lunes, 29 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Un UNiverso lleno de sorpresas

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Noticias de Ciencia

Los astrónomos detectan un agujero negro supermasivo «fuera de control»

Pesa 160 millones de masas solares y salió disparado del centro de una galaxia hacia el espacio

Representación de un agujero negro supermasivo (a la derecha) expulsado del centro de su galaxia

Representación de un agujero negro supermasivo (a la derecha) expulsado del centro de su galaxia – X-ray: NASA/CXC/NRAO/D.-C.Kim; Optical: NASA/STScI; Illustration: NASA/CXC/M.Weiss

Resultado de imagen de Planetas expulsados de sis sistemas solares

 

(De Bacterias y Batallas). El Universo está repleto de sorpresas. Hay planetas que son expulsados de sus Sistemas Solares por la gravedad de otros cuerpos, como si fueran simples cometas, y vagan en soledad por la oscuridad del espacio. En las afueras de las galaxias, hay estrellas solitarias expulsadas que viajan hacia el «vacío» (en realidad el vacío del espacio nunca está vacío). Y no solo eso. Algo mucho más grande y misterioso, que suele estar en el centro de las galaxias o sujeto a su gravedad, también puede errar en solitario: se trata de los agujeros negros. Estos objetos pueden fusionarse y sufrir violentas transformaciones que los hacen «saltar» hacia el espacio intergaláctico: entonces, se convierten en agujeros negros errantes (no es por asustar, pero no es imposible que uno de ellos fuera disparado hacia el Sistema Solar).

Imagen relacionada

El observatorio Chandra de rayos X, de la NASA, ha fijado sus sensores en el que parece ser un vagabundo enorme: un agujero negro supermasivo de 160 millones de masas solares. Se encuentra, de momento, en una galaxia elíptica situada a 3.900 millones de años luz de la Tierra, en la constelación de la Osa Mayor. Estas observaciones han sido publicadas recientemente en arXiv y serán publicadas en The Astrophysical Journal. (Puedes leer la historia completa en el Blog de Bacterias y Batallas).

Descubriendo el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

https://jaivan.files.wordpress.com/2015/06/ciclo-de-vida-de-una-estrella.jpg

No pocas veces hemos explicado aquí lo que son las estrellas, como se forman y como evolucionan y finalmente mueren para convertirse en otros objetos estelares distintos de lo que en “vida” fueron, y, como, dependiendo de sus masas, se quedan en el Espacio Interestelar en forma de estrellas enanas blancas, de neutrones o agujeros negros.

Allí, en sus entrañas nucleares se “fabrican” los elementos complejos de los que estamos hechos los seres vivos y los mundos.

También se habló de las Galaxias y sus clases o tipos, de las radiogalaxias y de los cuásares, además de otras cuestiones de interés que, en todo momento, he tratado de explicar de manera muy sencilla con el objeto de que su comprensión sea fácil para las personas no versadas en Astronomía.

Diagrama que muestra los tipos comunes de estrellas

Desde la Protoestrella siguen su curso hasta la secuencia principal y, allí, consumen elementos cada vez más pesado hasta que al llegar al Hierro, reaccionan sugén su masa y se convierten en Gigantes rojas primero y en enanas blancas después (en estrellas poco masivas como el Sol), y, si sus masas son 3 veces mayores a las del Sol, su final será el de estrella de neutrones. Ya las estrellas muy masivas a partir de 8 masas solares, tienen un final que las lleva hacia la singularidad de los agujeros negros.

Es preciso que todos sepáis que, en cualquier región del Universo, por muchos años luz que de nuestra Galaxia esté, las leyes que rigen son las mismas que aquí interaccionan con la Materia. Todo el Cosmos es lo mismo en cualquier lugar. Los Cúmulos de Galaxias y los espacios “vacíos” que existen entre ellos, las Nebulosas, los Agujeros Negros que ocupan el corazón de las Galaxias, el gas y el polvo interestelar que forman nuevas estrellas, y, en fin, todas las maravillas que a través de los procesos nucleares, forman la materia compleja a partir del Hidrógeno y del Helio.

Galaxies_5x7.7_72d.tif                                         0000485A Documents                      B4619D8E:

           Las galaxias tienen un lado oculto que no podemos ver pero que está ahí presente en ellas

 

El Hidrógeno y el Helio es el material primario del Universo y, a partir de ellos, se forman las estrellas que convierten ese material en una especie de plasma a altas temperaturas que en la superficie de la estrella puede ser de 6.000 grados y en el núcleo de 15 millones.

La fusión nuclear, convierte el hidrógeno en helio, el helio en carbono, el carbono en oxígeno, y, de esta manera hasta llegar al hierro. Otros materiales más complejos se producen cuando las estrellas supermasivas explotan en supernovas sembrando el espacio con una nueva Nebulosa y, su núcleo se convierte en una estrella de neutrones o en un agujero negro.

Pero veamos algún objeto más de los que pueblan el inmenso espacio del Universo.

Resultado de imagen de La velocidad de la luz en el vacío

En tiempos de Galileo se creía que su velocidad era instantánea

La luz está compuesta por fotones y precisamente ya se ha dicho que es la luz la que tiene el record de velocidad del universo al correr a unos 300.000 Km/s, exactamente 299.792’458 Km/s.

¿Y los neutrinos?

Los neutrinos se forman en ciertas reacciones nucleares y ningún físico atómico ha sido hasta ahora capaz de medir su masa. Es probable que los neutrinos, como los fotones, tengan una masa en reposo nula, aunque en realidad el neutrino nunca podrá estar en reposo y, como el fotón, siempre se está moviendo a 299.792’458 Km/s y adquieren esa velocidad desde el instante en que se forma.

Primera observación de un neutrino en una cámara de burbujas, en 1970 en el Argonne National Laboratory de EE.UU., la observación se realizó gracias a las líneas observadas en la cámara de burbujas basada en hidrógeno líquido.

Pero los neutrinos no son fotones, porque ambos tienen propiedades muy distintas. Los fotones interaccionan fácilmente con las partículas de materia y son retardados y absorbidos al pasar por la materia. Los neutrinos, por el contrario, apenas interaccionan con las partículas de materia y pueden atravesar un espesor de años luz de plomo sin verse afectados. Lo cierto es que la cota superior de la masa de los neutrinos es 5.5 eV/c2, lo que significa menos de una milmillonésima parte de la masa de un átomo de hidrógeno

Parece claro, por tanto, que si los neutrinos tienen una masa en reposo nula, no son materia. Por otro lado, hace falta energía para formarlos, y al alejarse se llevan algo de ella consigo, de modo que son una forma de energía.

Resultado de imagen de Los neutrinos atraviesan la materia que está llena de espacios vacíosImagen relacionada

Los neutrinos salen disparados a velocidades relativistas desde los distintos fenómenos astronómicos que se producen en el Universo y, se crean grandes instalaciones para poder localizarlos. La masa del neutrino tiene importantes consecuencias en el modelo estándar de la física de partículas,  ya que implicaría la posibilidad de transformaciones entre los tres tipos de neutrinos existentes en un fenómeno conocido como oscilación de neutrinos.En todo caso, los neutrinos no se ven afectados por las fuerzas electromagnéticas o nuclear fuerte,  pero sí por la fuerza nuclear débil y la gravitatoria.

Resultado de imagen de Resultado de imagen de Los neutrinos atraviesan la materia que está llena de espacios vacíosResultado de imagen de Millones de neutrinos atraviesan nuestros cuerpos

En estos momentos, mientras lees este trabajo, miles de neutrinos atraviesan tu cuerpo

Sin embargo, atraviesan cualquier espesor de materia sin interaccionar apenas, de modo que prácticamente no efectúan trabajo. Lo cual les distingue de cualquier otra forma de energía. En su momento se habló de que los neutrinos podían ser la energía oscura que tanto fascina a todos los físicos, astrofísicos y astrónomos, sin embargo, al no haber detectado de manera clara la masa de los neutrinos, se desechó la idea.

El neutrino es de la familia de los leptones y existe en tres formas. Una asociada al electrón y se conoce como neutrino electrónico (Ve), otra al muón y es el neutrino múonico (Vµ) y por último el que está asociado con la partícula tau, que es el neutrino tauónico (Vt). Cada forma tiene su propia antipartícula.

Resultado de imagen de La existencia del neutrino fue postulada por Pauli

El neutrino fue postulado en 1.931 para explicar la energía “perdida” en la desintegración beta. Fue identificado de forma tentativa en 1.953, y definitivamente en 1.956, dando la razón a Wolfgang Pauli que presintió su existencia.

Los neutrinos no tienen carga y como dijimos antes, tampoco tienen masa (o muy poca); son pura energía que viaja siempre por el espacio a la velocidad de la luz (según se cree). En algunas teorías de gran unificación se predice que los neutrinos tienen masa no nula.

Decaimiento β de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón a la vez que emite un electrón) y un antineutrino electrónico.

Cuando Pauli propuso su existencia para justificar la energía perdida en la desintegración beta, Enrico Fermi lo bautizó con el nombre de neutrino.  La ley de conservación de la energía prohíbe que ésta se pierda, y en la desintegración beta, que es un tipo de interacción débil en la que un núcleo atómico inestable se transforma en un núcleo de la misma masa atómica pero de distinto número atómico, hace que en el proceso un neutrón se convierta en un protón con la emisión de un electrón, o de un protón en un neutrón con la emisión de un positrón. Pero la cuenta no salía, allí faltaba algo, no se completaba en la transformación la energía original, así que Pauli añadió en la primera un antineutrino electrónico y la segunda la completó con un neutrino electrónico.

Desde el comienzo de ésta página evitamos fórmulas y explicaciones complejas.

Ahora para ir conociendo mejor el Universo, dejemos aquí explicados algunos conceptos:

Asteroide.

