viernes, 26 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Sobre la Relatividad Espcial

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

En cualquier parte que podamos buscar información nos dirán:

Resultado de imagen de Henri Poincaré el matemático francés

“Henri Poincaré, matemático francés, sugirió a finales del siglo XIX que el principio de relatividad establecido desde Galileo (la invariancia galileana) se mantiene para todas las leyes de la naturaleza. Joseph Larmor y Hendrik Lorentz descubrieron que las ecuaciones de Maxwell, la piedra angular del electromagnetismo, eran invariantes solo por una variación en el tiempo y una cierta unidad longitudinal, lo que produjo mucha confusión en los físicos, que en aquel tiempo estaban tratando de argumentar las bases de la teoría del éter, la hipotética substancia sutil que llenaba el vacío y en la que se transmitía la luz. El problema es que este éter era incompatible con el principio de relatividad.”

 

 

Diagrama 1. Apariencia del espacio-tiempo a lo largo de una línea de universo de un observador acelerado.

La dirección vertical indica el tiempo, la horizontal indica la distancia espacial, la línea punteada es la trayectoria del observador en el espacio tiempo. El cuarto inferior representa el conjunto de sucesos pasados visibles al observador. Los puntos pueden representar cualquier tipo de sucesos en el espacio tiempo.

La pendiente de la línea de universo o trayectoria de la vertical da la velocidad relativa del observador.

       Marie Curie y Poincaré

“Poincaré (1900) analizó la «fabulosa invención» del tiempo local de Lorentz (no estaba al tanto de que el concepto lo introdujo en realidad Woldemar Voigt en 1887), y manifestó que el concepto surge cuando se trata de sincronizar dos relojes en movimiento, mediante la emisión de señales luminosas que se supone viajan a la misma velocidad en ambas direcciones en un marco de referencia en movimiento.2​ (en inglés) En La medida del tiempo (Poincaré, 1898), el autor analizó la dificultad de establecer la simultaneidad a distancia, y concluyó que la misma puede ser establecida por convención. También discutió el «postulado de la velocidad de la luz», y formuló el Principio de la Relatividad según el cual ningún experimento mecánico o electromagnético puede diferenciar entre un estado de movimiento uniforme y el estado de reposo.”

En su publicación de 1905 en electrodinámica, Henri Poincaré y Albert Einstein explicaron que, con las transformaciones hechas por Lorentz, este principio se mantenía perfectamente invariable. La contribución de Einstein fue el elevar a este axioma a principio  y proponer las transformaciones de Lorentz como primer principio. Además descartó la noción de tiempo absoluto y requirió que la velocidad de la luz en el vacío sea la misma para todos los observadores, sin importar si éstos se movían o no. Esto era fundamental para las ecuaciones de Maxwell, ya que éstas necesitan de una invarianza general de la velocidad de la luz en el vacío.

Como en otras ocasiones, aquí dejamos una muestra de la velocidad de la luz cuando viaja desde la Tierra a la Luna, el tiempo que tarda la línea amarilla (que aseja el movimiento de la luz) es lo que tarda en llegar la luz desde la Tierra a la Luna.

La aparición de la Teoría de la relatividad fue tan poco convencional como su autor. El ya famoso artículo que escribió en 1905 (con el apoyo de los trabajos de los arriba mencionados) y que enunciaba por primera vez la teoría, era algo rústico y sencillo y no mencionaba o contenía cita  científico-literaria alguna, tampoco mencionaba ayuda de ninguna persona a excepción de su amigo Besso, que dicho sea de paso no era científico (él, por aquel entonces, no conocía a científico alguno). La primera conferencia de Einstein explicando la Teoría, en Zurich,  no fue dada en ninguna universidad sino en el salón del Sindicato de Carpinteros, duró más de una hora, y luego repentinamente se interrumpió para preguntar la hora, explicando que no tenía reloj. Sin embargo, a pesar de los modestos comienzos, allí comenzó a reformarse los conceptos del espacio y del tiempo.

Lo cierto es que, con su teoría de la relatividad, Einstein finalmente resolvió la paradoja que se había presentado a los dieciseis años, por la que las ecuciaones de Maxwell pierden su validez si uno atrapa un haz de luz a la velocidad de la luz. Lo hizo mediante la conclusión de que no se puede acelerar la velocidad de la luz, de que la velocidad de la luz es la misma para todos los observadores, cualquiera que sea su movimiento relativo. Si un astronáuta que vuela hacia la estrella más cercana a una velocidad del cincuenta por ciento de la de la luz, , midiera la velocidad de la luz a bordo de la nave, el resultado sería exactamente igual que el que daría la medición de otro colega suyo situado en la Tierra.

Podrían ocurrir fenómenos que ni podemos imaginar pero, quedándonos en lo que más llama la atención al público en general, podríamos conseguir que el tiempo … ¡Se ralentizara y pasara más despacio para el viajero relativista! Si miráis el  diagrama del Minkouski os hablará de los fenómenos que se pueden producir al viajar a la velocidad de la luz, cuando el Tiempo se ralentiza.

Diferentes sistemas de referencia para el mismo fenómeno. Claro que, en la teoría están presentes factores y trabajos que no se mencionan y, la fórmula

siguiente:   \gamma = \frac{1}{\sqrt{1 - v^2/c^2}} es el llamado factor de Lorentz  donde c\, es la velocidad de la luz en el vacío. Contrario a nuestro conocimiento actual, en aquel momento esto era una completa revolución, debido a que se planteaba una ecuación para transformar al tiempo, cosa que para la época era imposible. En la mecánica clásica, el tiempo era un invariante. Y para que las mismas leyes se puedan aplicar en cualquier sistema de referencia se obtiene otro tipo de invariante a grandes velocidades (ahora llamadas relativistas), la velocidad de la luz. Los sucesos  que se realicen en el sistema en movimiento S’ serán más largos que los del S. La relación entre ambos es esa \gamma . Este fenómeno se lo conoce como dilatación del tiempo. Si se dice que el tiempo varía a velocidades relativistas, la longitud también lo hace.

