antipartícula, llamado positrón, descubierto en 1932. El antiprotón, descubierto en 1956, tiene la misma masa que el protón, pero carga eléctrica negativa de igual valor. El fotón, que no tiene masa ni carga eléctrica, puede ser considerada su propia antipartícula.

Un agujero negro es un objeto que tiene tres propiedades: masa, espin y carga eléctrica. La forma del material en un agujero negro no se conoce, en parte porque está oculta para el universo externo, y en parte porque, en teoría, el material continuaría colapsando hasta tener radio cero, punto conocido como Singularidad, de densidad infinita.

 Imagen relacionada

Un agujero negro tiene tres propiedades: masa, espín y carga eléctrica. La forma del material de un agujero negro no se conoce, en parte porque está oculta para el universo externo, y en parte porque, en teoría, el material continuaría colapsando hasta tener radio cero, punto conocido como singularidad, de densidad infinita.

Resultado de imagen de Fotones libres

La luz (fotones), no son una onda distinta que un electrón o protón, etc.

1°- “No se dispersan”, no son más pequeñas, como las ondas del agua (olitas) cuando tiramos una piedrita, a medida que se alejan de su centro; sino que en el caso de la luz son menos partículas, pero son siempre el mismo tipo de onda (determinada frecuencia), igual tamaño.

2°- Las ondas con más energía son más grandes, los fotones al igual que las partículas son más pequeñas, contra toda lógica (contracción de Lorentz).

3°- No necesitan de un medio material para desplazarse. Viajan en el vacío. El medio que usan para viajar, es el mismísimo espacio.

4°- Su cualidad de onda no es diferente de las partículas. Lo podemos ver en la creación de pares y la cualidad de onda de las partículas, etc. En ningún momento la partícula, es una cosa compacta (ni una pelotita), siempre es una onda, que no se expande. En la comparación con la ola, sería como un “montón” o un “pozo” de agua, con una dirección, lo que conocemos como ecuación de Schrödinger. En ningún momento la partícula, es una pelotita; la ola sobre el agua, no es un cuerpo que se mueve sobre el agua, no es un montón de agua que viene (aunque parece), sino una deformación del agua. Así la partícula, no es un montón de algo, sino una deformación del espacio.

La curvatura está relacionadas con la probabilidad de presencia, no es una bolita que está en uno de esos puntos, sino que es una onda en esa posición. El fotón es una onda que no necesita de un medio material para propagarse, se propaga por el espacio vacío. Así como una onda de sonido es una contracción-expansión del medio en que se propaga, el fotón es una contracción-expansión del espacio (del mismísimo espacio), razón por la cual entendemos que el espacio se curva, se contrae y expande. La rigidez del medio, da la velocidad de la deformación (velocidad de  la onda), en el caso de la rigidez del espacio da una velocidad “c”.Esta onda por causa de la contracción del tiempo (velocidad “c”), no se expande, sino que se mantiene como en su origen (para el observador ), como si fuese una “burbuja”, expandida o contraída, en cada parte, positiva-negativa

Cada partícula está caracterizada por un cierto número de parámetros que tienen valores bien definidos: su masa, carga eléctrica, spin o rotación interna y otros números, conocidos como cuánticos. Estos parámetros son tales que, en una reacción, su suma se mantiene y sirve para predecir el resultado. Se dice que hay conservación de los números cuánticos de las partículas. Así, son importantes el número bariónico, los diversos números leptónicos y ciertos números definidos para los quarks, como la extrañeza, color, etc. Estos últimos y sus antipartículas tienen cargas eléctricas (± 1/3 o ± 2/3) y números bariónicos (±1/3) fraccionarios. No todos los números asociados a cada partícula han sido medidos con suficiente precisión y no todas las partículas han sido detectadas en forma aislada, por lo menos de su ligamento, como el caso de los quarks y de los gluones.

Los gluones son una especie de «partículas mensajeras» que mantienen unidos a los quarks. Su nombre proviene del término inglés “glue”, que significa pegamento, en español quizás podría ser gomón. Ahora, en cuanto a los quarks, ya hicimos referencia de ellos anteriormente. Pero recordemos aquí, que fueron descubiertos en 1964 por Murray Gell-Mann, como los componentes más reducidos de la materia. Hasta entonces se pensaba que los átomos consistían simplemente en electrones rodeando un núcleo formado por protones y electrones.