                                                    (Planetas menores; planetoides)

Pequeños cuerpos que giran alrededor del Sol entre las órbitas de Marte y Júpiter en una zona alejada entre 1’7 y 4’0 Unidades astronómicas del Sol (cinturón de asteroides).  El tamaño de estos objetos varía desde el más grande, Ceres (con un diámetro de 933 km.), a los objetos con menos de 1 km. De diámetro.  Se estima que hay alrededor de 10 cuerpos con diámetro mayor de 250 km. Y unos 120 cuerpos con diámetros por encima de 130 km.

Aunque son millones, su masa total es apenas una pequeña fracción de la Tierra, aunque no por ello dejan de ser preocupantes en el sentido del peligro que pueda suponer para nuestro planeta, la colisión con uno de estos pedruscos enormes del espacio estelar.  La desaparición de los Dinosaurios podría ser una prueba de los efectos devastadores de una colisión de este calibre. Según algunos creen uno de estos cuerpos enormes cayó en Mexico y arrasó con la vida de los grandes reptiles.

Astrofísica.

Resultado de imagen de Astrofísica

Ciencia que estudia la física y la química de objetos extraterrestres.  La alianza de la física y la astronomía, que comenzó con la creación de la espectroscopia, permitió investigar lo que son los objetos celestes, y no solo donde están.

Esta ciencia nos permite saber la composición de elementos que tiene un objeto estelar situado a miles de años-luz de la tierra, y, de momento, se confirma que el material existente en el Universo entero, es igual en todas partes.

El Universo primitivo era un plasma, cuando se enfrió se convirtió en Hidrógeno y algo de Helio (los dos elementos más simples) y más tarde, cuando se formaron las primeras estrellas y galaxias, se pudo fabricar,  en los hornos termonucleares de las estrellas, el resto de elementos más complejos y pesados, tales como litio, carbono, oxigeno, nitrógeno, todos los gases nobles como argón, kriptón, neón, etc., el hierro, mercurio… uranio y se completó la tabla periódica de elementos naturales que están, de una u otra forma dispersos por el Universo.

Nosotros mismos, la especie humana, estamos hechos de un material que solo se puede producir en las estrellas, así qué, sin lugar a ninguna duda,  el material que nos formó se fabricó hace miles de millones de años en estrellas situadas a miles o cientos de miles de años-luz de nuestro Sistema Solar. ¡Qué insignificante somos comparados con la enormidad del Universo! Sin embargo, el hecho de pertenecer a él nos da cierta importancia, y, además, somos conscientes de SER.

Astronomía invisible.

 También la astronomía infrarroja puede llevarse a cabo desde la superficie de la Tierra. Sin embargo, muchas de las otras regiones del espectro electromagnético están seriamente bloqueadas por capas de la atmósfera terrestre, y eso significa que tenemos que utilizar métodos de investigación basados en el espacio, tales como sondas y satélites. Es cierto que para casi toda la astronomía de rayos X y hay un satélite importante, el Observatorio de Rayos X Chandra, de 1999, que ha dado una gran información en esta región.

Así, la Astronomñía invisible es el esstudio de objetos celestes observados mediante la detección de su radiación o longitudes de onda diferentes de las de la luz visible.

Resultado de imagen de Cygnus X-1

Mediante este método se ha detectado, por ejemplo, una fuente emisora de rayos X, Cygnus X-I, que consiste en una estrella supergigante que rota alrededor de un pequeño compañero invisible con una masa unas diez veces mayor que la del Sol y, por tanto, por encima del límite de Chandrasekhar y que todos los expertos le conceden su voto para que, en realidad sea un agujero negro situado en el corazón de nuestra Galaxia a 30.000 años-luz de la Tierra.

Astronómica, unidad.

 Resultado de imagen de Unidad Astronómica

Distancia media de la Tierra al Sol, igual a 149.600 millones de km., ó 499,012 segundos-luz, ó 8’316 minutos-luz.  Cuando se utiliza para medir distancias entre Galaxias, se redondea en 150 millones de km.

Átomo.

 Resultado de imagen de átomo wallpaper

La parte más pequeña que puede existir de un elemento.  Los átomos constan de un pequeño núcleo muy denso de protones y neutrones rodeado de electrones situados por capas o niveles y moviéndose.  El número de electrones es igual al de protones y, siendo la carga de estas positivas y la carga de aquellas negativa, pero equivalentes, el resultado final del total de la carga es cero y procura la estabilidad entre cargas opuestas pero iguales.

La estructura electrónica de un átomo se refiere a la forma en la que los electrones están dispuestos alrededor del núcleo y, en particular, a los niveles de energía que ocupan.  Cada electrón puede ser caracterizado  por un conjunto de cuatro números cuánticos: el núm. Cuántico principal, el orbital, el magnético y el número cuántico de espín.

Resultado de imagen de El principio de exclusión de Pauli

De acuerdo con el principio de exclusión de Pauli, dos electrones en un átomo no pueden tener el mismo conjunto de números cuánticos.  Los números cuánticos definen el estado cuántico del electrón y explicar como son las estructuras electrónicas de los átomos.

En el núcleo reside casi por completo, la masa del átomo que esta compuesta, como se ha dicho por protones y neutrones que, a su vez, están hechos por quarks.

Se puede dar el caso  de que, en ocasiones, se encuentren átomos exóticos en el que un electrón ha sido reemplazado por otra partícula cargada negativamente, como un muón o mesón.  En este caso, la partícula negativamente cargada finalmente colisiona con el núcleo con la emisión de fotones de rayos X.  Igualmente, puede suceder que sea el núcleo de un átomo el que sea reemplazado por un mesón positivamente cargado.  Ese átomo exótico tiene que ser creado artificialmente y es inestable.

Big Bang.

 Resultado de imagen de Al comienzo del universo le llamamos Big Bang

Teoría cosmológica en la que toda la materia y energía del Universo se originó a partir de un estado de enorme densidad y temperatura que explotó en un momento finito en el pasado hace unos 15 mil millones de años.  Esta teoría explica de forma satisfactoria la expansión del Universo, la radiación de fondo de microondas observada, característica de la radiación de cuerpo negro a una temperatura de 3 K y la abundancia observada de helio en el Universo, formado por los primeros 100 segundos después de la explosión a partir del denterio a una temperatura de 10.000.000.000 K. Ahora es considerada generalmente como más satisfactoria que la teoría de estado estacionario de un Universo quieto e inamovible.  La teoría del Big Bang fue desarrollada por primera vez en 1.927 por A.G.E. Lamaitre (1894-1966) y retomada y revisada en 1.946 por George Gamow (1904-1968). Han sido propuestas varias variantes de ella.

Resultado de imagen de singularidad espaciotemporal

La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.  La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general deja de ser válida en el Universo muy primitiva, y que el comienzo mismo debe ser estudiado utilizando una teoría cosmológica cuántica.

Con el conocimiento actual de la física de partículas de altas energías, podemos hacer avanzar el reloj, hacia atrás y a través de las eras Leptónica y la hadrónica hasta una millonésima de segundo después del Big Bang cuando la temperatura era de 1013 k.  Utilizando una teoría más especulativa los cosmólogos han intentado llevar el modelo hasta 10-35 segundos después de la singularidad, cuando la temperatura estaba en 1018 k.

Resultado de imagen de En el instante del Big Bang comenzço la expansión del Universo

En el instante del Big Bang comenzó la expansión del Universo y en ese mismo momento, nació el espacio-tiempo. En un principio la simetría lo dominaba todo y reinaba una sola fuerza unificada.  Más tarde, a medida que el Universo se enfriaba, la simetría se rompió y surgió la materia y las 4 fuerzas fundamentales que rigen hoy, la opacidad desapareció y todo fue transparencia, surgieron los fotones que transportaron la luz a todos los rincones del cosmos. Doscientos mil años más tarde surgieron las primeras estrellas, se formaron las Galaxias y, partir de la materia inerte, nosotros, la especie humana que, hoy, tan pretenciosa, quiere explicar como ocurrió todo.

Todo esto quedó bien explicado en días anteriores, sin embargo, se deja aquí un resumen como recordatorio para que todos, sin excepción, se familiaricen con estos conceptos del Cosmos.

Carbono, reacción de.

 Resultado de imagen de La reacción del CarbonoResultado de imagen de Carbono, reacción de

Importante proceso de fusión nuclear que se produce en las estrellas.  Lo inicia, el carbono 12 y, después de interacciones con núcleos de nitrógeno, hidrógeno, oxígeno y otros elementos, reaparece al final.

Este es el fenómeno que hace posible que las estrellas estén brillando en los cielos.

Cefeida variable.

Imagen relacionada

Este concepto engloba cualquier estrella cuyo brillo, visto desde la Tierra, no es constante. Pueden ser estrellas cuya emisión de luz fluctúa constantemente y pulsa variando tanto en temperatura como diámetro para producir cambios de brillo con un periodo y amplitud estables muy regulares.

Una estrella variable pulsante cuya periodicidad (esto es, el tiempo que su brillo tarde en variar) está directamente relacionada con su magnitud absoluta. Esta correlación entre el brillo y el período hace útiles las cefeidas para medir distancias intergalácticas.

Uno de los grupos importantes de gigantes o supergigantes amarillas variables pulsantes, llamadas así por su prototipo, Delta Cephei.  Este término general y aplicado comúnmente a más de un tipo estelar, en particular a los cefeadas clásicas antes mencionadas Delta Cephei, y a los menos numerosas estrellas conocidas como W virginia.

En su tamaño máximo, los Cefeidas son típicamente un 7-15% mayores que en su tamaño mínimo.

Centauros A.