En el gráfico se escenifica la contracción de Lorentz

Para cuantificar aquella extraña situación, Einstein se vio obligado a emplear la contracción de Lorentz (En aquel momento no conocía a Lorentz al que más tarde consideraría “el hombre más grande y más noble de nuestro tiempo… una obrta de arte viviente.)” En manos de Einstein, las ecuciones de Lorentz esopecifican que, cuando aumenta la velocidad a la que se desplaza un observador, sus dimensiones, y la de la nave espacial y todo aparato de medición que haya a bordo, se contrae a lo largo de su movimiento en la cantidad requerida para hacer que la medición de la velocidad de la luz sea siempre la misma.

Esta era la razón de que Michelson y Morley no hallasen ningún  rastro del “arrastre del éter”. En verdad, el éter es superfluo, al igual que el espacio y el tiempo absolutos de Newton, pues no hay ninguna necesidad de un marco de referencia inmóvil. “Al concepto de reposo absoluto no le corresponde ninguna propiedad de los fenómenos, ni en la mecánica ni en la electromecánica.” Lo importante son los sucesos observables, y no puede observarse ningún suceso hasta que la luz (o las ondas de radio o cualquier otra forma de radiación electromagnética) que lleve noticias de él no llegue al observador. Einstein reemplazó el espacio de Newton por una red de haces de luz; la de ellos era una red absoluta dentro de la cual el espacio mismo se vuelve flexible.

 Resultado de imagen de Los observadores en movimiento experimentan también una lentificación del paso del tiempo. Un astronáuta que viaje al 90 por 100 de la velocidad de la luz sólo envejecerá a la mitad de rápido

Los observadores en movimiento experimentan también una lentificación del paso del tiempo. Un astronáuta que viaje al 90 por 100 de la velocidad de la luz sólo envejecerá a la mitad de rápido que su colega de la Tierra. Ya conocéis la paradoja de los gemelos en la que se explica tal fenómeno.

http://universitam.com/academicos/wp-content/uploads/2011/01/i-relativity.gif

También en aquel primer artículo Einstein nos habló sobre la igualdad entre la masa y la energía. Él demostró que la masa de un cuerpo aumenta cuando absorbe energía. Se sigue de ello que su masa disminuye cuando irradia energía. Esto es verdadero no sólo para una nave espacial que se desplaza hacia las estrellas, sino también para un objeto en reposo. Una máquina fotográfica pierde algo (muy poco) de masa cuando el flash se dispara, y la gente cuya fotografía se saca se vuelve también, un poco más masiva al absorber sus cuerpos aquella radiación perdida por la máquina. Masa y energía son intercambiables.

m = E/c2

donde m es la masa del objeto, E su energía y c la velocidad de la luz. Al formular esta ecuación particularmente sencilla, que unifica los conceptos de energía y materia, y relaciona ambos con la velocidad de la luz, Einstein inicialmente estaba interesado en la masa. En cambio, si despejamos la energía, adquiere una forma más familiar y presagiosa:

En la Isla de los Museos (Berlín). Festejando el Año mundial de la Física en 2005, en el centenario de la publicación de la ecuación más famosa del mundo. Contemplada desde esta perspectiva, la teoría dice que la materia es energía congelada. Esto, por supuesto, es la clave de la fuerza nuclear y, en manos de los astrofísicos, la ecuación sería usada para descubrir los procesos termonucleares en el corazón de las estrellas.

Pero pese a todos sus variados logros, la relatividad especial no decía nada de la gravitación y, su autor, la veía incompleta. Aquella teoría sin la presencia de la otra gran fuerza más conocida del universo se veíoa desvalída: Había que vincularla con la masa inercial. La resistencia al cambio que ofrecen los objetos en estado de movimiento, su “peso” por decirlo así. La gravitación actúa sobre los objetos según su masa gravitacional, esto es, su “peso”. Todos sabem,os lo que es la masa inercial y de ella, tendremos que hablar cuando acometamos la p´çagina sobre la relatividad general. Dejemos aquí el apunte de que, la masa inercial y la gravitación de cualquier objeto son iguales. También se podría decir que, es la masa de los cuerpos que pueblan el universo, la que moldea y modela la geometría del del Cosmos, del espacio-tiempo.

Terminemos con la misma imagen del comienzo. Causalidad e imposibilidad de movimientos más rápidos que la luz. Previo a esta teoría, el concepto de causalidad estaba determinado: para una causa existe un efecto. Anteriormente, gracias a los postulados de Laplace,  se creía que para todo acontecimiento se debía obtener un resultado que podía predecirse. La revolución en este concepto es que se “crea” un cono de luz de posibilidades (Véase gráfico adjunto).

Se observa este cono de luz y ahora un acontecimiento en el cono de luz del pasado no necesariamente nos conduce a un solo efecto en el cono de luz futuro. Desligando así la causa y el efecto. El observador que se sitúa en el vértice del cono ya no puede indicar qué causa del cono del pasado provocará el efecto en el cono del futuro.

Asumiendo el principio de causalidad obtenemos que ninguna partícula de masa positiva puede viajar más rápido que la luz. A pesar que este concepto no es tan claro para la relatividad general. Pero no solo el principio de causalidad imposibilita el movimiento más rápido que el de la luz. Ya hablaremos de ello.

emilio silvera

¿La Sabiduría? ¡También se llama…Experiencia!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Nosotros? ¿Quiénes somos? Bueno, desde hace tiempo, algo más que una célula sí que somos.

Una célula es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo. De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano.. Las células suelen poseer un tamaño de 10 μm y una masa de 1 ng, si bien existen células mucho mayores.