En estado natural, quarks y gluones no tienen libertad. Pero si se eleva la temperatura a niveles 100.000 veces superiores, como se ha hecho en aceleradores de partículas, a la del centro del Sol, se produce el fenómeno del deconfinamiento y por un brevísimo tiempo quedan libres. En ese preciso momento aparece lo que se suele llamar plasma, «una sopa de quarks y gluones» que equivale al estado en que se podría haber encontrado la naturaleza apenas una milésima de segundo luego del Big Bang.

11-three_quarks 11-heart2quarks_small

Recientemente se ha descubierto un nuevo estado de la materia, esta vez a niveles muy altos de energía, que los científicos han denominado Plasma Gluón-Quark. La transición ocurre a temperaturas alrededor de cien mil millones de grados y consiste en que se rompen las fuertes ligaduras que mantienen unidos los quarks dentro de los núcleos atómicos. Los protones y neutrones están formados, cada uno, por 3 quarks que se mantienen unidos gracias a los gluones (El gluón es la partícula portadora de interacción nuclear fuerte, fuerza que mantiene unida los núcleos atómicos). A temperaturas superiores se vence la fuerza nuclear fuerte y los protones y neutrones se dividen, formando esta sopa denominada plasma Gluón-Quark.

Resultado de imagen de Los Quarks libres

Pero por ahora aquí, nos vamos a quedar con los quarks al natural. Normalmente, los quarks no se encuentra en un estado separados, sino que en grupos de dos o tres. Asimismo, la duración de las vidas medias de las partículas, antes de decaer en otras, es muy variable (ver tablas).

Por otra parte, las partículas presentan una o más de las siguientes interacciones o fuerzas fundamentales entre ellas. Por un lado se tiene la gravitación y el electromagnetismo, conocidas de la vida cotidiana. Hay otras dos fuerzas, menos familiares, que son de tipo nuclear y se conocen como interacciones fuertes y débiles.

La gravitación afecta a todas las partículas, es una interacción universal. Todo cuerpo que tiene masa o energía está sometido a esta fuerza. Aunque es la más débil de las interacciones, como las masas son siempre positivas y su alcance es infinito, su efecto es acumulativo. Por ello, la gravitación es la fuerza más importante en cosmología.

Resultado de imagen de Los campos magnéticos están presentes por todo el Universo

                            Los campos magnéticos están presentes por todo el Universo

La fuerza electromagnética se manifiesta entre partículas con cargas eléctricas. A diferencia de las demás, puede ser de atracción (entre cargas de signos opuestos) o de repulsión (cargas iguales). Esta fuerza es responsable de la cohesión del átomo y las moléculas. Mantiene los objetos cotidianos como entidades con forma propia. Un vaso, una piedra, un auto, el cuerpo humano. Es mucho más fuerte que la gravitación y aunque es de alcance infinito, las cargas de distinto signo se compensan y sus efectos no operan a grandes distancias. Dependiendo de las circunstancias en que actúen, estas interacciones pueden manifestarse como fuerzas eléctricas o magnéticas solamente, o como una mezcla de ambos tipos.

La Fuerza Nuclear Débil: otra fuerza nuclear, considerada mucho más débil que la Fuerza Nuclear Fuerte. El fenómeno de decaimiento aleatorio de la población de las partículas subatómicas (la radioactividad) era difícil de explicar hasta que el concepto de esta fuerza nuclear adicional fue introducido.

La interacción nuclear débil es causa de la radioactividad natural y la desintegración del neutrón. Tiene un rol capital en las reacciones de fusión del hidrógeno y otros elementos en el centro de las estrellas y del Sol. La intensidad es débil comparada con las fuerzas eléctricas y las interacciones fuertes. Su alcance es muy pequeño, sólo del orden de 10-15 cm.

Archivo:CNO Cycle.svg

La interacción fuerte es responsable de la cohesión de los núcleos atómicos. Tiene la intensidad más elevada de todas ellas, pero es también de corto alcance: del orden de 10-13 cm. Es posible caracterizar las intensidades de las interacciones por un número de acoplamiento a, sin dimensión, lo que permite compararlas directamente:

Resultado de imagen de Las fuerzas fundamentales

Fuerte as = 15

Electromagnéticas a = 7,3 x 10-3

Débil aw 3,1 x 10-12

Gravitacional aG = 5,9 x 10-39

Por otro lado, la mecánica cuántica considera que la interacción de dos partículas se realiza por el intercambio de otras llamadas «virtuales». Tienen ese nombre porque no son observables: existen por un tiempo brevísimo, tanto más corto cuanto mayor sea su masa, siempre que no se viole el principio de incertidumbre de Heisenberg de la teoría cuántica (que en este contexto dice que el producto de la incertidumbre de la energía por el tiempo de vida debe ser igual o mayor que una constante muy pequeña). Desaparecen antes de que haya tiempo para que su interacción con otras partículas delate su existencia.