ESO Centaurus A LABOCA.jpg

Intensa radiofuente o fuente de rayos X situada en la constelación Centauros,  identificada con la Galaxia elíptica gigante de una magnitud 7 NGC 5128.  Centauros A es una radio galaxia clásica con dos pares de lóbulos radioemisores, el mayor de los cuales extendiéndose hasta a 1’5 millones de años luz y con un chorro que unos 10.000 a.l. de longitud.  Estando situada a 15 millones de a.luz, se trata de la radiogalaxia más cercana al Sol.  Aunque la Galaxia madre se identifica como elíptica, tiene una banda de polvo poco característica que la cruza, que se cree es el resultado de la unión de una galaxia eliptica en otra espiral.

Esta situada entre el Grupo Local y el centro del supercúmulo de Virgo.

Colapso gravitacional

 Resultado de imagen de Colapso gravitacional

NGC 6745 (la primera imagen) comporta densidades tan altas como para desencadenar la formación de estrellas a través del colapso gravitatorio.Pero en realidad el colapso gravitario se refiere… Al fenómeno predicho por la teoría de la relatividad general en el que la materia comprimida más allá de una densidad crítica se colapsa como consecuencia de la atracción gravitacional hasta que aparece una singularidad puntual.

La singularidad resultante del colapso gravitacional puede ser interpretada como una indicación de que se ha llegado al límite de la teoría de la relatividad general y de la necesidad de construir una gravedad cuántica.

La hipótesis de la censura cósmica sugiere que el punto final del colapso gravitacional debe ser un agujero negro, pues las singularidades están siempre ocultas en astrofísica, pues suministra una evidencia indirecta de la existencia de los Agujeros negros.

También, dependiendo de la masa de la estrella, cuándo finalmente agotan su combustible nuclear de fusión (hidrógeno, helio, oxigeno, carbono, etc.) y la gravedad no encuentra oposición para realizar su trabajo, las estrellas colapsan bajo su propio peso, no siempre hasta agujeros negros, como nuestro Sol un día en el futuro, podrán colapsar a estrellas enanas blancas o estrellas de neutrones y los supermasivas, estas así, serán agujeros negros.

Cometas

 Imagen relacionada

Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada

Miembros secundarios del Sistema Solar que, según se cree, son montones de suciedad y hielo que son residuos de la formación del sistema solar.  Se cree que hay millones de cometas en la Nube de Oort, una región esférica con un radio de treinta mil a cien mil unidades astronómicas con centro en el Sol.  Los cometas que llegan de la Nube de Oort son calentados por el Sol y desarrollan colas brillantes que los hacen visibles en los cielos de la Tierra.

Corrimiento al rojo.

Resultado de imagen de Corrimiento al rojo

Desplazamiento de las líneas espectrales en la luz proveniente de las estrellas de las galaxias distantes, que se considera producido por la velocidad de alejamiento de las galaxias en un universo en expansión (ley de Hubble). Cuando las galaxias en lugar de alejarse se acercan (caso de Andrómeda), el corrimiento es hacia el azul.

Cósmica, densidad de la materia. (Densidad crítica)

Resultado de imagen de Densidad Crítica

Densidad de materia que se obtendría si toda la materia contenida en las Galaxias fuera distribuida uniformemente a lo largo de todo el Universo.  Aunque las estrellas y los planetas tienen densidades mayores que la densidad del agua (alrededor 1 gr/cm3),  la densidad media cosmológica es extremadamente baja (menos de 10-29 gr/cm3, o 10-5 átomos/cm), ya que el Universo está formado casi exclusivamente por espacio virtualmente vacío entre galaxias.  La densidad media de materia determina si el Universo continuará expandiéndose o no.

La llamada densidad crítica, es la densidad media de materia requerida para que la Gravedad detenga la expansión del Universo. Un Universo con una densidad muy baja se expandirá por siempre, mientras que uno con una densidad muy alta colapsará finalmente.  Un Universo con exactamente la densidad crítica, alrededor de 10-29 gr/cm3, es descrito por el modelo Einstein- de Sitter, que se encuentra en la línea divisoria de estos dos extremos.

La densidad media de materia que puede ser observada directamente en nuestro Universo representa sólo el 20% del valor crítico.  Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico.  Las teorías de universo inflacionario predicen que la densidad presente debería ser muy próxima a la densidad crítica; estas teorías requieren la existencia de materia oscura que, hoy por hoy, es el misterio más grande de la Astrofísica.

Cósmicos, rayos.

Resultado de imagen de Rayos Cósmicos

Partículas subatómicas, principalmente protones,  que atraviesan velozmente el espacio y chocan con la Tierra.  El hecho de que sean masivas sumado a sus altas velocidades, hace que contengan considerable energía: de 108 a más de 1022 eV (electrón-voltios).

El 90% de los rayos cósmicos son protones (núcleos de hidrógeno) y partículas alfa (núcleos de helio) la mayor parte del resto.  Los núcleos más pesados son muy raros.   También están presentes un pequeño número de electrones, positrones, antiprotones y neutrinos y rayos gamma.

Los rayos cósmicos fueron detectados por primera vez durante el vuelo de un globo en 1.912 por V.F.Hess, y el término fue acuñado en 1.925 por el físico norteamericano Robert Andrews Millikan (1868-1953).

Cosmología.

 Resultado de imagen de Cosmología

En la física la cosmología se refiere al estudio de la evolución y el destino del universo, así como también al desarrollo de las teorías de la relatividad.

  1. Ciencia que se ocupa de estudiar la estructura y la composición del Universo como un todo.  Combina la astronomía, la astrofísica y la física de partículas y una variedad de enfoques matemáticos que incluyen la geometría y la topología.
  2. Teoría cósmica particular.

Cosmología constante.

Resultado de imagen de Cosmología constante

Un término empleado a veces en cosmología pasa expresar una fuerza de “repulsión” o “repulsión cósmica”, como la energía liberada por el falso vacío que los modelos del Universo inflacionario consideran que potenció exponencialmente la expansión del universo.  Que exista tal repulsión cósmica o que haya desempeñado alguna vez un papel en la historia cósmica es un problema aún no resuelto, como ocurre con la constante cosmológica de Einstein.

Cúmulo de estrellas.

 

                                                            Cúmulo globular M13

Conjunto de estrellas unidas por la Gravitación, más pequeños y menos masivos que las Galaxias.  Los cúmulos “globulares” son más abundantes; son viejos y pueden contener de cientos de miles de millones de estrellas; se les encuentra dentro y lejos del disco Galáctico.

Se extienden sobre un radio de unos pocos megaparsecs (también existen pequeños Grupos de Galaxias, como nuestro Grupo Local de solo unas pocas Galaxias.)

He querido comenzar el año explicando algunas cosas que, no por conocidas debemos olvidar, el universo es muy complejo y de una riqueza inconmensurable de objetos y cuestiones que, de vez en cuando, debemos recordar.

emilio silvera

¿Cómo se pudieron formar las galaxias?

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

File:Cartwheel.galaxy.arp.750pix.jpg

Todavía, en pleno comienzo del siglo XXI, los cosmólogos no saben dar una explicación convincente de cómo se pudieron formar las galaxias. Lo cierto es que las galaxias no han tenido tiempo para formar cúmulos. Es posible que no consigamos llegar al entendimiento de cómo se pudieron formar las galaxias porque lo estamos mirando desde una perspectiva, o, desde un punto de vista muy estrecho. Es posible que el problema resida en que deberíamos mirar las cosas desde una escala mayor para así, poder entender cómo pudieron suceder las cosas, cómo se formaron los grandes cúmulos de galaxias.

Resultado de imagen de La sustancia cósmica que genera gravedad y no radiación

“Un equipo de científicos ha descodificado distorsiones débiles en los patrones de la luz más primitiva del Universo para cartografiar enormes estructuras similares a tubos, invisibles a nuestros ojos – llamadas filamentos – que sirven como autopistas para el transporte de materia hacia núcleos densos como son los cúmulos de galaxias.”

La génesis de las galaxias individuales se podría resolver por sí misma si pudiéramos entender bien la formación de los cúmulos. La idea nos conduce naturalmente a la cuestión de cómo se pueden haber formado concentraciones tan grandes de masa al comienzo de la vida del universo. Una de las ideas más sencillas sobre cómo puede haber sido el universo cuando los átomos se estaban formando es que, no importa lo que estuviese pasando, la temperatura era la misma en todas partes. Este se llama “Modelo Isotérmico”. Corresponde a la suposición de que la radiación en los comienzos del universo estaba diseminada iniformemente, estuviera o no agrupada la materia.

Resultado de imagen de Embriones de galaxias

La formación de galaxias es una de las áreas de investigación más activas de la astrofísica,  y en cierto sentido, esto también se aplica a la evolución de las galaxias. Sin embargo, hay algunas ideas que ya están ampliamente aceptadas. Actualmente, se piensa que la formación de galaxias procede directamente de las teorías de formación de estructuras,  formadas como resultado de las débiles fluctuaciones cuánticas en el despertar del Big Bang. Las simulaciones de N-cuerpos también han podido conjeturar sobre los tipos de estructuras, las morfologías y la distribución de galaxias que observamos hoy en nuestro Universo actual y, examinando las galaxias distantes, en el Universo primigenio. Nuestra Galaxia, la Vía Láctea puede contener algo más de cien mil millones de estrellas, otras más pequeñas sólo tienen mil millones y, algunas macro-galaxias pueden llegar a tener 600.000 mil millones de estrellas. Lo cierto es que hemos podido localizar galaxias situadas a más de 11.000 años-luz de la Tierra.

http://3.bp.blogspot.com/-JZweUMiOr30/TlI4XAA3e0I/AAAAAAAAAGo/JzB6D2f81IM/s1600/Choques+entre+galaxias.jpg

En ese (para nosotros) tan inconmensurable espacio de tiempo, las galaxias han tenido mucho tiempo para evolucionar y, gracias a nuestros modernos ingenios, las hemos podido localizar de todo tipo y en algunas de sus más extrañas configuraciones al fusionarse unas con otras por efecto de la Gravedad que, según todos los indicios, es el destino que el Universo tiene adjudicado para Andrómeda y la Vía Láctea dentro de algunos miles de millones de años.