¡Hombre! Algo más que simples células eucariotas sí que somos después de algunos de miles de millones de años de evolución desde aquella lejana primera célula replicante. Si pensamos en nuestra aparición, aquí en nuestro mundo, al que irremediablemente venimos desnudos, caemos en la cuenta de que todos, sin excepción, traemos con nosotros una herramienta que, podrá ser, más o menos poderosa en función de muchas circunstancias. Me estoy refiriendo a la Mente que, desde muy pronto comienza a situarnos en el mundo a través de los sentidos y va evolucionando con las experiencias que, del entorno, van siendo acumuladas mediante las conexiones de cientos de miles de neuronas que mediante impulsos eléctricos envían información para que, en fracciones de segundo podamos tomar la decisión más conveniente (aunque no siempre es así).

Resultado de imagen de La mente con experiencia rememora más el pasado

   Cuando vamos llegando al final del camino, nos empeñamos en rememorar el pasado, hacer balance

Habiendo sido un curioso de todo lo relacionado con la vida, siempre me llamó la atención los comienzos y la evolución que en la misma se produce en los distintos seres vivos que hemos llegado a “conocer”, y, me ha picado la curiosidad que, en nosotros, los humanos, cuando llegamos a una cierta edad, nuestra mente rememora más los hechos del pasado que aquellos que se podrían producir en el futuro, y, tal hecho cierto, nos habla de una especie de decadencia en la que, el ser humano (no siempre consciente), ve como se acerca su final y, de forma intuitiva, regresa a su pasado para repasar su vida, ya que, de alguna manera sabe que, lo que le queda por vivir no será mucho y, el futuro, será el futuro de otros y no el suyo, de ahí su falta de interés por él.

Resultado de imagen de La Rosa más hermosaResultado de imagen de La Rosa más hermosa

La rosa más hermosa, con su fragancia húmeda de gotas de rocío, su delicado perfume, su color y sus formas, consiguen un conjunto de armonioso de maravillosa belleza, y, sin embargo, tiene una vida efímera en el tiempo. Nosotros estamos aquí con un poco más de ese preciado bien, y, sin embargo, si comparamos nuestra estancia en el mundo con el contexto la misma Tierra, del Sol o la Galaxia…Menos que un abrir y cerrar de ojos será nuestra vida aquí. A pesar de ello, nos dejan el margen suficiente para poder hacer muchas cosas: Observar, aprender, trabajar, adquirir experiencias, estudiar e interesarnos por las cosas importantes de la Naturaleza y, sobre todas las cosas…Conocer el Amor, lo más sublime que nos podemos llevar con nosotros cuando partamos. Pero, ¿que pasa con la memoria?

La Memoria, intenta situar el pasado conectándolo con el presente y llevándolo hasta un futuro no muy lejano que, en conjunto, dibuja “toda una vida” de la que, cada cual, hace balance y valora si valió o no la pena haberla vivido. Somos conscientes (aunque no hablemos de ello) de lo efímero que es nuestro tiempo aquí.

Resultado de imagen de La Entropía

        El desorden en un sistema cerrado siempre aumenta

A todo esto, no podemos dejar de lado el “Tiempo” que, acompañado por su inseparable compañera “La Entropía”, no deja de hacer estragos en nosotros y en todo lo que en el Universo está presente, sin importar que esté en la fase de “inerte” o de “vida”.

Nuestra capacidad cognitiva se desarrolla en la edad temprana y, desde niños captamos rápidamente todos los mensajes que nuestro entorno nos envía. De tal manera es así que, pronto aprendemos a pedir la comida cuando tenemos hambre y, al no saber hablar, utilizamos el llanto. De estas tretas que nos valemos cuando somos muy pequeñitos para avisar a nuestros mayores de que no olviden sus obligaciones, utilizamos un sinfín en las distintas situaciones. Y, pudimos llegar a discernir el misterio presente en las llamadas partículas Brownianas, entre otras muchas cosas complejas.

         Trayectoria irregular que siguen las partículas brownianas

Hasta no hace mucho tiempo, la mayoría de la gente no consideraba la mente como una parte del ser biológico sujeta, por tanto, a examen médico. Esto es, naturalmente, una idea errónea que hemos heredado del dualismo cuerpo-mente cartesiano. En la actualidad, la mayoría de las personas educadas están familiarizadas con la idea de que la mente pertenece al cerebro, por tanto al cuerpo.

http://4.bp.blogspot.com/-xSlWe2yr2xU/Ts6MHliCC8I/AAAAAAAAAG4/D_EcfYZWynQ/s1600/10%2529+Im%25C3%25A1genes+fant%25C3%25A1sticas+by+www.JoseLuisAvilaHerrera.BLOGSPOT.com.jpg

Algunos como Alejandro Jodorowsky piensan que: Si tenemos un cuerpo imaginario, es también necesario que nos demos cuenta que tenemos una mente imaginaria. Tenemos pensamientos inconscientes, percepciones olfativas, audiciones, tactos, visiones, sabores mucho más desarrollados que los que creemos “reales”. Vemos más de lo que creemos ver, oímos más de lo que creemos oír, gustamos más de lo que creemos gustar, olfateamos más de lo que creemos olfatear, percibimos con el tacto mucho más de lo que creemos percibir, pensamos más de lo que creemos pensar. No sentimos por completo nuestras sensaciones, tenemos pensamientos de los que no nos damos cuenta, vivimos dentro de limites perceptivos, provocados desde que nacemos por nuestra familia y luego por la sociedad. Nos sumergen en prejucios y concepciones anquilosadas de la realidad y de nosotros mismos. Debemos aprender a pensar con libertad, (no digo con “inteligencia”, digo con “libertad”). El trabajo mágico consiste en disolver los límites de nuestra inteligencia y de nuestras percepciones. Estos limites nos encierran en calabozos irreales que nos impiden acceder a la conciencia suprema. La llave para lograr esto es la atención.