Monografias.com

                                  El fotón  virtual común se desplaza hacia la partícula menos energética.

Dos partículas interactúan al emitir una de ellas una partícula virtual que es absorbida por la otra. Su emisión y absorción cambia el estado de movimiento de las originales: están en interacción. Mientras menos masa tiene la partícula virtual, más lejos llega, mayor es el rango de la interacción. El alcance de la interacción es inversamente proporcional a la masa de la partícula portadora o intermedia. Por ejemplo, la partícula portadora de la fuerza electromagnética es el fotón, de masa nula y, por lo tanto, alcance infinito. La interacción gravitacional también tiene alcance infinito y debe corresponder a una partícula de masa nula: se le denomina gravitón. Naturalmente tiene que ser neutro. (Aún no ha sido vistos ni en pelea de perros).

Resultado de imagen de Bosones W+, W- y Zª

Como ya hicimos mención de ello, a las fuerzas nucleares se les asocian también partículas portadoras. Para la interacción débil estas partículas se llaman bosones intermedios, expresados como W+, W- y Zº (neutro). El W- es antipartícula del W+. Los W tienen masas elevadas comparadas con las otras partículas elementales. Lo de bosones les viene porque tienen spin entero, como el fotón y el gravitón, que también los son, pero que tienen masas nulas. Las fuerzas fuertes son mediadas por unas partículas conocidas como gluones, de los cuales habría ocho. Sin embargo, ellos no tienen masa, pero tienen algunas de las propiedades de los quarks, que les permiten interactuar entre ellos mismos. Hasta ahora no se han observado gluones propiamente tal, ya que lo que mencionamos en párrafos anteriores corresponde a un estado de la materia a la que llamamos plasma. Claro está, que es posible que un tiempo más se puedan detectar gluones libres cuando se logre aumentar, aún más, la temperatura, como está previsto hacerlo en el acelerador bautizado como “Relativistic Heavy Ion Collider”, empotrado en Estados Unidos de Norteamérica.

TABLA DE LAS PRINCIPALES PROPIEDADES DE LAS PARTÍCULAS PORTADORAS DE LAS INTERACCIONES FUNDAMENTALES

Resultado de imagen de TABLA DE LAS PRINCIPALES PROPIEDADES DE LAS PARTÍCULAS PORTADORAS DE LAS INTERACCIONES FUNDAMENTALES

Una partícula y su antipartícula no pueden coexistir si están suficientemente cerca como para interactuar. Si ello ocurre, ellas se destruyen mutuamente: hay aniquilación de las partículas. El resultado es radiación electromagnética de alta energía, formada por fotones gamma. Así, si un electrón está cercano a un positrón se aniquilan en rayos gamma. Igual con un par protón-antiprotón muy próximos.

La reacción inversa también se presenta. Se llama «materialización o creación de partículas» de un par partícula-antipartícula a partir de fotones, pero se requieren condiciones físicas rigurosas. Es necesario que se creen pares partícula-antipartícula y que los fotones tengan una energía mayor que las masas en reposo de la partículas creadas. Por esta razón, se requieren fotones de muy alta energía, de acuerdo a la relación de Einstein E=mc2 . Para dar nacimiento a electrones/positrones es necesario un campo de radiación de temperaturas mayores a 7×109 °K. Para hacer lo mismo con pares protón/antiprotón es necesario que ellas sean superiores a 2×1012 °K. Temperaturas de este tipo se producen en los primeros instantes del universo.