Resultado de imagen de Colisión futura de la Galaxia Andrómeda con la Vía Láctea

Si desarrollamos las consecuencias matemáticas del Modelo Isotérmico, podremos encontrar que los tipos de concentraciones de masa se podrían haber formado en la infancia del universo y que, de esa manera, son muy fáciles de describir. Con la misma temperatura en todas partes, las fluctuaciones aleatorias ordinarias producirían concentraciones de masa de todos los tamaños, si quisieran encontrar una concentración del tamaño de un planeta, la habría. Lo mismo sucedería con concentraciones de masa del tamaño de estrellas y de galaxias, cúmulos, etc. En la jerga del astrofísico, las concentraciones de masa aparecerían a todas las escalas.

Así, de esa manera, la materia esparcida por todo el espacio y situada a lo largo y lo ancho de él, pudieron formar toda clase de objetos grandes y pequeños configurando galaxias que, como pequeños universos, lo contenían todo y, eran como universos en miniatura con sus mundos y estrellas y sustancia primigenia dispuesta para interaccionar con la radiación, el electromagnetismo y la Gravedad que serían responsables de la formación de nuevas estrellas y nuevas galaxias con la ayuda de la Gravedad viniera de donde viniera (no tenemos claro si en realidad es cierto que existe esa clase de materia invisible que la genera).

Resultado de imagen de embriones de galaxias

“Las mayores galaxias que existen en el universo, esferas gigantes repletas de estrellas, parecen surgir en los océanos cósmicos de gas frío. Así lo sugiere un estudio internacional liderado desde el Centro de Astrobiología, en Madrid. Sus resultados señalan que la formación de supergalaxias en el universo primitivo es un proceso diferente al conocido para el universo más cercano.”

 

 

Claro que, el modelo isotérmico sólo podemos encontrar una solución particularmente simple del problema de las galaxias, porque las concentraciones de masa más pequeñas crecen más rápido que las más grandes. Los primeros objetos que aumentarían serían cosas relativamente pequeñas llamadas protogalaxias, que contendrían quizá un millón de estrellas cada una. Estas protogalaxias se agruparían luego bajo influencias de la Gravedad para formar galaxias con todas las de la ley, que se reunirían a su vez para formar cúmulos y supercúmulos. el universo en este modelo se construiría “desde abajo”

Resultado de imagen de El cúmulo de galaxias Abell 1689 desvía la luz

Este cúmulo de galaxias es uno de los objetos más masivos del Universo visible. En esta fotogrrafía de la cámara avanzada para sondeos del Telescopio Espacial Hubble, se ve como Abell 1.689 curva el espacio tal como predijo la teoría de la gravedad de Einstein (las galaxias que hay detrás del cúmulo desvían la luz y producen múltiples imágenes curvadas).

Resultado de imagen de El cúmulo de galaxias Abell 1689 desvía la luz

“La lente gravitacional del cúmulo galáctico Abell 370. Al fotografiar el cúmulo de galaxias Abell 370, los astrónomos notaron la presencia de un arco poco común a la derecha de algunas galaxias del cúmulo. Imágenes posteriores permitieron identificar ese arco como el primer ejemplo conocido de una nueva clase de fenómeno astrofísico: un efecto de lente gravitacional causado por todo un cúmulo galáctico y ejercido sobre la imagen de las galaxias de fondo. La gravedad de Abell 370 causó la dispersión de la luz de las galaxias del fondo —y de otros objetos— y le hizo seguir múltiples caminos para llegar hasta nosotros.”

Claro que, en todo esto nos encontramos con un gran inconveniente: ¡No ha habido tiempo para que ese placentero agrupamiento bajo la influencia de la Gravedad haya podido tener lugar lugar desde el momento de la creación, es decir, desde lo que entendemos por Big Bang! Sin embargo y a pesar de ello, ahí las tenemos y podemos contemplarlas en toda su belleza y esplendor pero, ¿cómo pudieron llegar aquí? En realidad, nadie lo sabe.

Hay algunas colecciones de galaxias muy grandes y complejas en el cielo. Nos vemos forzados a concluir que el universo no puede haber tenido una temperatura constante durante el desparejamiento. Es decir, no quiero decir nada contra la existencia de las galaxias, simplemente hago notar que las galaxias no pueden existir si suponemos que la radiación estaba unida y uniformemente distribuida en la infancia del universo. Claro que:

¡Si la radiación marcha junto con la materia y la materia con las galaxias, la radiación de microondas cósmica sería contradictoria!

 

 

Resultado de imagen de La sustancia cósmica que genera gravedad y no radiación

Debajo de ésta imagen nos dicen:

“Hallan indicios de “materia oscura” unida al Cosmos. La evidencia muestra nuevos fenómenos físicos que podrían ser debido a la extraña y desconocida “materia”.”

Si la radiación no se hubiera dispersado uniformemente, con independencia de la materia del universo, ¿?dónde hubiera estado? Siguiendo el procedimiento normal de la física teórica, consideraremos a continuación la tesis opuesta. Suponemos que en el comienzo del Universo la materia y la radiación estaban unidas. Si era así, allí donde se encontrara una concentración de masa, también habría una concentración de radiación. En la jerga de la física se dice que esta situación es “adiabática”. Aparece siempre que tienen lugar en las distribuciones del gas cambios tan rápidos que la energía no puede transferirse fácilmente de un punto al siguiente.

http://paolera.files.wordpress.com/2012/11/hst_macs0647_z11.jpg

En esta imagen obtenida con el Hubble, se observa una lejana proto-galaxia. Una proto-galaxia, es un objeto que dará una galaxia como resultado de su evolución; una galaxia naciente o en formación. Una galaxia muy lejana, es vista muy joven ya que su luz tarda en llegar a nosotros, por eso se dice que “vemos el pasado”. MACS0647-JD, es una galaxia hecha y derecha, pero tan lejana que la vemos como era hace mucho tiempo atrás. Está a 13 mil millones de años luz de casa. Como ese es el tiempo que tarda su luz en llegar a nosotros, la vemos como era hace ese tiempo atrás. Si tenemos en que el Universo se formó hace casi unos 14 mil millones de años (aproximadamente), eso convierte a este objeto en una galaxia de las primeras en formarse. Al verla como un agalaxia naciente, debería estar llena de estrellas brillantes y calientes.

Sabemos que,  para hacer galaxias, la materia del universo tuvo que estar muy bien distribuida en agregados cuando se formaron los átomos. Llamaremos a esto “darle un empukon al proceso”. Un corolario necesario es que en condiciones adiabáticas, la radiación debe de  haber comenzado siendo agrupada también.

Aquí se pretende representar el pasado y el futuro del universo que, se expandió primero de manera muy rápida, después más lenta, y de nuevo la velocidad aumentó, de manera tal que el recorrido represrenta una especie de S que nos habla del pasado y del futuro.

Entre los otros muchos procesos en marcha en aquellos primeros momentos del nacimiento del universo, en aquel tiempo, uno de los principales parámetros a tener en es el de la rápida expansión, ese proceso que ha venido a ser conocido como inflación. Es la presencia de la inflación la que nos conduce a la predicción de que el universo tiene que ser plano.

Se pudieron formar los núcleos y los átomos de la materia

El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; todos hemos podido ver una botella de líquido explotar si alcanzanda la congelación, el contenido se expande y el recipiente no puede contenerlo. No debería sert demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.

Claro que no es fácil explicar cómo a medida que el espacio crece debido a esa expansión, se hace más y más voluminoso cada vez y también, cada vez menos denso y más frío. Lo que realmente sorprende es la inmensa magnitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1060  longitudes de Planck. Acordáos de aquellos números que en aquel que titulé,  ¿Es viejo el Universo?, os dejaba allí expuestos unos interesantes sobre nuestro universo. Volvamos a verlos:

– La edad actual del universo visible ≈ 1060 tiempos de Planck

– Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

– La masa actual del Universo visible ≈ 1060 masas de Planck

– Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

– Densidad actual del universo visible ≈10-120 de la densidad de Planck

– Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

– Temperatura actual del Universo visible ≈ 10-30 de la Planck

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción. Lo cierto es que, son tan grandes y tan pequeñas esos números y fracciones que, para nosotros, no tienen significación  consciente, no las podemos asimilar al tratarse, como se dice más arriba, de medidas sobrehumanas. Si un átomo aumentara en esa proporción de 1060 no tendría cabida en el Universo, el átomo sería mayor.

Decíamos que en 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo con el tamaño de una naranja. No debe sorprendernos pués, que el inflación esté ligado a este proceso. Es cierto que cuando oímos por primera vez este proceso inflacionista, podamos tener alguna dificultad con el índice de inflación que se expone sucedió en el pasado. Nos puede llevar, en un primer momento, a la idea equivocada de que se han violado, con un crecimiento tan rápido, las reglas de Einstein que impiden viajar más veloz que la luz, y, si un cuerpo material viajó la línea de partida que señalan los 10-35 segundos aquella otra que marca la dimensión de una naranja…¡su velocidad excedió a la de la luz!

Claro que la respuesta a que algo sobrepasara la velocidad de la luz, c, es sencilla: NO, nada ha sido en nuestro universo más rápido que la luz viajando, y la explicación está en el hecho cierto de que no se trata de algo pudiera ir tan rápido, sino que, por el contrario, en lugar de que un objeto material viajara por el espacio, lo que ocurrió es que fue el espacio mismo el que se infló -acordaos de la masa de pan que crece llevando las pasas como adorno-, y, , esa expansión hace que las galaxias -las pasas de la masa-, se alejen cada vez más las unas de las otras, haciendo el universo más grande y frío cada vez.