      Aquí creen saberlo todo. Es la etapa de la inconsciente felicidad…más tarde, llegan a la realidad.

Siempre me ha llamado la atención las distintas etapas que, los seres humanos recorremos en nuestro deambular por el mundo. Cuando somos jóvenes nos empuja el deseo por lo desconocido, por lo inalcanzable, conseguir aquello que nadie alcanzó, la aventura y el riesgo. Nos sentimos (dentro de nuestra poca experiencia) superiores, imbatibles, poderosos y capaces de realizar cualquier empresa por muy dura o difícil que esta pueda ser. Más tarde, el ánimo se calma y, con el paso de los años, se buscan otras cosas, como, por ejemplo, la estabilidad. Y, no pocas veces me he preguntado: ¿No equivale esa estabilidad al estancamiento? Si conseguimos la estabilidad ¿no dejamos de ser creativos? ¿de arriesgarnos y de perder posibilidades de hacer cosas que de otra manera haríamos? Posiblemente pero, así es como la mayoría funciona.

http://histinf.blogs.upv.es/files/2011/01/foto-estudio-protools1.jpg

Potentes ordenadores que han suplido a la aventura física         
           
              
http://navegacionavela.com/ebook_navegacion_a_vela/images/Velero_Antiguo.jpg
Aquellos eran otros tiempos

Antes, para dominar el Mundo, teníamos que hacer grandes viajes, realizar grandes empresas aventureras de las que nunca sabíamos como podríamos salir. El riego y la ventura era el pan de cada día para aquellos que querían descubrir el mundo. Hoy día, las cosas han cambiado. No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Y, cualquier joven, sentado tranquilamente en su casa, con un potente ordenador, puede realizar “aventuras” que antes, eran imposibles.

Sí, ahora los jóvenes se comen el mundo. ¿Quién podría pensar en mi juventud que esto fuera posible? Eso sí, habrá que procurar que el mundo, no se les atragante y que, lo puedan ir digiriendo con calma. Si les llega tanta información se podrían ver perdidos e inundados de datos que no sabrían colocar en sus debidos compartimentos. Claro que, el mundo hoy, corre a una velocidad que…

Resultado de imagen de la experiencia y la sabiduría

Precisamente las grandes cosas se hacen a edades muy tempranas (NewtonEinstein, Riemann, Ramanujan y muchos otros), después el personaje decae, se estaciona y acomoda y, su inspiración primera, aquel fuego creador, se apaga. Claro que, el conjunto de esas mentes no es que sean más débiles ni menos fuertes, simplemente son diferentes y, las cosas, pasan a ser de otra manera, se sitúan en un plano distinto donde las prioridades son más profundas y menos arriesgadas…incluso, menos creadoras. Se pierde la chispa y se deja de ser tan bueno en, por ejemplo, hacer cálculos laboriosos que necesitan de profundos procesos de resolución y, en su lugar, se acude al reconocimiento de patrones que no requieren una alta concentración para la que, hemos dejado de estar capacitados.

Todo lo contrario que les ocurre a los jovenes. Recordemos aquí un simple pasaje referido a Ramanujan: En 1913 escribe a Hardy la carta, a la que acompaña alrededor de 120 teoremas. Según algunos autores, había escrito a otros matemáticos europeos, pero sólo Hardy reconoció la valía del autor de la misiva. Hardy comentó:

http://www.storyofmathematics.com/images2/hardy.jpg

                       Hardy y Ramanujan

“Quisiera que comenzaran por tratar de reconstruir la reacción inmediata de un matemático profesional corriente que recibe una carta como ésta de un contable hindú desconocido.”

      Una de las fórmulas que acompañaban la carta que envió a Hardy

Tras comentar algunos de los teoremas, añade, refiriéndose entre otras, a la fórmula anterior:

“… Nunca había visto antes nada, ni siquiera parecido a ellas.”

 

Una hojeada es suficiente para comprender que solamente podían ser escritas por un matemático de la más alta categoría. Tenían que ser ciertas, porque, si no lo fueran, nadie habría tenido suficiente imaginación para inventarlas. Por último…, el autor tenía que ser enteramente sincero, ya que son más frecuentes los matemáticos eminentes que los ladrones o charlatanes de destreza tan increíble…

Cuando se tiene poco más de veinte años, muchos se vanaglorian (con cierta frivolidad) de ser capaces de seguir una clase sobre algún obstruso tema de matemáticas avanzadas sin necesidad de tomar apuntes, y de aprobar un examen sobre el tema meses más tarde. Muchos, pasados los años, no pueden repetir proezas así, han perdido esa capacidad de entender y retener en la memoria lo que más tarde, tendrá que utilizar. Sin apuntes y archivos, son incapaces de recordar cuestiones de cierta complejidad.

Claro que, la experiencia ayuda, y, ayudando con ciertos parámetros mentales cuestiones complejas, finalmente se consigue llegar a la resolución deseada y correcta que aparece, ante nuestros ojos como si de arte de magia se tratara. Con la edad se ha perdido la capacidad para trabajar dura y mentalmente hablando en un plano de voracidad acumulativa de datos, de información para guardar y utilizar. Sin embargo, todo eso se suple por la comprensión instantánea de cuestiones que, antes, necesitaban una profunda enseñanza y elaboración y que ahora, nos llega desde el fondo de la mente que, en realidad, tiene todas las respuestas acumuladas de aquellos temas y disciplinas que, en su momento, fueron allí guardados.

                                  Paul Dirac

Paul Dirac que hizo un trabajo sobre el electrón que nada tiene que envidiar a la Teoría de Einstein, y, predijo la existencia del Positrón, además de otras cuestiones, fue un físico-matemático puro y, atesoró tanta experiencia que, en sus últimos años como Profesor, podríamos decir, sin lugar a equivocarnos, que sus alumnos estaban contemplando la imagen de un hombre sabio.