Resultado de imagen de Gran emisión de rayos Gamma

Se detectan grandes emisiones de rayos gamma en explosiones supernovas y otros objetos energéticos

Los rayos gamma están presentes en explosiones de supernovas, colisión de estrellas de neutrones… Todos los sucesos de altas energías los hace presente para que nuestros ingenios los detecten y podamos conocer lo que la materia esconde en lo más profundo de sus “entrañas”. Aún no hemos podido conocer en profundidad la materia ni sabemos, tampoco, lo que realmente es la luz.

emilio silvera

Concurso de diseños para los futuros habitáculos de Marte

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al Espacio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ilustración del interior de un hábitat en el espacio.
Ilustración del interior de un hábitat en el espacio. NASA

Pese al fallo final en la misión israelí a nuestro satélite el pasado jueves, la carrera espacial continúa. Las misiones más allá de la órbita cercana a la Tierra, la Luna y Marte precisan de espacios autónomos capaces de funcionar con o sin astronautas y estar preparados para acoger en cualquier momento las expediciones. Con este objetivo, la Agencia Espacial Norteamericana (NASA) ha seleccionado a dos institutos de investigación tecnológica para desarrollar las casas extraterrestres. Cada institución recibirá 15 millones de dólares (13,3 millones de euros) en cinco años para configurar las viviendas espaciales.

El objetivo del proyecto, que se complementará con planes específicos de la NASA, es crear la tecnología crítica necesaria para permitir la presencia humana en la Luna y Marte. Los espacios inteligentes son imprescindibles para asumir los retos de la exploración y, según Jim Reuter, uno de los responsables de la Dirección de Tecnología Espacial de la Nasa, la colaboración con los centros ajenos a la agencia permite “ampliar la investigación y el desarrollo tanto para la carrera aeroespacial como para otros ámbitos”.

Resultado de imagen de Habitats Optimized for Missions of Exploration (HOME)

Uno de los institutos seleccionados es Habitats Optimized for Missions of Exploration (HOME), cuyas siglas en inglés forman la palabra hogar. Este centro está especializado en ingeniería, análisis de riesgos y tecnologías orientadas a la creación de espacios adaptables, autónomos y autosuficientes para la exploración humana. La investigación de Home estará encaminada al desarrollo de sistemas autónomos, equipamientos automatizados, ciencias de datos, aprendizaje mecánico, robótica y fabricación in situ de bienes necesarios en las casas extraterrestres.

Este equipo está dirigido por Stephen Robinson y cuenta con siete universidades y las corporaciones tecnológicas Sierra Nevada, United Technology Aerospace Systems y Blue Origin, la empresa aeroespacial del fundador de Amazon, Jeff Bezos, cuya visión es “un futuro en el que millones de personas vivan y trabajen en el espacio”.

 

Ilustración de una pareja en el espacio difundida por la empresa aeroespacila creada por Jeff Bezos, fundador de Amazon.
Ilustración de una pareja en el espacio difundida por la empresa aeroespacial creada por Jeff Bezos, fundador de Amazon. Blue Origin

El otro instituto seleccionado es Resilient ExtraTerrestrial Habitats institute (RETHi), que se encargará del diseño y funcionamiento de hábitats adaptables que puedan afrontar y superar cualquier contingencia prevista o no. Para ello contarán con expertos en infraestructura civil de campos como la robótica autónoma.

RETHI se concentrará en habilitar los espacios para que puedan funcionar con o sin tripulación, para lo que crearán prototipos y modelos virtuales con los que ensayar, probar y desarrollar las funcionalidades necesarias de los módulos.

La Universidad de Purdue aportará el investigador principal, Shirley Dyke, quien colaborará con las instituciones homólogas de Harvard, Connecticut y Texas.

Los dos centros de investigación seleccionados se unirán a otros tantos creados por la NASA y especializados en biotecnología y materiales ultraligeros y resistentes.

Ilustración de una colonia humana en el espacio creada con impresión 3D. Este imagen pertenece a la propuesta de Team SEArch Apis Cor, ganadora del concurso convocado por la NASA.

 

Ilustración de una colonia humana en el espacio creada con impresión 3D. Este imagen pertenece a la propuesta de Team SEArch Apis Cor, ganadora del concurso convocado por la NASA. Team SEArch Apis Cor

 

El desarrollo tecnológico de las casas extraterrestres se complementa también con el concurso convocado por la misma agencia espacial para propuestas de asentamientos en la Luna, Marte “o más allá” creados a partir de impresoras 3D y que, al igual que el proyecto de desarrollo de hábitats autónomos, permitan la construcción de colonias posibles.

Este último proyecto, ganado por tres de las 11 empresas presentadas (SEArch+/Apis Cor, Zopherus y Mars Incubator) ha premiado el uso de recursos disponibles fuera de nuestro planeta así como la programación de los modelos, los materiales y las fases de construcción. La propia Nasa destaca que la investigación realizada tiene aplicaciones actuales en la Tierra.