Así que, con la expansión o inflación, ningún cuerpo material se movió a grandes velocidades en el espacio, ya que, fue el espacio mismo el que creció y, de alguna manera, su tremenda expansión, incidió sobre los objetos que contenía que, de esa manera, pasaron de estar muy juntos a estar muy separados. Las reglas contra el viaje a velocidades superiores a la de la luz sólo se aplican al movimiento al movimiento dentro del espacio, no al movimiento del espacio. Así no hay contradicción, aunque a primera vista pudiera parecerlo.

Empleamos todos los medios a nuestro alcance e ideamos nuevos ingenios para poder asomarnos a las escalas más extremas del universo, con los telescopios queremos llegar las primeras gaalxias y, con los aceleradores de partículas nos queremos asomar a ese momento primero en el que se formó la materia.

A los cien millones de años el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces.  Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar protogalaxias.

A la edad de mil millones de años, el Universo tiene un aspecto muy diferente.  El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro billa un quásar blancoazulado.  El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.

File:Supercúmulo de Virgo.jpg

Nuestras galaxias vecinas del supercúmulo de Virgo están relativamente cerca; la expansión del Universo aún no ha tenido tiempo de alejarlas a las distancias-unas decenas de millones de años-luz a las que las encontraremos .   El Universo es aún altamente radiactivo.  Torrentes de rayos cósmicos llueven a través de nosotros en cada milisegundo, y si hay vida en ese tiempo, probablemente está en rápida mutación.

Hay algo que es conocido por el término técnico de desacoplamiento de fotones, en ese momento, la oscuridad es reemplazada por una deslumbrante luz blanca, se cree que ocurrió cuando el Universo tenía un millón de años.   El ubicuo gas cósmico en aquel momento se había enrarecido los suficientes como permitir que partículas ligeras –los fotones– atraviesen distancias grandes sin chocar con partículas de materia y ser reabsorbidas.

Resultado de imagen de La materia oscura

                 Siempre hicimos lo mismo… ¡Cuando no sabemos imaginamos lo que podría ser!

(Hay gran cantidad de fotones en reserva, porque el Universo es rico en partículas cargadas eléctricamente, que generan energía electromagnética, cuyo cuanto es el fotón.) Es esa gran efusión de luz, muy corrida al rojo y enrarecida por  la expansión del Universo, la que los seres humanos, miles de millones de años después, detectaran con radiotelescopios y la llamaran la radiación cósmica de fondo de microondas. Esta época de “sea la luz” tiene un importante efecto sobre la estructura de la materia.  Los electrones, aliviados del constante acoso de los fotones, son libres de establecerse en órbita alrededor de los núcleos, formando átomos de hidrógeno y de helio.

Sí, de todo eso hemos podido saber pero, ¿cómo se pudieron formar las galaxias a pesar de la expansión del universo? ¿por qué la matería se pudo agrupar y no salió despedida y se dispersó impidiendo esa formación? Lo cierto es que nadie sabe contestar esa pregunta y, se estima, se cree, se piensa que, allí podría haber estado presente una especie de “materia” o “sustancia” cósmica que no emitía radiación y que, generando gravedad, podría haber retenido la materia de manera suficiente para que se pudieran formar las galaxias.

¡Es todo tan complejo!

emilio silvera

Materia de sombra, Axiones, ¿WIMPs en el Sol?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

Es curioso como a veces, la realidad de los hechos observados, vienen a derribar esas barreras que muchos ponen en sus mentes  negar lo evidente. Por ejemplo: Los extraordinarios resultados de la sonda Kepler, que en su primer año de misión ha encontrado ya 1.235 candidatos a planetas, 54 de ellos en la zona habitable de sus estrellas, ha permitido a los investigadores extrapolar el número total de mundos que podría haber sólo en la Vía Láctea, nuestra galaxia. Y ese número ronda los 50.000 millones. De los cuales, además, unos 500 millones estarían a la distancia adecuada de sus soles para permitir la existencia de agua en estado líquido, una condición necesaria para la vida.

astronomersa

Planetas parecidos a la Tierra, como la lógica nos dicen, hay miles de millones y sólo cabe esperar que estén situados en los lugares adecuados  que la vida tenga la oportunidad de surgir acogida por el ecosistema ideal del agua líquida, una atmósfera acogedora y húmeda, temperatura ideal media y otros parámetros que la vida requiere para su existencia.

Un equipo de astrónomos internacionales pertenecientes al Observatorio Europeo Austral (ESO), el más importante del mundo, investiga la formación de un posible  sistema planetario a partir de discos de material que rodea a una estrella joven. Según un comunicado difundido hoy por el centro astronómico que se levanta en la región norteña de Antofagasta, a través del “Very Large Telescope”(VLT), los científicos han estudiado la materia que rodea a una estrella joven.

Según los astrónomos, los planetas se forman a partir de discos de material que rodean a las estrellas, pero la transición  discos de polvo hasta sistemas planetarios es rápida y muy pocos son identificados en esta fase. Uno de los objetos estudiados por los astrónomos de ESO, es la estrella T Chamaleontis (T-Cha), ubicada en la pequeña constelación de Chamaleón, la cual es comparable al sol pero en sus etapas iniciales.

Dicha estrella se encuentra a  330 años luz de la Tierra y tiene 7 millones de años de edad, lo que se considera joven para una estrella. “Estudios anteriores han demostrado que T Cha es un excelente objetivo para estudiar cómo se forman los sistemas planetarios”, señala el astrónomo Johan Olofsson, del Max Planck Institute of Astronomy de Alemania.

Algunas veces hablando de los extensos y complejos temas que subyacen en la Astronomía, lo mismo hablamos de “materia de sombre” que de “supercuerdas” y, se ha llegado a decir que existe otro universo de materia de sonbra que existe en paralelo al nuestro. Los dos universos se separaron  la Gravedad se congeló sepapándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo cual las convierte en candidatas ideales para la tan traida y llevada “materia oscura”.

Llegamos a los Axiones.

Resultado de imagen de Los Axiones

El  actual de la cuestión es que los cosmólogos creen saber que hay una gran cantidad de materia oscura en el Universo y, han conseguido eliminar la candidatura de cualquier tipo de partícula ordinaria que conocemos. En tales circunstancias no se  llegar a otra conclusión que la materia oscura debe de existir en alguna forma que todavía no hemos visto y cuyas propiedades ignoramos totalmente. Sin embargo, se atreven a decir que, la Gravedad, es el efecto que se produce cuando la “materia oscura” pierde consistencia… , o algo así.  ¡Cómo son!

A los teóricos nada les gusta más que aquella situación en la cual puedan dejar volar libremente la imaginación sin miedo a que nada tan brusco  un experimento u observación acabe con su juego. En cualquier caso, han producido sugerencias extraordinarias acerca de lo que podría ser la “materia oscura” del universo.

                           Lo que hay en el Universo…no siempre lo podemos comprender.

Otro de los WIMPs favoritos se llama axión.  el fotino y sus compañeros, el axión fue sugerido por consideraciones de simetría. Sin embargo, a diferencia de las partículas, sale de las Grandes Teorías Unificadas, que describen el Universo en el segundo 10ˉ³5, más que de las teorías totalmente unificadas que operan en el tiempo de Planck.

 mucho tiempo han sabido los físicos que toda reacción entre partículas elementales obedece a una simetría que llamamos CPT. Esto significa que si miramos la partícula de una reacción, y luego vemos la misma reacción cuando (1) la miramos en un espejo, (2) sustituimos todas las partículas por antipartículas y (3) hacemos pasar la película hacia atrás, los resultados serán idénticos. En este esquema la P significa paridad (el espejo), la C significa conjugación de carga (poner las antipartículas) y T la reversa del tiempo (pasar la película al revés).

Se pensaba que el mundo era simétrico respecto a CPT porque, al menos al nivel de las partículas elementales, era simétrico respecto a C, P y T independientemente. Ha resultado que no es éste el caso. El mundo visto en un espejo se desvía un tanto al mundo visto directamente, y lo mismo sucede al mundo visto cuando la película pasa al revés. Lo que sucede es que las desviaciones entre el mundo real y el inverso en cada uno de estos casos se cancelan una a la otra cuando miramos las tres combinadas.

Aunque esto es verdad,  es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?

La respuesta a esta cuestión parece que  estar en la posible existencia de esa otra partícula apellidada axión. Se supone que el Axión es muy ligero (menos de una millonésima parte de la masa del electrón) e interacciona sólo débilmente con otra materia. Es la pequeña masa y la interacción débil lo que explica el “casi” que preocupa a los teóricos.

 nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de momento, es imposible verificarla.

El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y como Riemann antes que él, trabajó en total  en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.

Dispersas  oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina ( ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. Esta extraña función contiene un término elevado a la potencia veinticuatro.

          ¿Podeis imaginar la existencia de un Universo en permanente sombra?

La idea de un universo en sombra nos proporciona una manera sencilla de pensar en la materia oscura. El universo dividido en materia y materia se sombra en el Tiempo de Planck, y  una evolucionó de acuerdo con sus propias leyes. Es de suponer que algún Hubble de sombra descubrió que ese universo de sombra se estaba expandiendo y es de suponer que algunos astrónomos de sombras piensan en nosotros  candidatos para su materia oscura.

¡ que incluso haya unos ustedes de sombras leyendo la versión de sombra de este trabajo!

Partículas y Partículas Supersimétricas

      Partículas y partículas supersimétricas

Partículas son las que todos conocemos y que forman la materia, la supersimétricas, fotinos, squarks y otros, las estamos buscando sin poder hallarlas.