Eso amigos, no es otra cosa que el saber acumulado que se ha convertido en eso que nos ha dado en llamar: “Sabiduría”, la sabiduría del viejo, del que sabe, del que deambuló por todos los caminos, del que de nada se sorprende ya, aquel que de joven conoció el miedo y ahora, ha llegado a comprender que es algo que sólo existe de manera virtual y aparece en nuestras mentes cuando no sabemos. Siempre hemos temido a lo desconocido.

Ahora, la experiencia nos lleva a no expresarnos con vehemencia sobre lo primero que se nos viene a la mente en relación a una cuestión determinada. La prudencia está con nosotros y, antes de emitir un dictamen sobre este o aquel tema, lo pensamos y recapacitamos, hacemos un compendio de todo lo que aquello implica, los factores y parámetros que están involucrados y, finalmente, emitimos un veredicto que, siempre tratará de ajustarse lo más posible a la realidad que tratamos de comentar en relación a ese asunto concreto.

Hemos llegado a saber que, utilizar el cerebro es sacarle un mayor partido. En el cerebro nacen células nerviosas (neuronas) durante toda la vida. El nacimiento de nuevas neuronas y el lugar que irán a ocupar en el cerebro están regulados por la actividad mental. Cuanto más usamos nuestro cerebro, más neuronas creamos, y estas nuevas neuronas van a parar a las partes del cerebro que más utilizamos. A medida que vamos envejeciendo utilizamos cada vez más nuestro hemisferio izquierdo, lo que a su vez lo protege frente al deterioro. Así que, sin lugar a ninguna duda, sabemos que, ejercitando nuestro cerebro lo estamos protegiendo contra el deterioro. Nadie que con 72 años se pase los días hablando de Física y Astronomía, verá mermado los poderes de su mente, sus rápidos reflejos, su capacidad de repentizar soluciones instantáneas a problemas surgidos inesperadamente siguen ahí y, con la ventaja que antes hemos mencionado, “la sabiduría” está presente.

http://envejecimiento.sociales.unam.mx/images/temas.gif

           ¡Cuántos recuerdos! ¡Cuántas vivencias! ¿Cuánta Experiencia?

Claro que, la Sabiduría, como todo en el Universo, tiene un precio: la vejez inexorable que nos trae el tiempo que pasa acompañado de la maldita entropía, esa que deteriora todas las cosas, y, nuestros cerebros también. Así, los que saben, con la edad llegan a alcanzar la imagen “del sabio” que fue (y lo sigue siendo) reverenciada en todas las culturas. Tras la fascinación de la juventud, la vejez comienza a ser respetada (no siempre) de nuevo en nuestra impaciente y engreída cultura.

Sabemos que el Sabio no nace “Se hace” con mucho trabajo, estudio y sacrificio y, no pocas veces, con experiencias vitales que, se produjeron en circunstancias límites o de escasez y carencias y en condiciones no siempre propicias y, ese periplo, dura toda una vida. Es el periplo que la mente tiene que recorrer hasta llegar a la Sabiduría. Así que, el precio que tenemos que pagar, es el envejecimiento. Claro que, la Sabiduría en sí, no tiene precio.

emilio silvera

¡Las Partículas! ¿Elementales?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (14)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Generalmente las llamamos partículas elementales pero, lo cierto es que, algunas son más elementales que otras. Los físicos experimentadores hicieron un buen trabajo en aquellos antiguos aceleradores de partículas por despejar la incognita y saber, de una vez por todas, de qué estaba hecha la materia.

Los núcleos de los átomos están formados por protones y neutrones, alrededor de los cuales orbitan los electrones. Estos tres elementos (protones, neutrones y electrones) constituyen prácticamente toda la materia de la Tierra. Mientras que el electrón se considera como una partícula “sin tamaño”, el protón, que está compuesto de quarks, es un objeto con tamaño específico. Hasta ahora, sólo dos métodos se han utilizado para medir su radio. Basándose en el estudio de las interacciones entre un protón y un electrón, ambos métodos se centran en las colisiones entre uno y otro o sobre el átomo de hidrógeno (constituido por un electrón y un protón). El valor obtenido y que es el utilizado por los físicos, es 0,877 (+ / – 0,007) femtómetros.

Resultado de imagen de La masa atómica

                                 Masa atómica

Una de las formas como los científicos miden el tamaño de algo es a través de su masa. Los científicos pueden incluso medir cosas muy minúsculas como los átomos. Una medida del tamaño de un átomo es su “masa atómica”. Casi toda la masa de un átomo (más del 99%) está en su núcleo, de manera que la “masa atómica” es realmente una medida del tamaño del núcleo de un átomo.

Los protones son practicamente del mismo tamaño que los neutrones, y ambos son mucho más grandes que los electrones. Un protón tiene una masa aproximadamente 1.836 veces mayor que la masa del electrón, pero las masas de los protones y neutrones se diferencian menos de uno por ciento. Un protón tiene una masa de 1.6726 x 10-24gramos. Los protones tienen una carga eléctrica positiva, conocida a veces como carga elemental, carga fundamental o carga de +1. Los electrones tienen una carga del mismo valor pero de polaridad opuesta, -1. La carga fundamental tiene un valor de 1.602 x 10-19 coulombios.

Resultado de imagen de Núcleo atómico

                                                      Núcleo atómico

El núcleo de un átomo contiene protones y neutrones. Cada elemento (como el carbono, oxígeno o el oro) tiene diferente número de protones en sus átomos. Los científicos tienen un nombre especial para el número de protones en un átomo. Lo llaman “número atómico”.