Resultado de imagen de Partículas supersimétricas

Estas partículas son predichas por las teorías que unifican todas las fuerzas de la naturaleza. Forman un conjunto de contrapartidas de las partículas a las que estamos habituados,  son mucho más pesadas. Se nombran en analogía con sus compañeras: el squark es el compañero supersimétrico del quark, el fotino del fotón, etc. Las más ligeras de estas partículas podrían ser la materia oscura. Si es así,  partícula probablemente pesaría al menos cuarenta veces más que el protón.

Standard Model Particles and their interactions

Lo cierto es que las partículas que conocemos son las que están presentes en el Modelo Estándard de la Física que incluye a tres de las cuatro fuerzas conocidas, la Gravedad se niega a compartir teoría y, según parece, sólo en una teoría más  avanzada como la de cuerdas, se deja, incluir sin protestar dentro de ella, es decir, que si finalmente se verifica tal teoría, en ella subyace una teoría cuántica de la gravedad.

Y la materia de sombra, si existe, no hemos sabido dar con ella y, sin embargo, existen indicios de que está ahí. Así, los del LHC no de dejan de intentar su localización en en ese infinitesimal “mundo” de lo muy pequeño.

En algunas versiones de las llamadas teorías de supercuerdas hay todo un universo de materia de sombra que existe paralelo con el nuestro. Los dos universos se separaron  la gravedad se congeló separándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo que las convierte en candidatas ideales para la materia oscura.

                                             ¿ Serám los Axiones las partículas de la “materia oscura”?

El Axión es una partícula muy ligera (pero presumiblemente muy común) que, si existiera, resolvería un problema antiguo en la teoría de las partículas elementales. Se estima que  una masa menor que una millonésima parte de la del electrón y se supone que impregna el universo de una manera semejante al fondo de microondas. La materia oscura consistiría en agregaciones de axiones por encima del nivel general de fondo.

Criostato CDMS

Construímos inmensos aparatos de ingeniosas propiedades tecnológicas  tratar de que nos busquen las WIMPs, esas hipotéticas partículas que podrían, llevarnos a un conocimiento mayor de la materia.

¿WIMPs en el Sol?

A lo largo de todo el  se ha dado a entender que todas estas partículas candidatas a materia oscura de la que hemos estado hablando, son puramente hipotéticas. No hay pruebas de que ninguna de ellas se vaya a encontrar de hecho en la naturaleza. Sin embargo sería negligente si no mencionase un argumento –un diminuto rayo de esperanza- que tiende a apoyar la existencia de WIMPs de un  u otro. Este argumento tiene que ver con algunos problemas que han surgido en nuestra comprensión del funcionamiento y la estructura del Sol.

Creemos que la energía del Sol viene de reacciones nucleares profundas dentro del núcleo. Si éste es el caso en realidad, la teoría nos dice que esas reacciones deberían estar produciendo neutrinos que en principio son detectables sobre la Tierra. Si conocemos la temperatura y composición del núcleo (creemos), entonces podemos predecir exactamente cuántos neutrinos detectaremos. Durante más de veinte años se llevó a cabo un experimento en una mina de oro de Dakota del Sur para detectar esos neutrinos y, desgraciadamente, los resultados fueron desconcertantes. El número detectado fue de sólo un tercio de lo que se esperaba. Esto se conoce como el problema del neutrino solar.

Es posible observar otra radiación procedente de las estrellas: los neutrinos. Estas pequeñas partículas, sin carga y mucho más livianas que los electrones, …

“El problema de los neutrinos solares se debió a una gran discrepancia  el número de neutrinos que llegaban a la Tierra y los modelos teóricos del interior del Sol. Este problema que duró  mediados de la década de 1960 hasta el 2002, ha sido recientemente resuelto mediante un  entendimiento de la física de neutrinos, necesitando una modificación en el modelo estándar de la física de partículas, concretamente en las oscilaciones de neutrinos. Básicamente, debido a que los neutrinostienen masa, pueden cambiar del tipo de neutrino que se produce en el interior del Sol, el neutrino electrónico, en dos tipos de neutrinos, el muónico y el tauónico, que no fueron detectados.”

La segunda característica del Sol que concierne a la existencia de WIMPs se refiere al hecho de las oscilaciones solares.  los astrónomos contemplan cuidadosamente la superficie solar, la ven vibrar y sacudirse; todo el Sol puede pulsar en períodos de varias horas. Estas oscilaciones son análogas a las ondas de los terremotos, y los astrónomos llaman a sus estudios “sismología solar”. Como creemos conocer la composición del Sol, tenemos que ser capaces de predecir las propiedades de estas ondas de terremotos solares. Sin embargo hay algunas duraderas discrepancias entre la teoría y la observación en este campo.

No  mucho que los astrónomos han señalado que si la Galaxia está en realidad llena de materia oscura en la  de WIMPs, entonces, durante su vida, el Sol habría absorbido un gran número de ellos. Los WIMPs, por tanto, formarían parte de la composición del Sol, una parte que no se había tenido en cuenta hasta ahora. Cuando los WIMPs son incluidos en los cálculos, resultan dos consecuencias: primero, la temperatura en el núcleo del Sol resulta ser menor de lo que se creía, de forma que son emitidos menos neutrinos, y segundo, las propiedades del cuerpo del Sol cambian de tal modo que las predicciones de las oscilaciones solares son exactas.

                   Hasta nos atrevemos a exponer una imagen que nos muestra la distribución de los WIMPs

Este resultado es insignificante en lo que se refiere a la existencia de WIMPs, pero  no debemos despreciar las coincidencias halladas, lo más prudente será esperar a nuevos y más avanzados experimentos (SOHO y otros). Tanto el problema del neutrino como las oscilaciones se pueden explicar igualmente  por otros efectos que no tienen nada que ver con los WIMPs. Por ejemplo, el tipo de oscilaciones de neutrinos podría resolverse si el neutrino solar tuviera alguna masa, aunque fuese muy pequeña, y diversos cambios en los detalles de la estructura interna  del Sol podrían explicar las oscilaciones. No obstante estos fenómenos solares constituyen la única indicación que tenemos de que uno de los candidatos a la materia oscura pueda existir realmente.

Toda  charla sobre supersimetría y teoría últimas da a la discusión de la naturaleza de la materia oscura un tono solemne que no tiene ningún parecido con la forma en que se lleva en realidad el debate entre los cosmólogos. Una de las cosas que más me gusta de este campo es que todo el mundo parece ser capaz de conservar el sentido del humor y una distancia respecto a su propio trabajo, ya que, los buenos científicos saben que, todos los cálculos, conjeturas, hipótesis y finalmente teorías, no serán visadas en la aduana de la Ciencia, hasta que sean muy, pero que muy bien comprobadas mediante el experimento y la observación y, no una sino diez mil veces  de que puedan ser aceptadas en el ámbito puramente científico.

                                                                 El el Sol podemos hallar algunas respuestas

Posiblemente, el LHC nos pueda decir algo al respecto si, como no pocos esperan, de sus colisiones surgen algunas partículas supersimétricas que nos hablen de ese otro mundo oscuro que, estando en este, no hemos sabido encontrar  este momento. Otra posibilidad sería que la tan manoseada materia oscura no existiera y, en su lugar, se descubriera otro fenómeno o mecanismo natural desconocido hasta ahora que, incidiendo en el comportamiento de expansión del Universo, nos hiciera pensar en la existencia de la “materia oscura”  cubrir el hueco de nuestra ignorancia.

Hace algún tiempo, en esas reuniones periódicas que se llevan a cabo entre científicos de materias relacionadas: física, astronomía, astrofísica, cosmología…, alguien del grupo sacó a relucir la idea de la extinción de los dinosaurios y, el hombre se refirió a la teoría (de los muchas que circulan) de que el Sol, en su rotación alrededor de la Vía Láctea, se salía periódicamente fuera del plano de la Galaxia. Cuando hacía esto, el polvo existente en ese plano podía cesar de proteger la Tierra, que entonces quedaría bañada en rayos cósmicos letales que los autores de la teoría pensaban que podían permeabilizar el cosmos. Alguien,  el fondo de la sala lanzó: ¿Quiere decir que los dinosaurios fueron exterminados por la radiación de fotinos?

La cosa se tomó a broma y risas marcaron el final de la reunión en la que no siempre se tratan los temas con esa seriedad que todos creen, toda vez que, los conocimientos que tenemos de las cosas son muy limitados y tomarse en serio lo que podría no ser… ¡No sería nada bueno!

Por ejemplo, si vemos la imagen de arriba y un letrero que diga: “Dopar un aislante topológico con impurezas magnéticas rompe la simetría de inversión temporal y abre una nueva vía a la espintrónica.”  Para la mayoría de los presentes, el galimatías no le dirá nada y, sin embargo, para otros al tanto de las cuestiones de física, le parecerá que: “Los aislantes topológicos son materiales que conducen electrones en su superficie exterior, pero actúan como aislantes en su volumen interior.  propiedad tiene su origen en la forma en que los electrones se mueven a través del material. Los electrones poseen un espín mecánico-cuántico que apunta hacia “arriba” o hacia “abajo”. El espín es normalmente independiente del movimiento de los electrones, pero dentro de los aislantes topológicos, el espín de los electrones está estrechamente relacionado con su movimiento.”

¡Qué cosas! Lo que digo siempre… ¡Nunca llegaremos a saberlo todo! Pero seguimos imaginando

emilio silvera

Sí, es mucho…, ¡lo que no sabemos!

Autor por Emilio Silvera    ~    Archivo Clasificado en La ignorancia nos acompaña siempre    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Es cierto que la “ignorancia” ha sido siempre nuestra compañera inseparable. Siempre hemos soportado una gran ignorancia y, gracias a ello, hemos sentido curiosidad por el por qué de las cosas que, habiéndolas observado a nuestro alrededor o en la lejanía del espacio, despertó nuestra “curiosidad”, la otra compañera inseparable del Ser Humano. Gracias a esas dos eternas compañeras de viaje (Curiosidad e Ignorancia), hemos podido evolucionar y avanzar a lo largo del transcurso del Tiempo. Siempre nos preguntamos, mirando al cielo estrellado, por aquellas maravillas que titilaban como queriendo decirnos alguna cosa que no llegábamos a entender. También, en el “universo” de lo muy pequeño, fijamos nuestra atención, y, de esa manera pudimos llegar a descubrir el átomo de Demócrito y el Cosmos “infinito” de las galaxias.
Resultado de imagen de El átomo en movimiento GifsResultado de imagen de Galaxia espiral en movimiento Gifs
        Todo en nuestro Universo es dinámico
Decía que la ignorancia siempre ha estado con nosotros y, junto a la curiosidad, ha sido un gran acicate para ir aprendiendo de los fenómenos que podíamos observar y, de aquellos otros misterios que presentíamos y tratamos de desvelar. Nunca estamos conformes con lo que sabemos, ya que, cada nuevo conocimiento nos posibilita para poder seguir haciendo más y más preguntas, cada vez de temas más complejos.

 
                       Si existen otras dimensiones… ¿Dónde están?

Como siempre nos pasa cuando no sabemos alguna cosa, nuestra imaginación se desboca y plantea mil y una solución de lo que podría ser. , nos ocurre con el Universo y los secretos que aún no hemos podido desvelar. Construimos modelos que nos den una satisfactoria explicación o al menos aceptable, buscamos remedio -no pocas veces poniendo “parches”- para cuestiones que no podemos explicar, y nos inventamos escenarios y situaciones que, tampoco sabemos si alguna vez podremos comprobar: materia oscuraagujeros de gusano, universos paralelos… (Que finalmente pueden estar ahí pero, que por el momento no sabemos encontrar, con el Gravitón, si existe, nos ha pasado eso).

Cuando oímos la palabra hiperespacio todos pensamos en un lugar por encima, alto, más allá del “espacio normal” de tres dimensiones en el que nos movemos en nuestra vida cotidiana. Y, las ideas se pueden mezclar para confundirnos más, con espacios vectoriales lineales que pueden tener un infinito de dimensiones, como si fuera un espacio de Hilbert. Es como un túnel situado fuera de este mundo nuestro que nos puede llevar hacia regiones lejanas en la galaxia o, incluso, en otras galaxias y hasta en otro universo,  sin tener que recorrer el espacio que de esos lejanos lugares nos separa.

Resultado de imagen de Nuestra fantasía dibuja de mil maneras el Hiperespacio

                                       Nuestra fantasía dibuja de mil maneras el Hiperespacio

Michio Kaku, un físico que nos habla de dimensiones extra y de hiperespacio, en una de sus obras comienza diciendo:

“¿Existen dimensiones superiores? ¿Están los mundos invisibles más allá de nuestro alcance, más allá de las leyes corrientes de la física? Aunque las dimensiones superiores hayan sido históricamente cosa de charlatanes, místicos y de escritores de ciencia ficción, muchos físicos teóricos creen ahora, no solo que las dimensiones superiores existen, sino que además pueden llegar a explicar algunos de los más profundos secretos de la naturaleza. Aunque queremos aclarar que no existen evidencias experimentales de la existencia de dimensiones superiores, en principio, pueden llegar a resolver el problema esencial de la física: la unificación de todo el conocimiento físico a un nivel fundamental.”

 

 

Hemos mirado por todo el Universo y, añadiendo el tiempo como otra dimensión, vemos que es tetradimensional, pero no podemos ver dimensiones extra.

Michio Kaku, que en sus escritos nos dice que  ve el futuro, nos cuenta:

“Mi propia fascinación con las dimensiones superiores comenzó durante mi infancia. En uno de mis felices recuerdos de la infancia permanecía agachado junto al estanque del Jardín del Te Japonés de San Francisco, contemplando hipnotizado las carpas de colores nadando suavemente bajo los nenúfares. En esos momentos de calma, me hacia una tonta que solo un niño podría hacerse: ¿como ven las carpas en aquel estanque el mundo que les rodea ?. Habiendo pasando su vida entera dentro de aquel estanque, las carpas creerían que su universo consiste de agua y de nenúfares; solo vagamente conscientes de la posibilidad que un mundo extraño existiese por encima de la superficie.

 

 

Mi mundo escapaba a su comprensión. Me intrigaba que pudiese estar a solo unos centímetros de las carpas y que al mismo tiempo estuviésemos separados por un abismo. Concluí que si hubiese algún científico entre las carpas se mofaría de cualquier pez que propusiese que un mundo paralelo podría existir por encima de los nenúfares. Un mundo invisible allá del estanque no tendría sentido para la ciencia.”

 

 

Claro que, esas explicaciones de Michio Kaku,  no nos explican a los humanos, lo que es el universo hiperdimensional que sería para las carpas este mismo universo nuestro. El nos lleva a la de que, al igual que le ocurre a las carpas de su estanque, tengamos a nuestro alrededor “otras dimensiones” que no somos capaces de ver. Pero yo me sigo preguntando:

¿Dónde, pues, ha de hallarse el universo hiperdimensional de la simetría perfecta? Ciertamente, no aquí y ahora; el mundo en que vivimos está lleno de simetrías rotas, y sólo tiene cuatro dimensiones, tres espaciales  y una temporal. La imaginación que nunca descansa, nos lleva a una idea en la cosmología, la cual nos dice que el universo supersimétrico, si existió, pertenece al pasado. Como nos decían los autores de la Teoría Kaluza-Klein, esas otras dimensiones se quedaron compactadas cuando el universo se desarrolló y, aunque son parámetros necesarios para las grandes teorías de cuerdas y supercuerdas… ¡No las vemos por ninguna parte!

               Hace tiempo ya que buscamos esas otras dimensiones pero,,, ¿Dónde están?

La implicación de eso es que el universo tuvo que comenzar en un estado de perfección simétrica, desde el que evolucionó a este otro universo menos simétrico que conocemos y en el que vivimos. Si es así, la de la simetría perfecta sería la del secreto del origen del universo, y la atención de sus acólitos puede volverse con buenas razones, como las caras de las flores al alba, hacia la blanca luz de la génesis cósmica. Alguna vez hemos podido comentar aquí de aquella simetría primera, cuando todas las fuerzas de la naturaleza estaban unidas en una sola fuerza y, a medida que el universo se enfrió en los infiernos del big bang, aquella simetría se rompió, y se desgajó en las cuatro fuerzas que ahora conocemos y, algunos dicen que, se formaron las cuatro dimensiones que podemos ver y, otras, quedaron confinadas en el límite Planck. La simetría quedó rota para siempre.

Así que las teorías se han embarcado a la de un objeto audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos; una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

Resultado de imagen de La simetría para la Grecia clásica

Recordemos que:  “En griego, la simetría significa “la misma medida” (syn significa “juntos”, como en sinfonía, una unión de sonidos, y metrón, “medición”); así su etimología nos informa que la simetría supone la repetición de una cantidad medible. Pero la simetría para los griegos, también significaba la “la debida proporción”, lo que implicaba que la repetición involucrada debía ser armoniosa y placentera. Asi, la Naturaleza nos está indicando que una relación simétrica debe ser juzgada por un criterio estético .”

De esa manera, como digo más arriba, buscar “la simplicidad primigenia” y, para ello, hacemos cábalas con dimensiones más altas que nos devuelva una simetría superior que nos lo explique todo y donde todo quepa sin que surjan los indeseables infinitos que aparecen cuando tratamos de juntar la Mecánica cuántica con la Relatividad general, es decir, cuando queremos unificar el “universo” de lo infinitesimal con el “universo” de lo muy grande.

Arte humo simétrica Foto de archivo - 8808585

                                           Gases simétricos

Muchos de nosotros, la mayoría, conocimos la simetría en sus manifestaciones geométricas de aquellas primeras clases en la Elemental, más tarde en el arte y, finalmente, la pudimos percibir en la Naturaleza, en el Universo y en nosotros mismos que, de alguna manera, somos parte de ese Universo de simetría.

Los planetas son esféricos y, por ejemplo, simetría de rotación. Lo que quiere indicar es que poseen una característica -en este caso, su circular- que permanece invariante en la transformación producida cuando la Naturaleza los hace rotar. Las esferas pueden hacerse rotar en cualquier eje y en cualquier grado sin que cambie su “personalidad” , lo cual hace que sea más simétrica.

Resultado de imagen de La simetría está en la Naturaleza que también, en lo simétrico, nos muestra la BellezaResultado de imagen de La simetría está en la Naturaleza que también, en lo simétrico, nos muestra la BellezaResultado de imagen de La simetría está en la Naturaleza que también, en lo simétrico, nos muestra la BellezaResultado de imagen de La simetría está en la Naturaleza que también, en lo simétrico, nos muestra la Belleza

         La simetría está en la Naturaleza que también, en lo simétrico, nos muestra la Belleza

Sí, a nuestro alrededor podemos contemplar la simetría que en el Universo quedó rota. Así las cosas, nuestra imaginación que es libre de “volar” hacia espacios desconocidos y hacia escenarios imposibles, también puede, no sólo escenificar el Hiperespacio, sino que, llevando la fascinación aún más lejos, ¿quién sabe? (como tántas veces hemos comentado), si los teóricos no habrán dado en el y, con su intuición “infinita”, haber podido vislumbrar que toda la materia del universo está formada por cuerdas vibrantes y armónicas que se conjugan de diferentes maneras, produciendo con sus pulsos, nuevas partículas en un “universo hiperdimensional” que no podemos ver pero que, está ahí.

¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!