¿Por qué es importante el número atómico? Los átomos normales tienen el mismo número de electrones que protones. El número de electrones es lo que hace que cada elemento se comporte de cierta manera en reacciones químicas. De manera que el número atómico, que es el número de protones y electrones, es lo que hace que un elemento sea diferente a otro.

Hace algunos años ya que los físicos se preguntaban: ¿Podrían los protones ser puntos? Y, tratándo de saberlo, comenzaron a golpear los protones con otros protones de una energía muy baja (al principio) con el objeto de explorar la fuerza electromagnética entre los dos objetos cargados.

El Acelerador Lineal de Stanford. El SLAC, ubicado al sur de San Francisco, acelera electrones y positrones a lo largo de sus 2 millas de longitud (algo mas de tres kilómetros), hacia varios blancos, anillos y detectores ubicados en su finalización. Este acelerador hace colisionar electrones y positrones, estudiando las partículas resultantes de estas colisiones. Construido originalmente en 1962, se ha ido ampliando y mejorando para seguir siendo uno de los centros de investigación de física de partículas mas avanzados del mundo. El Centro ha ganado el premio Nobel en tres ocasiones.

La Ley de Coulomb nos dice que esta fuerza se extiende hacia el infinito, disminuyendo su intensidad con el cuadrado de la distancia. El protón que hace de blanco y el acelerado están, claro, cargados positivamente, y como las cargas iguales se repelen, el protón “blanco” repele sin dificultad al protón lento, que no llega nunca a acercarse demasiado. Con este tipo de “luz”, el protón parece, efectivamente, un punto, un punto de carga eléctrica. Así que se aumentaron la energía de los protones acelerados y, pudieron comprobar que ahora sí, las desviaciones en los patrones de dispersión de los protones indican que van penetrando con la hondura suficiente para tocar la llamada interacción fuerte, la fuerza de la que ahora sabemos que mantiene unidos a los constiutuyentes del protón.

Si los físicos experimentales de la década de los 60 hubieran podido tener a su disposición el moderno LHC… ¿Dónde estaríamos ahora?

La interacción fuerte es cien veces más intensa que la fuerza eléctrica de Coulomb, pero, al contrario que ésta, su alcance no es en absoluto infinito. Se extiende sólo hasta una distancia de unos 10-13 centímetros, y luego cae deprisa a cero. Al incrementar la energía de colisión, los experimentos desenterraron más y más detalles desconocidos de la interacción fuerte. A medida que aumenta la energía, la longitud de onda de los protones (acordémonos de De Broglie y Schrödinger) se encoge. Y, como se pudo ver, cuanto menor sea la longitud de onda , más detalles cabe discernir en la partícula que se estudie.

Resultado de imagen de Robert Hofstadter, de la Universidad de Stanford, tomó en los años cincuenta algunas de las mejores "imágenes" del protón

Robert Hofstadter, de la Universidad de Stantanford, tomó en los años cincuenta algunas de las mejores “imágenes” del protón. En vez de un haz de protones, la “luz” que utilizó fue un haz de electrones de 800 MeV que apuntó a un pequeño recipiente de hidrógeno líquido. Los electrones bombardearon los protones del hidrógeno y el resultado fue un patrón de dispersión, el de los electrones que salían en una variedad de direcciones con respecto a su movimiento original. No era muy diferente a lo que hizo Rutherford. Al contrario que el protón, el electrón no responde a la interacción nuclear fuerte. Responde sólo a la carga eléctrica del protón, y por ello los científicos de Stanford pudieron explorar la forma de la distribución de carga del protón. Y esto, de hecho, reveló el tamaño del protón. Claramente no era un punto.

http://farm5.static.flickr.com/4100/4773897678_6ab01932d2.jpg

Se midió que el radio del protón era de 2,8 x 10-13 centímetros; la carga se acumula en el centro, y se desvanece en los bordes de lo que llamamos el protón. Los experimentos se repitieron muchas veces y los resultados, siempre fueron parecidos al hacerlos con haces de muones, que también ignoran la interacción fuerte al ser leptones como los electrones.  (Medidas más precisas llevadas a cabo en nuestro tiempo, han podido detectar, diminutos cambios en el radio del protón que tienen enormes implicaciones. El protón parece ser 0,00000000000003 milímetros más pequeño de lo que los investigadores habían pensado anteriormente, de hecho, y según han comentados los físicos del equipo que hizo el trabajo,  las nuevas medidas podrían indicar que hay un hueco en las teorías existentes de la mecánica cuántica y algo falla en alguna parte.)

                        La imágen tomada en el SLAC, nos choca, todos tenemos en la mente las del LHC

Pero sigamos con la historia. Hallá por el año 1968, los físicos del Centro del Acelerador Lineal Stanford (SLAC), bombarderon los protones con electrones de mucha energía -de 8 a 15 GeV- y obtuvieron un conjunto muy diferente de patrones de dispersión. A esta “luz dura”, el protón presentaba un aspecto completamente distinto. Los electrones de energía relativamente baja que empleó Hofstadter podían ver sólo un protón “borroso”, una distribución regular de carga que hacía que el electrón pareciése una bolita musgosa. Los electrones del SLAC pudieron sondear con mayor dureza y dieron con algunos “personajillos” que “correteaban” dentro del protón. Aquella fue la primera indicación de la existencia real de los Quarks.

Todo avance ha requerido de muchísimo esfuerzo y de lo mejor de muchas mentes. Como podéis ver por la escueta y sencilla explicación aquí contenida, hemos aprendido muchas cosas a base de observar con atención los resultados de los experimentos que la mente de nuestra especie ha ideado para poder descubrir los secretos de la Naturaleza. Hemos aprendido acerca de las fuerzas y de cómo originan sus estructuras complejas, como por ejemplo los protones que no son, tan elementales como en un principio se creía. Los protones (que son Bariones) están formados por tres quarks y, sus primos  (los Mesones) están compuestos por un quark y un anti-quark.

Como nos decía el Nobel León Lederman: “Uno no puede por menos que  sentirse impresionado por la secuencia de ¡semillas dentro de semillas!. La molécula está formada por átomos. La región central del átomo es el nucleo. El núcleo está formado por protones y neutrones. El protón y el neutrón están formados por… ¿hasta dónde llegará ésto?

No es fácil conformarse con la idea de que, en los Quarks termina todo. Uno se siente tentado a pensar que, si profundizamos más utilizando energías superiores de las que ahora podemos disponer (14 TeV), posiblemente -sólo posiblemente- podríamos encontrarnos con objetos más pequeños que… ¡como cuerdas vibrantes! nos hablen de la verdadera esencia de la materia que, habiéndonos sido presentada ya, es posible que esconda algunos secretos que tendríamos que desvelar.

Resultado de imagen de partícula higgs

         ¡Poder profundizar hasta el límite de Planck con la energía de Planck! ¿Qué encontraríamos allí?

Lo cierto que, de momento, sólo es un sueño y, la energía de Planck está muy lejos de nuestro alcance. Poder contar con la energía de Planck, por el momento y durante mucho, mucho, muchísimo tiempo, será sólo un sueño que algunos físicos tienen en la mente. Una regla universal en la física de partículas es que para partículas con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez más pequeñas en el espacio y en el tiempo. El modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero existen varias razones para sospechar que sus predicciones pueden, finalmente (cuando podamos emplear más energía en un nivel más alto), resultar equivocadas.

equilibrio y estabilidad, el resultado de dos fuerzas contrapuestas

Vistas a través del microscopio, las constantes de la naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático no hay nada que objetar, pero la credibilidad del modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas, o lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas. ¿Y por qué debería ser el modelo válido hasta aquí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables. ¿Dónde está la partícula de Higgs? ¿Cómo se esconde de nosotros el gravitón? y, por no dejar nada en el tintero… ¿Dónde estarán las cuerdas?

                                               Los Bosones de gauge aparecen en la columna derecha

Parece que el Modelo estándar no admite la cuarta fuerza (Gravedad),  y tendremos que buscar más profundamente, en otras teorías que nos hablen y describan además de las partículas conocidas de otras nuevas que están por nacer y que no excluya la Gravedad. Ese es el Modelo que necesitamos para conocer mejor la Naturaleza.

Claro que las cosas no son tan sencilla y si deseamos evitar la necesidad de un delicado ajuste de las constantes de la naturaleza, creamos un nuevo problema: ¿cómo podemos modificar el modelo estándar de tal manera que el ajuste fino no sea necesario? Está claro que las modificaciones son necesarias, lo que implica que muy probablemente haya un límite más allá del cual el modelo tal como está deja de ser válido. El modelo estándar no será nada más que una aproximación matemática que hemos sido capaces de crear, de forma que todos los fenómenos que hemos observado hasta el presente están reflejados en él, pero cada vez que se pone en marcha un aparato más poderoso, tenemos que estar dispuestos a admitir que puedan ser necesarias algunas modificaciones del modelo para incluir nuevos datos que antes ignorábamos.

Más allá del modelo estándar habrá otras respuestas que nos lleven a poder hacer otras preguntas que en este momento, no sabemos ni plantear por falta de conocimientos.  Si no conociéramos que los protones están formados por Quarks, ¿cómo nos podríamos preguntar si habrá algo más allá de los Quarks?

Se han estado inventando nuevas ideas, como la supersimetría y el technicolor. Los astrofísicos estarán interesados en tales ideas porque predicen una gran cantidad de nuevas partículas superpesadas, y también varios tipos de partículas que interaccionan ultradébilmente, los technipiones. Éstas podrían ser las WIMP’s (Weakly Interacting Massive Particles, o Partículas Masivas Débilmente Interactivas) que pueblan los huecos entre las galaxias, y serían así las responsables de la masa perdida que los astrofísicos siguen buscando y llaman “materia oscura”.

Resultado de imagen de El positrón de Dirac

Que aparezcan “cosas” nuevas y además, imaginarlas antes, no es fácil. Recordemos cómo Paul Dirac se sintió muy incómodo cuando en 1931 dedujo, a partir de su ecuación del electrón, que debería existir una partícula con carga eléctrica opuesta. Esa partícula no había sido descubierta y le daba reparo perturbar la paz reinante en la comunidad científica con una idea tan revolucionaria, así que disfrazó un poco la noticia: “Quizá esta partícula cargada positivamente, tan extraña, sea simplemente el protón”, sugirió. Cuando poco después se identificó la auténtica antipartícula del electrón (el positrón) se sorprendió tanto que exclamó: “¡Mi ecuación es más inteligente que su inventor!”. Este último comentario es para poner un ejemplo de cómo los físicos trabajan y buscan caminos matemáticos mediante ecuaciones de las que, en cualquier momento (si están bien planteadas), surgen nuevas ideas y descubrimientos que ni se podían pensar. Así pasó también con las ecuaciones de Einstein de la realtividad general, donde Schwarzschild dedujo la existencia de los agujeros negros.

Claro que, a todo esto, tenemos que pensar en un Universo muy vasto y muy complejo que está dinamizado por leyes y energías que, aunque creemos conocer, nos puede estar ocultando muchas “cosas” que aún no sabemos y, llegar más allá de los Quarks…¡No será nada fácil!

Si pensamos detenidamente lo que hasta el momento llevamos conseguido (aunque nuestros deseos se desboquen queriendo ir mucho más allá), tendremos que convenir en el hecho cierto de que, haber podido llegar al átomo y también a las galaxias es, al menos ¡asombroso! Sabemos de lugares a los que, físicamente (probablemente) nunca podamos ir, la física nos lo impide…al menos de momento en lo relacionado con las galaxias y, de manera irreversible para el “universo cuántico” que sólo podremos sondear con inmensas energías en los aceleradores que nos dirán, lo que queremos saber.

emilio silvera

¡El mundo de lo muy pequeño!