Resultado de imagen de Transiciones de fase con rotura de simetríaResultado de imagen de Transiciones de fase con rotura de simetría

En el mismo comienzo de todo, las simetrías del joven universo se rompieron para dar paso a una diversidad diferente. En la segunda figura tenemos un cristal, una estructura ordenada producida por una rotura espontánea de la simetría, con una simetría traslacional discreta en algunas …

Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría. pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío. Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones. pues, el universo estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.

Lo cierto es que, estemos en el universo que podamos estar, lo que no podemos negar es que es… ¡bello!

Los físicos, en su incansable de respuestas, nos llevan a “cosas”  como la “supergravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿qué es la supergravedad? Meternos en esos berengenales matemáticos sería algo engorroso y (para muchos) aburrido.

¿Qué pasa entonces con la supergravedad? Aquí, al principio las cosas parecen mucho mejores e incluso al nivel de tres lazos nada parece ir mal. Los entusiastas afirman que esto no podía ser una coincidencia y que la teoría final de todas las fuerzas podría estar a la . ¿Una teoría de todas las fuerzas? ¿Podemos imaginar una cosa así? ¿Sería posible una formulación exacta  de las leyes de la física? ¿Se podría conseguir eso alguna vez?. Claro que, todo esto nos lleva a “universos” insospechados, lugares cada vez más pequeños en un reino donde el espacio y el tiempo dejan de existir, ya no podemos hablar de puntos y, nos vemos obligados a tener que hablar de cuerdas vibrantes.

http://guillegg.files.wordpress.com/2010/06/strings1.jpg

Según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros. Esta masa la conocemos con el de masa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que la es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!). Esto significa que tratamos de localizar una partícula con la precisión de una longitud de Planck, las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck, y los efectos de la fuerza gravitatoria entre partículas, , sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.

Supernova

         Astrónomos australianos han combinado todas las observaciones de supernovas hasta la fecha, para determinar que la fuerza de la gravedad no ha cambiado en los últimos 9.000 millones de años.

Si la Gravedad llegara a ser una interacción fuerte, sería un verdadero desastre. No se puede ni imaginar lo que haría, en ese caso, la gravedad,  tan difícil como “la cromodinámica cuántica” cuando interacciona con los quarks. Aquí la situación es mucho más grave. Cuanto más pequeñas sean las estructuras que tratamos de estudiar más intensa es esta fuerza, hasta el extremo de que incluso los intentos más burdos para describirla darán lugar a resultados completamente absurdos.

Resultado de imagen de El espacio tiempo curvado

Todo lo que conocemos acerca de la naturaleza será inválido en la escala de Planck, y nosotros que pensábamos que conocíamos todo con gran precisión. La Teoría de Einstein acerca de la naturaleza de la fuerza gravitatoria funciona espléndidamente, parte de un principio muy fundamental, uno que prácticamente tiene que ser correcto: la gravedad es una propiedad del Espacio y el tiempo mismos. El Espacio y el Tiempo están “curvados” decir exactamente lo que sucede a un trozo de papel cuando se humedece: de deforma y no hay manera de alisarlo ni pasando la plancha caliente. La fuerza Gravitatoria es la responsable de semejante rugosidad en el espaciotiempo.

Hasta aquí, al menos sí hemos podido comprender. Sin embargo, cuando nos sumergimos en el océano profundo del hiperespacio y del universo extradimensional… ¡las cosas cambian! Estamos perdidos y, nuestras mentes no encuentran esa luz que ilumine el entendimiento para , de una vez por todas, todo eso puede estar ahí o, simplemente, son falsos escenarios que nuestras mentes imaginan para huir de la cruda realidad.

Claro que, por otra parte, como nos pasó con la paradoja del gato de Schrödinger que, al principio era tan extraña que uno podía recordar la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Carroll: “Allí me verás”, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.

http://4.bp.blogspot.com/-xSlWe2yr2xU/Ts6MHliCC8I/AAAAAAAAAG4/D_EcfYZWynQ/s1600/10%2529+Im%25C3%25A1genes+fant%25C3%25A1sticas+by+www.JoseLuisAvilaHerrera.BLOGSPOT.com.jpg

¡Lo que no sea capaz de nuestrsa imaginación! Y, a pesar de su “infinita riqueza, la Naturaleza la supera y contiene y ocurren cosas inimaginables.

Algunos, como Alejandro Jodorowsky piensan que:

 

“Si tenemos un cuerpo imaginario, es también necesario que nos demos cuenta que tenemos una mente imaginaria. Tenemos pensamientos inconscientes, percepciones olfativas, audiciones, tactos, visiones, sabores mucho más desarrollados que los que creemos “reales”. Vemos más de lo que creemos ver, oímos más de lo que creemos oír, gustamos más de lo que creemos gustar, olfateamos más de lo que creemos olfatear, percibimos con el tacto mucho más de lo que creemos percibir, pensamos más de lo que creemos pensar. No sentimos por completo nuestras sensaciones, tenemos pensamientos de los que no nos damos cuenta, vivimos dentro de limites perceptivos, provocados desde que nacemos por nuestra familia y luego por la sociedad. Nos sumergen en prejucios y concepciones anquilosadas de la realidad y de nosotros mismos. Debemos aprender a pensar con libertad, (no digo con “inteligencia”, digo con “libertad”). El mágico consiste en disolver los límites de nuestra inteligencia y de nuestras percepciones. Estos limites nos encierran en calabozos irreales que nos impiden a la conciencia suprema.”

 

Si realmente eso es, estaríamos limitados por nuestras propias concepciones del mundo. Sin embargo, ahí están los físicos teóricos que se salen del “régimen” establecido y, sus mentes generan e imagina mundos y universos que, siendo muy dispares de este nuestro que creemos real, podrían ser, los auténticos mundos y los auténcos paisajes que la Naturaleza trata de mostrarnos y que, nosotros, nos empecinamos en no querer ver.

http://navegacionavela.com/ebook_navegacion_a_vela/images/Velero_Antiguo.jpg
Aquellas eran otras maneras de ver el mundo

Antes, para conocer el mundo, teníamos que hacer grandes viajes, realizar grandes aventureras de las que nunca sabíamos cómo podríamos salir. El riesgo y la ventura era el pan de cada día para aquellos que querían descubrir otras tierras, otros pueblos y culturas. Hoy día, las cosas han cambiado. No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Y, cualquier joven, sentado tranquilamente en su casa, con un potente , puede realizar “aventuras” que antes, eran imposibles.

http://histinf.blogs.upv.es/files/2011/01/foto-estudio-protools1.jpg

Sentado cómodamente ante este sencillo conjunto de inventos tecnológicos, cualquier jóven bien  puede construir e inventar “mundos” de inimaginable belleza. Y, lo que parecía un sueño, podrían recrear el de las galaxias, una colisión entre dos agujeros negros, e incluso, una explosión supernova.

Resultado de imagen de La Mente se hace preguntas y tiene ideas

Algunas veces me sorprendo al constatar que, algunas ideas y preguntas llegan a tu mente sin haberlas llamado en ese preciso momento. Son preguntas que te hicistes hace mucho tiempo y que no tuvieron una respuesta adecuada, y. sin saber como, aparecen ideas en forma de respuestas que podrían ser.Sin embargo, la experiencia, el ir acumulando y algún que otro saber, finalmente determina esa llegada del por qué de las cosas. Todo, sin que nos demos , queda registrado en nuestras mentes y, en el momento oportuno… ¡surge como por arte de magia aquello que queríamos saber!Ciertos parámetros mentales retienen esas cuesrtiones complejas y, finalmente, la mente consigue llegar a la resolución deseada y correcta que aparece ante nuestros ojos y nos producen, a pesar de todo, algo de asombro de que podamos haber llegado tan lejos en la comprensión de la Naturaleza.

              Cien mil  millones de neuronas, tantas como estrellas tiene nuestra Galaxia. Conexiones sin fin. ¿Qué no podría surgir de esa inmensidad?

¿Cuántas veces no habré puesto aquí imágenes como la de arriba que quiere significar las conexiones del cerebro que generan los pensamientos? Y, la cuestión es, que esas conexiones no se limitan a estar ahí en ese ámbito reducido que llamamos cerebro, sino que, utilizando ese otro “ente” inmaterial y que llamamos mente y que también nos mantiene conexionados con el Universo, del que, al fin y al cabo, formamos parte.

Esta sí es una realidad, sin ella, el mundo no sería tal como lo conocemos. Sabemos que si variara la carga del electrón o la masa del protón en una diezmillonésima parte, las cosas serían totalmente diferentes, es decir, nosotros, no estaríamos aquí para comentar todas estas cuestiones.

Sin embargo, y a pesar de todo, no podemos negar nuestras limitaciones tanto de percepción como intelectuales para reconocer “el mundo” tal como es. Es “nuestro mundo” que, cuando sea visitado por “otros” con distintas percepciones y sentidos, pudiera ser un mundo muy distinto al que nosotros percibimos y, “ellos”  podrían “ver” cosas que nosotros no vemos.

Vivimos en nuestra propia realidad, la que forja nuestra mente a través de los sentidos y la experiencia. Incluso entre nosotros mismos, los seres de la misma especie, no percibimos de la misma manera las mismas cosas. Sí, muchos podemos coincidir en la percepción de , sin embargo, otros muchos diferirán de nuestra percepción y tendrán la suya propia. Esa prueba se ha realizado y la diversidad estuvo presente.

Resultado de imagen de Despejar las muchas incógnitas que nos martirizan

No, no será nada despejar las incógnitas presentes en esta inmensa complejidad que llamamos Universo. Pero, firmemente creo que las dimensiones extra están en nuestras Mentes, donde todo se traduce a Química y Luz. Energías de velocidades alucinantes que recorren el enmarañado entramado de neuronas y que hace posible todas y cada una de las maravillas que “”mente se producen en nosotros y que no siempre sabemos traducir ni comprender.

¡Qué complicado resulta ser todo!

emilio silvera