Autor por Emilio Silvera    ~    Archivo Clasificado en Sin categoría    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No es fácil adentrarse en este universo de lo definitivamente pequeño, o incluso hablar de ello, exige un conocimiento muy profundo de las leyes de la naturaleza que rigen el mundo y que no tenemos. Las fuerzas que encontramos allí determinan la forma en la cual se mueven las partículas pequeñísimas y también le dan sus propiedades por medio de unos mecanismos que no siempre llegamos a comprender.

Imagen relacionada

Muchos, diciendo que “saben” buscan refugio en un galimatías matemático que pocas personas “normales” pueden entender a menos que sea uno de ellos, y, sin embargo, para apreciar realmente la solidez de la lógica de las leyes físicas, no se pueden evitar las matemáticas que es, el único lenguaje que pueden explicar aquello que no podemos decir con palabras. Desde siempre, he tratado de hablar de la Física como si de cualquier otra disciplina se tratara y, he procurado soslayar ecuaciones, teoremas y funciones modulares que aterran al lector no versado y, desde luego, no siempre he conseguido transmitir lo que quería decir.

Hacer un viaje al mundo de lo muy pequeño no resulta nada comprensible para nuestros sentidos que, acostumbrados a lo “pequeño” cotidiano, cuando se adentra en lo infinitesimal, allí, las cosas se comportan de manera muy distinta a la acostumbrada en nuestro mundo real.

Todos, cuando hemos sido pequeños, hemos tratado de imitar el mundo de los mayores con juguetes a escalas más pequeñas: cochecitos, un tren, grúas y camiones, piezas de madera en colores para construir figuras, piezas metálicas que nos daban la oportunidad de emplear la imaginación para construir mecanos y rústicos robots que sólo se movían con el impulso de nuestras manos, etc.

Resultado de imagen de El escritor Jonathan Swift nos dejó aquellas fantásticas historias de Gulliver

Leer más

Fuerzas invisibles que inciden en nuestras vidas

Autor por Emilio Silvera    ~    Archivo Clasificado en Naturaleza misteriosa    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

Las corrientes de convección son movimientos que describen los fluidos. Cuando éstos se calientan, se dilatan y ascienden. Al llegar esos materiales a la corteza terrestre se enfrían debido a que esta capa tiene una baja temperatura. Al enfriarse los materiales, se contraen y descienden hasta alcanzar el núcleo de la Tierra, donde el proceso volverá a comenzar.

Toda esta energía térmica actúa sobre los materiales provocando el movimiento de estos, generando elevadas presiones que llevan a transformaciones en la estructura de los materiales. En ocasiones, estas presiones se liberan bruscamente. Todos hemos podido contemplar las consecuencias devastadoras de tales acontecimientos.

 

 

 

 

“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el tiempo sin fin; pues todas las cosas son de la misma clase y la misma forma”.

Marco Aurelio

 

Claro que él, quería significar que todo, desde el comienzo del mundo, ha sido igual, sigue unos patrones que se repiten una y otra vez a lo largo del transcurso de los tiempos: el día y la noche, el hombre y la mujer, el frío y el calor, el río muerto por la sequía o aquel que, cantarino y rumoroso ve correr sus aguas cristalinas hasta que desembocan en el océano. La Bondad y la maldad…Así ha sido siempre y, así continuará siendo por toda la eternidad.

 

d-brana

Sólo vamos a ser conscientes de dimensiones extra allí donde inciden directamente sobre las D-brana en la que “vivimos”. Más que una imagen de tipo “espacio cociente” que evoca la analogía de Kaluza-Klein original:

El gráfico representa un modelo de manguera de un espacio-tiempo de dimensiones más altas de tipo Kaluza-Klein, donde la longitud, o mejor, la dimensión a lo largo de la longitud de la manguera representa el 4-espacio-tiempo normal, y la dimensión alrededor de la manguera representa la dimensión extra “pequeñas” (quizá escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.

Es ampliamente sabido que el planeta Tierra actúa como un gran imán cuyas líneas de campo geomagnético surgen de un polo (el polo sur magnético) y convergen en el otro polo (polo norte magnético). El eje longitudinal de este imán tiene una desviación de aproximadamente 11^o con respecto al eje de rotación. Por ello, los polos del campo magnético generado no coinciden exactamente con los polos geográficos.

Este campo geomagnético es producido por la combinación de varios campos generados por diversas fuentes, pero en un 90% es generado por la exterior del núcleo de la Tierra (llamado Campo Principal o “Main Field”).

Por otra , la interacción de la ionosfera con el viento solar y las corrientes que fluyen por la corteza terrestre componen la mayor del 10% restante. Sin embargo, durante las tormentas solares (eventos de actividad solar exacerbada) pueden introducirse importantes variaciones en el campo magnético terrestre.

grandes-tormentas-solares-fuente-quantum-com-do

                Las grandes tormentas solares inciden sobre nosotros y nuestras obras

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

[stephan_quinteto_2009_hubble.jpg]

Muchas veces he comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria en dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

Lo podríamos representar de cualquier manera, ya que, su cara nos es desconocida. El Gravitón es la única partícula mediadora de una fuerza (en este caso de la Gravedad), que no ha sido encontrada en ningún experimento. Sin embargo, todos los físicos creen que existe… ¡Dónde se esconde el puñetero!

La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio da a entender, no hay carga eléctrica; es neutro.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 1015 metros, o lo que es lo mismo, 0’000000000000001 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

    Una de las fuentes productoras de rayos cósmicos es el Sol

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

emilio silvera